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1. Introduction

We consider systems of conservation laws in one space dimension. These
are partial differential equations of the form

Ut+F(U )x=0 (1.1)

with t # R+, x # R, U(x, t) # RN , and F : RN � RN a smooth map. Such
equations arise in the modeling of many physical systems, such as gas
dynamics [4, 18], three-phase flow in a porous medium [3, 31, 1, 27, 11],
elastic strings [19, 13, 25], plasticity [20, 32], magnetohydrodynamics
[34, 5, 2], chromatography [21], and phase transitions [12, 28, 24].
A good general reference is Ref. [29].

For both theoretical and numerical purposes, the most basic initial-value
problem for Eq. (1.1) is the Riemann problem, in which the initial data are
piecewise constant with a single jump at x=0:

U(x, 0)={UL

UR

for x<0,
for x>0.

(1.2)

Riemann solutions have a rich wave structure. In this work, we propose a
systematic program to study this structure and we carry out the first step
of the program.

We seek piecewise continuous weak solutions of Riemann problems in
the scale-invariant form U(x, t)=U� (x�t) consisting of a finite number of
constant parts, continuously changing parts (rarefaction waves), and jump
discontinuities (shock waves). Shock waves occur when

lim
! � s&

U� (!)=U&{U+= lim
! � s+

U� (!). (1.3)

To have a weak solution of Eq. (1.1), the Rankine�Hugoniot condition

F(U+)&F(U&)&s(U+&U&)=0 (1.4)

must hold. It is well known that this requirement alone allows multiple
solutions of Riemann problems, including ones that are clearly not physical.

Various shock admissibility criteria are used to remedy this situation.
Perhaps the most widely accepted is the viscous profile criterion. Suppose
that Eq. (1.1) arises by ignoring the small viscous term in the parabolic
equation

Ut+F(U )x== [D(U ) Ux]x . (1.5)
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(Here D(U ) is a positive matrix, dictated by the physical application, and
=>0 is small.) Then the viscous profile criterion states that the discon-
tinuity (1.3) is admissible in solutions of Eqs. (1.1) and (1.2) if and only if
the parabolic equation (1.5) has a traveling wave solution U(x, t)=
U� ((x&st)�=) with

lim
! � \�

U� (!)=U\ , lim
! � \�

U� $(!)=0. (1.6)

This amounts to requiring that the ordinary differential equation

D(U )U4 =F(U )&F(U&)&s(U&U&) (1.7)

have an orbit from the equilibrium U& to a second equilibrium U+ .
In simple cases, the viscous profiles criterion coincides with the more

easily-used admissibility criterion of Lax [14] and with its generalization
due to Liu [15]. However, the viscous profile criterion allows, for example,
transitional (or undercompressive) shock waves that correspond to saddle-
to-saddle connections of Eq. (1.7), which fail to satisfy the Lax and Liu
criteria. Recent work strongly supports admitting these nonclassical shock
waves: they are sometimes needed to solve Riemann problems [27, 26, 10,
23]; they arise, apparently stably, in numerical calculations [35]; and they
can sometimes be proved to be time-asymptotically stable solutions of Eq.
(1.5) [16]. We shall therefore adopt the viscous profile shock admissibility
criterion in this paper.

In the current work, we will restrict our attention to systems of two con-
servation laws, i.e., N=2. We shall make the further simplification
D(U )#I, despite that this is physically unrealistic and that the solutions of
Riemann problems generally depend on the viscosity matrix [9]. Our
results actually hold in somewhat greater generality, but further work is
needed to address the case of general viscosity matrices.

In the literature, Riemann solutions are usually pictured by fixing UL

and drawing the UR-plane, which is divided into regions in which different
types of solutions occur. The classical work of Lax [14], which treats UR

close to UL , leads to Fig. 1.1, in which we have used notation that will be
used throughout this paper. If UR=UL (the dot at the center of the pic-
ture), the solution is constant. If UR lies on one of the curves drawn
throughout UL , the solution contains a single wave: a 1- or 2-rarefaction
wave (denoted R1 or R2), a 1-shock wave (denoted R } S because the shock
is represented by a repeller-to-saddle connection of Eq. (1.7)), or a 2-shock
wave (denoted S } A because the shock is represented by a saddle-to-
attractor connection of Eq. (1.7)). If UR lies in one of the open regions
separated by the curves, the Riemann solution has two waves, as indicated
in Fig. 1.1.
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Fig. 1.1. Different Riemann solutions for fixed UL in a neighborhood of UR=UL in the
UR-plane.

Figure 1.1 is the starting point for the literature on Riemann problems.
There are various approaches to generalizations: (a) extend the wave
curves (i.e., the codimension-one bifurcation curves in Fig. 1.1) through
various subsequent codimension-two bifurcations [33, 6]; (b) identify
classes of flux functions F for which the slow and fast wave curves are
transverse, as in the Lax construction [30, 15]; (c) study the failure
of the two basic hypotheses of Lax, genuine nonlinearity and strict hyper-
bolicity [15, 27]. Wendroff [33] and Liu [15] used wave curves to
construct more general Riemann solutions, assuming technical hypotheses
that imply the global transversality of wave curves. Furtado [6] demon-
strated the structural stability of wave curves assuming that shock waves
satisfy the Lax admissibility criterion. Studies of physical models that are
not strictly hyperbolic have demonstrated the importance of transitional
waves.

These generalizations lead to diagrams that are far more complicated
than Fig. 1.1, and there is, at present, a desire among workers in the field
for organizing principles that will bring some order to the profusion of
examples. In this paper we propose an approach to Riemann problems that
we believe organizes the subject in a comprehensible way.

Our approach can be explained in the context of Fig. 1.1. This figure can
be viewed as a bifurcation diagram. If UR lies in one of the open regions,
the Riemann solution is structurally stable, in the sense that if we vary UL ,
UR , and F a little, the Riemann solution is a sequence of the same number
of waves with the same types. (Structural stability is, in general, distinct
from stability of the Cauchy problem and from time-asymptotic stability.)
Points UR on the curves through UR=UL in Fig. 1.1 correspond to
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codimension-one bifurcations of the Riemann solution. At the point UR=
UL there is a codimension-two bifurcation.

In bifurcation theory and singularity theory, one normally analyzes first
the structurally stable problems, then the codimension-one problems, etc.
From this point of view, the Lax construction, which is based on the
codimension-two Riemann problem UR=UL , should not be taken as the
starting point for a systematic approach to solving Riemann problems.
Instead we propose to start the study of Riemann solutions with the struc-
turally stable solutions. This is the first step of a program that has an
obvious continuation: to analyze how the Riemann solution bifurcates when
exactly one of the assumptions that lead to structural stability is violated.
This program provides an organized approach to understanding codimen-
sion-one Riemann solutions, such as the one-wave solutions in Fig. 1.1.

Here is a brief summary of the contents of the paper. Let

UF=[U # R2 : DF(U ) has distinct real eigenvalues] (1.8)

be the strictly hyperbolic region. We restrict our attention to ``classical''
rarefaction waves, i.e., those such that U� (!) # UF for all !, and shock waves
(1.3) with U\ # UF . (This rules out transitional rarefaction waves [9].
We believe that these are the only new waves that occur in the study of
structurally stable Riemann problems when the hypothesis of strict hyper-
bolicity is relaxed to nonstrict hyperbolicity.)

Starting at the left state UL , a Riemann solution can be constructed by
appending successive elementary waves until an open region of states UR

is attained. Each appended wave w introduces a certain number of degrees
of freedom; this number is called the Riemann number \(w) of the wave. It
is not difficult to verify that \(w) is an integer between &2 and 1, deter-
mined by the wave type of w. For example, the Riemann number of a
rarefaction wave or an R } S or S } A shock wave is 1, while the Riemann
number of a shock wave of type S } S (saddle-to-saddle) is 0. We argue that
for a Riemann solution to be structurally stable, the sum of the Riemann
numbers of its component waves should be 2. We then identify precisely
the class of finite wave sequences that have this property. Finally, we show
that, given certain nondegeneracy conditions, all the wave sequences in this
class are in fact structurally stable. As a side benefit, this analysis identifies
one type of wave (the doubly sonic transitional wave) that occurs in struc-
turally stable Riemann problems but has not yet been observed in case
studies.

The remainder of the paper is organized as follows. In Sec. 2 we establish
notation and terminology. Then we state our principal results, the Wave
Structure Theorem and the Structural Stability Theorem. Proofs are in
Secs. 3�7. Further discussion of our results is in Sec. 8.
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2. Definitions and Results

We consider the system (1.1) with t # R+, x # R, U(x, t) # R2, and
F : R2 � R2 a C2 map. Let UF be defined by Eq. (1.8). For U # UF , let
*1(U )<*2(U ) denote the eigenvalues of DF(U), and let li (U ) and ri (U ),
i=1, 2, denote corresponding left and right eigenvectors with
li (U ) rj (U )=$ij .

A rarefaction wave of type Ri is a differentiable map U� : [a, b] � UF ,
where a<b, such that U� $(!) is a multiple of ri (U� (!)) and !=*i (U� (!)) for
each ! # [a, b]. The states U=U� (!) with ! # [a, b] constitute the rare-
faction curve 1� . The definition of rarefaction wave implies that if U # 1� ,
then

D*i (U ) ri (U )=li (U ) D2F(U)(ri (U ), ri (U )){0. (2.1)

Condition (2.1) is genuine nonlinearity of the ith characteristic line field at
U. The definition also implies that *i (U&)<*i (U+), where U&=U� (a) and
U+=U� (b) are the left and right states of the rarefaction wave, respectively.
We will find it convenient to associate a specific speed s to a rarefaction
wave: for a rarefaction wave of type R1 , s=*1(U+); for a rarefaction wave
of type R2 , s=*2(U&). (Of course, this definition is appropriate only in
our present context of two-component conservation laws.)

Remark. Even in the context of rarefaction waves that lie within UF ,
our definition of rarefaction wave is not the most general one. In particular,
it excludes points along the rarefaction curve where genuine nonlinearity
fails. However, work of Liu [15] and Furtado [6] strongly suggests that
rarefaction waves for which genuine nonlinearity fails at some point do not
occur in structurally stable Riemann solutions.

A shock wave consists of a left state U&, a right state U+ , a speed s, and
a connecting orbit 1, i.e., a orbit of the ordinary differential equation

U4 =F(U )&F(U&)&s(U&U&) (2.2)

from the equilibrium U& to the equilibrium U+. (Recall that we are taking
D(U )#I in Eqs. (1.5) and (1.7).) In particular, the speed and the left
and right states of a shock wave are related by the Rankine�Hugoniot
condition (1.4), which states that U+ is an equilibrium for Eq. (2.2).
Equivalently, we could require that the ordinary differential equation

U4 =F(U )&F(U+)&s(U&U+) (2.3)

have an equilibrium at U& and an orbit from U& to U+. Notice that, in
general, there might be more than one orbit from U& to U+; according to
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TABLE 2.1

Types of Equilibria

Name Symbol Eigenvalues

Repeller R + +
Repeller-Saddle RS 0 +

Saddle S & +
Saddle-Attractor SA & 0

Attractor A & &

our definition, a particular connecting orbit 1 must be chosen in order to
specify a shock wave.

For any equilibrium U # UF of Eq. (2.2), the eigenvalues of the lineariza-
tion at U are *i (U )&s, i=1, 2. We shall use the terminology defined in
Table 2.1 for such an equilibrium.

Remark. Our name for an equilibrium accounts only for the signs of
the eigenvalues; it does not necessarily reflect the topological type of the
phase portrait if there is a zero eigenvalue. For instance, an equilibrium
with one positive and one zero eigenvalue (which we call a repeller-saddle)
has, in the nondegenerate case, the topological type of a repeller-saddle;
but it can have a degenerate topological type, such as that of a weak saddle.
Figures 2.1�2.4 show the phase portraits in the nondegenerate situation.
These are the phase portraits that occur in the structurally stable Riemann
solutions that we construct.

If w is a shock wave, its type is determined by the equilibrium types of its
left and right states. (For example, w is of type R } S if its connecting orbit
joins a repeller to a saddle.) The sixteen types are listed in Figs. 2.1�2.4;
they are grouped into four sets of four: slow, fast, overcompressive, and
transitional shock waves. Slow and fast waves are called classical shock
waves. For a classical or transitional shock wave there are at most two
possible choices for its connecting orbit 1 ; for an overcompressive shock
wave there is, in general, an infinite number of possible choices for 1. As
we shall see, overcompressive waves do not occur in Riemann solutions for
which the sum of Riemann numbers is 2.

An elementary wave w is either a rarefaction wave or a shock wave. We
write

w: U& w�s U+ (2.4)

if w has left state U& , right state U+ , and speed s. Note that an elementary
wave also has a type T, as defined above.
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Associated with each elementary wave is a speed interval _: for a rarefac-
tion wave of type Ri , _=[*i (U&), *i (U+)], whereas for a shock wave of
speed s, _=[s, s]. If _1 and _2 are speed intervals, we write _1�_2 if
s1�s2 for every s1 # _1 and s2 # _2 .

Also associated with each elementary wave is the set 1� : if w is a rare-
faction wave, 1� denotes its rarefaction curve; if w is a shock wave, then 1�
denotes the closure of its connecting orbit. We shall say that an open set
N�R2 is a neighborhood of the elementary wave w: U& w�s U+ if 1� /N.

Sequences of elementary waves can be used to construct solutions of
Riemann problems. A wave sequence (w1 , w2 , ..., wn) is said to be allowed if:

1. for each i=1, ..., n&1, the right state of wi coincides with the left
state of wi+1;

2. the speed intervals _i for wi satisfy

_1�_2� } } } �_n ; (2.5)

3. no two successive waves are rarefaction waves of the same type.

For such a wave sequence we write

(w1 , w2 , ..., wn): U0 w�
s 1 U1 w�

s 2 } } } w�
sn Un . (2.6)

If U0=UL and Un=UR , then associated with an allowed wave sequence
(w1 , w2 , ..., wn) is a piecewise continuous weak solution U(x, t)=U� (x, t) of
the Riemann initial-value problem (1.1)�(1.2). In this solution, a discon-
tinuity along the ray x=st arises from one or more admissible shock waves
with speed s. Conversely, if a solution can be regarded as being composed
of a finite sequence of elementary waves, separated by constant states, then
this sequence is allowed. Therefore we shall often refer to an allowed wave
sequence as a Riemann solution.

Let
(w1*, w2*, ..., wn*): U0* w�

s 1
*

U1* w�
s2
*

} } } w�
sn* Un* (2.7)

be a Riemann solution for Ut+F*(U )x=0. Fix a compact set K/R2 such
that Int K is a neighborhood of wi* for i=1, ..., n. Let B denote the Banach
space of C 2 functions F : K � R2, equipped with the C2 norm. In the follow-
ing we will regard the flux function F as an element of B, but the results
will not depend on the choice of K. Also, let H(Int K) denote the set of non-
empty, closed subsets of Int K, which we equip with the Hausdorff metric.

Definition 2.1. We shall say that the Riemann solution (2.7) is
structurally stable if there are neighborhoods Ui of Ui*, Ii of si*, and F of
F* and a C1 map

G : U0_I1_U1_I2_ } } } _In_Un_F � R3n&2 (2.8)
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with G(U0*, s1*, U1*, s2*, ..., sn*, Un*, F*)=0 such that:

(P1) G(U0 , s1 , U1 , s2 , ..., sn , Un , F )=0 implies that there exists a
Riemann solution

(w1 , w2 , ..., wn): U0 w�
s 1 U1 w�

s 2 } } } w�
sn Un (2.9)

for Ut+F(U)x=0 with successive waves of the same types as those of the
wave sequence (2.7) and with each wi contained in Int K;

(P2) DG(U0*, s1*, U1*, s2*, ..., sn*, Un*, F*), restricted to the (3n&2)-
dimensional space of vectors [(U4 0 , s* 1 , U4 1 , s* 2 , ..., s* n , U4 n , F4 ) : U4 0=0=U4 n ,
F4 =0], is an isomorphism onto R3n&2.

Condition (P2) implies, by the implicit function theorem, that G&1(0) is a
graph over U0_Un_F. Therefore for each wave wi we can define a map
1� i : U0_Un_F � H(Int K ); namely, 1� i (U0 , Un , F ) is the rarefaction
curve or the closure of the connecting orbit of the wave wi . We further
require that

(P3) (w1 , w2 , ..., wn) can be chosen so that 1� i (U0*, Un*, F*)=1� i* and
each map 1� i is continuous.

The map G will be said to exhibit the structural stability of the Riemann
solution (2.7).

Remark. By condition (P2), (s1 , U1 , ..., Un&1 , sn) is determined by
(U0 , Un , F ). However, if wi* is a shock wave, then the connecting orbit 1i

(and hence wi itself) might not be uniquely determined by the data
(Ui&1, si , Ui ). Condition (P3) asserts that each connecting orbit 1i can be
chosen in a continuous way.

In Sec. 4 we shall explicitly give local defining maps for each type of
elementary wave, with which we will construct maps G that exhibit struc-
tural stability. Let w*: U*& w�s* U*+ be an elementary wave of type T for
Ut+F*(U )x=0. The local defining map GT has as its domain a set of the
form U&_I_U+_F (with U\ being neighborhoods of U*\ , I a
neighborhood of s*, and F a neighborhood of F*). The range is some Re ;
the number e depends only on the wave type T. The local defining map is
such that GT (U*& , s*, U*+ , F*)=0. Moreover, if certain wave non-
degeneracy conditions are satisfied at (U*& , s*, U*+ , F*), then there is a
neighborhood N of w* such that:

(D1) GT (U&, s, U+ , F )=0 if and only if there exists an elementary
wave w: U& w�s U+ of type T for Ut+F(U )x=0 contained in N ;

(D2) DGT (U*& , s*, U*+, F*), restricted to the space [(U4 & ,
s* , U4 + , F4 ) : F4 =0], is surjective.
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Condition (D2) implies, by the implicit function theorem, that G&1
T (0) is a

manifold of codimension e. Therefore we can define a map 1� from this
manifold to H(Int K ) (just as above). We shall establish further that

(D3) w can be chosen so that 1� (U*& , s*, U*+ , F*)=1� * and 1� is
continuous.

For the Riemann solution (2.7), let wi* have type Ti and local defining
map GT i , with range Re i. For an appropriate neighborhoods Ui of Ui*, Ii

of si*, F of F*, and Ni of wi*, we can define a map G : U0_I1_ } } } _
In_Un_F � Re 1+ } } } +en by G=(G1 , ..., Gn), where

Gi (U0 , s1 , ..., sn , Un , F )=GT i(Ui&1 , si , Ui , F ). (2.10)

The map G is called the local defining map of the wave sequence (2.7).
Assuming the wave nondegeneracy conditions, if G(U0 , s1 , ..., sn , Un , F )
=0, then for each i=1, ..., n, there is an elementary wave wi : Ui&1 w�s i Ui

of type Ti for Ut+F(U )x=0 contained in Ni , for which 1� i is continuous.
In this paper we shall study Riemann solutions (2.7) whose structural
stability is exhibited by the local defining map of the solution.

In view of the requirement that the local defining map have range R3n&2,
a necessary condition for G=(G1 , ..., Gn) to exhibit the structural stability
of the wave sequence (2.7) is that

:
n

i=1

ei=3n&2, (2.11)

i.e.,

:
n

i=1

(3&ei )=2. (2.12)

We are therefore led to define the Riemann number of an elementary wave
type T to be

\(T )=3&e(T ), (2.13)

where e(T ) is the number of defining equations for a wave of type T. For
convenience, if w is an elementary wave of type T, we shall write \(w)
instead of \(T ). Because of Eq. (2.12) we concentrate our attention on
allowed sequences of elementary waves (w1 , ..., wn) with �n

i=1 \(wi )=2.
In Sec. 4 we shall show that the Riemann number for a rarefaction wave

is 1, whereas the Riemann numbers of shock waves are as given in Table 2.2.
The essence of the argument is the following: the Rankine�Hugoniot condi-
tion gives two of the defining equations for a shock wave; one further con-
dition holds for each repeller-saddle and saddle-attractor equilibrium; and
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TABLE 2.2

Riemann Numbers of Shock Waves

U+

U& RS S SA A

R 0 1 0 1
RS &1 0 &1 0
S &1 0 0 1

SA &2 &1 &1 0

one further condition holds for transitional waves because the connecting
orbit is a double separatrix.

Because of the inequalities (2.5) on speed intervals, an allowed sequence
of elementary waves can contain only the wave type successions given in
Table 2.3, as can be verified easily by comparing shock and characteristic
speeds.

Some of these wave type successions do not occur in Riemann solutions
for which the sum of Riemann numbers is 2. The wave type successions in
Table 2.4 are termed good.

We can now state

Theorem 2.2. Let (w1 , ..., wn) be an allowed sequence of elementary
waves. Then

1. �n
i=1 \(wi )�2;

2. �n
i=1 \(wi )=2 if and only if

(a) all wave type successions are good ;

(b) w1 is of type R } RS, R } S or R1 ; and wn is of type SA } A, S } A,
or R2 .

TABLE 2.3

Wave Type Successions in Allowed Sequences of
Elementary Waves

Ti+1

Ti R1 RS } V S } V SA } V R2

R1 - - - -

V } RS - - - - -

V } S - - -

V } SA - -

R2 -
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TABLE 2.4

Good Wave Type Succions

Ti Ti+1

R1 RS } RS, RS } S, S } V, R2

V } RS R1

S } SA, SA } SA R2

V } S S } V, R2

R2 SA } V

A proof by induction on n, using nothing more than Tables 2.2, 2.3, and
2.4, is given in Sec. 3. One consequence of this theorem is that overcom-
pressive waves do not occur in Riemann solutions for which the sum of
Riemann numbers is 2.

We now give a more conceptual description of the allowed sequences of
elementary waves with �n

i=1 \(wi )=2. First we state some more definitions.
A 1-wave group is either a single R } S wave or an allowed sequence of

elementary waves of the form

(R } RS )(R1RS } RS ) } } } (R1RS } RS ) R1(RS } S ), (2.14)

where the terms in parentheses are optional. If any of the terms in
parentheses are present, the group is termed composite.

A transitional wave group is either a single S } S wave or an allowed
sequence of elementary waves of the form

S } RS (R1RS } RS ) } } } (R1RS } RS ) R1 (RS } S ) (2.15)

or

(S } SA) R2 (SA } SA R2) } } } (SA } SA R2) SA } S, (2.16)

the terms in parentheses being optional. In cases (2.15) and (2.16), the
group is termed composite.

A 2-wave group is either a single S } A wave or an allowed sequence of
elementary waves of the form

(S } SA) R2 (SA } SA R2) } } } (SA } SA R2)(SA } A), (2.17)

where again the terms in parentheses are optional. If any of the terms in
parentheses are present, the group is termed composite.

An SA } RS wave will be called a doubly sonic transitional wave.

Remark. In the wave groups (2.14)�(2.17), the right endpoint of the
speed interval _i coincides with the left endpoint of _i+1 for all i. In other
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words, there are no constant states embedded within a composite wave
group. Also notice that the sum of the Riemann numbers is 1 for slow and
fast wave groups, 0 for transitional wave groups, and &2 for doubly sonic
transitional waves.

The reader should note a symmetry between the wave groups (2.14) and
(2.17), as well as between the groups (2.15) and (2.16). The wave groups
R } S, (2.14), and (2.15) are termed slow; the wave groups S } A, (2.17), and
(2.16) are termed fast. A solution U for the equation Ut+F(U)x=0 that
consists of a fast wave group corresponds to a solution U� for the equation
U� t&F(U� )x=0 that consists of a slow wave group; the correspondence is

U� (x, t)=U(&x, t). (2.18)

This symmetry will be exploited throughout this paper to shorten the
treatment. For example, it motivates the definition of the speed of a rare-
faction.

With these definitions, we have

Theorem 2.3 (Wave Structure). Let the allowed sequence of elementary
waves (2.7) have �n

i=1 \(wi*)=2.

(1) Suppose that the wave sequence (2.7) includes no SA } RS waves.
Then it consists of one 1-wave group, followed by an arbitrary number of
transitional wave groups (in any order), followed by one 2-wave group.

(2) Suppose that the wave sequence (2.7) includes m�1 waves of type
SA } RS. Then these waves separate m+1 wave sequences g0 , ..., gm . Each gi

is exactly as in (1) with the restrictions that:
(a) if i<m, the last wave in the group has type R2 ;

(b) if i>0, the first wave in the group has type R1 .

Remark. A transitional composite wave group arises in modeling three-
phase flow in a porous medium [10, 17]. To our knowledge, SA } RS
waves do not appear in the literature.

The condition �n
i=1 \(wi*)=2 simply ensures that the range of the local

defining map G of the wave sequence (2.7) is R3n&2. In order to ensure that
G also satisfies conditions (P1)�(P3), we impose three additional types of
conditions:

1. on each wave we impose the wave nondegeneracy conditions men-
tioned earlier; they are given precisely in Tables 4.1�4.4.

2. in the absence of SA } RS waves, we impose one wave group inter-
action condition on how the different wave groups are related. If there are
m�1 waves of type SA } RS, we impose m+1 wave group interaction
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conditions, one on each of the m+1 wave sequences g0 , ..., gm . Roughly
speaking, these conditions say that certain wave curves are transverse.

3. if wi* is a V } S wave and w*i+1 is an S } V wave, we require that
si*<s*i+1.

We shall prove the following result.

Theorem 2.4 (Structural Stability). Suppose that the allowed sequence
of elementary waves (2.7) has �n

i=1 \(wi*)=2. Assume that:

(H1) each wave satisfies the appropriate wave nondegeneracy conditions;
(H2) the wave group interaction conditions, as stated precisely in

Theorems 5.5, 6.1, and 7.2, are satisfied ;

(H3) if wi* is a V } S wave and w*i+1 is an S } V wave, then si*<s*i+1 .

Then the wave sequence (2.7) is structurally stable.

In fact, more can be concluded: not only can the connecting orbit 1i of
the perturbed shock wave wi be chosen to vary continuously, but also there
is a neighborhood Ni such that if 1i/Ni , then it is unique.

The remainder of the paper is organized as follows. In Sec. 3 we prove
Theorem 2.2 and the Wave Structure Theorem. This section is independent
of the rest of the paper. In Sec. 4 we give local defining maps and wave
nondegeneracy conditions for each wave type. In Sec. 5 we prove the
Structural Stability Theorem in the absence of transitional wave groups
and doubly sonic transitional waves. In Sec. 6 we extend the proof to wave
sequences containing transitional wave groups, and in Sec. 7 to wave
sequences also containing doubly sonic transitional waves. We have
included in Sec. 6 and 7 some discussion of the geometric role of trans-
itional wave groups and doubly sonic transitional waves in the solution of
Riemann problems. Further discussion of our results is in Sec. 8.

3. Proofs of Theorem 2.2 and the Wave Structure Theorem

We divide the proof of Theorem 2.2 into two lemmas.

Lemma 3.1. Let (T1 , ..., Tn) be a sequence of wave types allowed by
Table 2.3. Then

(1) �n
i=1 \(Ti )�2;

(2) if �n
i=1 \(Ti )=2, then

(a) all wave type successions are good ;

(b) T1 is R } RS, R } S, or R1 ; and Tn is SA } A, S } A, or R2 .
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Proof. The proof is by induction on n.
For n=2, statement (1) follows from Table 2.2; moreover,

�n
i=1 \(Ti )=2 if and only if T1 is R } S or R1 and T2 is S } A or R2 , so that

statement (2) holds, as seen from Table 2.3.
Suppose that the lemma is true for some n�2. Let (T1 , ..., Tn+1) be an

allowed sequence of elementary wave types.
We prove statement (1) by contradiction. Suppose that �n+1

i=1 \(Ti )�3.
By induction, �n

i=1 \(Ti )�2, so that we must have �n
i=1 \(Ti )=2 and

\(Tn+1)=1. The induction hypothesis implies that Tn is SA } A, S } A, or
R2 . But SA } A and S } A waves cannot have successors, so that Tn is R2 .
From Table 2.3, Tn+1 is SA } V, so that from Table 2.2, \(Tn+1)�0. This
is a contradiction.

Next we prove statement (2). Suppose that �n+1
i=1 \(Ti )=2. We consider

the different possibilities for Tn+1.

Case 1. It cannot happen that \(Tn+1)<0, since �n
i=1 \(Ti )�2 by

induction, so that \(Tn+1)<0 would imply �n+1
i=1 \(Ti )<2.

Case 2. Suppose that \(Tn+1)=0. Then �n
i=1 \(Ti )=2, so that by

induction (T1 , ..., Tn) satisfies (a) and (b). Therefore Tn is R2 (since an
SA } A or S } A wave cannot have a successor), and from Tables 2.3 and 2.2,
Tn+1 is SA } A. Thus (T1 , ..., Tn+1) satisfies both (a) and (b).

Case 3. Suppose that \(Tn+1)=1. We consider the different
possibilities for Tn .

Case 3.1. If \(Tn)=&2, then �n+1
i=1 \(Ti )=�n&1

i=1 \(Ti )+\(Tn)+
\(Tn+1)�2&2+1. Thus \(Tn)=&2 cannot occur.

Case 3.2. Suppose that \(Tn)=&1. Then �n&1
i=1 \(Ti )=2, so that

(T1 , ..., Tn&1) satisfies (a) and (b). Therefore Tn&1 is R2 and Tn is SA } S
or SA } SA. If Tn is SA } S, Tn+1 must be S } A or R2; if Tn is SA } SA, Tn+1

must be R2 . Thus (T1 , ..., Tn+1) satisfies (a) and (b).

Case 3.3. Suppose that \(Tn)=0. We note that Tn cannot be RS } A
or SA } A, since these have no successor; nor can it be R } RS or R } SA,
since these have no predecessor. Therefore Tn is S } SA, S } S, or RS } S.

Case 3.1.1. If Tn is S } SA, then Tn+1 is R2 , and thus (b) holds. To
verify (a), let T� 1=T1 , ..., T� n&1=Tn&1 , T� n=S } A. Then (T� 1 , ..., T� n) is an
allowed sequence of elementary wave types and �n

i=1 \(T� i )=2. By induc-
tion (T� 1 , ..., T� n) satisfies (a). From Table 2.4, T� n&1=Tn&1 is R1 or V } S. It
follows that (T1 , ..., Tn+1) satisfies (a).

Case 3.3.2. If Tn is S } S, then Tn+1 is S } A or R2 , and thus (b) holds.
The argument to verify (a) is like that when Tn is S } SA.

Case 3.3.3. If Tn is RS } S, then Tn&1 is R1 or V } RS.
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Case 3.3.3.1. Suppose that \(Tn&1)<0. Then

2= :
n&2

i=1

\(Ti )+\(Tn&1)+\(Tn)+\(Tn+1)< :
n&2

i=1

\(Ti )+0+0+1, (3.1)

so that by induction �n&2
i=1 \(Ti )=2, and therefore \(Tn&1)=&1. But by

induction Tn&2 is R2 , SA } A, or S } A; since it has a successor, it is R2 , so
that Tn&1 must be SA } RS. This is a contradiction, since an SA } RS wave
has \=&2.

Case 3.3.3.2. Therefore Tn&1 is R1 or R } RS. This first possibility is
handled by an argument like that when Tn is S } SA. The second possibility
implies that n=2 (since an R } RS wave cannot have a predecessor), but
then yields a Riemann sum of just 1.

Case 3.4. Suppose that \(Tn)=1. Then Tn is R1 (the only wave type
with Riemann number 1 that can have both a predecessor and a successor
with Riemann number 1), Tn+1 is S } A or R2 , and Tn&1 is V } RS. Thus (b)
holds. To verify (a), we consider the following cases.

Case 3.4.1. If Tn&1 is R } RS, then n=2 and (a) is satisfied.

Case 3.4.2. If Tn&1 is S } RS, then �n&2
i=1 \(Ti )=1. Let T� 1=

T1 , ..., T� n&2=Tn&2 , T� n&1=S } A. Then (T� 1 , ..., T� n&1) is an allowed
sequence of elementary wave types with �n&1

i=1 \(T� i )=2, so that by induc-
tion, (T� 1 , ..., T� n&1) satisfies (a) and (b). Therefore T� n&2=Tn&2 is R1 or
V } S, so that (T1 , ..., Tn+1) satisfies (a).

Case 3.4.3. If Tn&1 is SA } RS, then �n&2
i=1 \(Ti )=2, so that

(T1 , ..., Tn&2) satisfies (a) and (b). Therefore Tn&2 is R2 . Thus
(T1 , ..., Tn+1) satisfies (a).

Case 3.4.4. Finally, if Tn&1 is RS } RS, then Tn&2 is V } RS or R1 . The
following possibilities occur.

Case 3.4.4.1. We cannot have Tn&2=R } RS, since that would imply
n=3 and �n+1

i=1 \(Ti )=1.

Case 3.4.4.2. If Tn&2 is RS } RS or S } RS, then �n&3
i=1 \(Ti )=2, so

Tn&3 is R2 ; this contradicts Tn&2 being RS } RS or S } RS.

Case 3.4.4.3. If Tn&2 is SA } RS, then �n&3
i=1 \(Ti )=3, which is

impossible.

Case 3.4.4.4. If Tn&2 is R1 , let T� 1=T1 , ..., T� n&2=Tn&2 , and
T� n&1=Tn+1. Then �n&1

i=1 \(T� i )=2, so that (T� 1 , ..., T� n&1) satisfies (a). It
follows easily that (T1 , ..., Tn+1) does too. K
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Lemma 3.2. Let (T1 , ..., Tn) be a sequence of wave types allowed by
Table 2.3. Suppose that it satisfies (a) and (b) of Lemma 3.1. Then
�n

i=1 \(Ti )=2.

Proof. We shall drop certain terms from the sequence (T1 , ..., Tn),
obtaining a shorter sequence with the same Riemann sum that still satisfies
(a) and (b).

Step 1. If some Ti is RS } RS, then Ti&1 is R1 . We drop both. Since
\(Ti&1)+\(Ti )=1&1=0, the shorter sequence has the same Riemann
sum. From Table 2.4, since Ti&1 is R1 , either i=2 or Ti&2 is V } RS; and
sice Ti is RS } RS, Ti+1 is R1 . Therefore the sequence obtained by dropping
Ti&1 and Ti still satisfies (a) and (b).

Similar arguments justify the next four steps in the proof, but we omit
them.

Step 2. If some Ti is SA } SA, then Ti+1 is R2 . We drop both.

Step 3. If some Ti is S } S, we drop it.
Let us call the remaining sequence T� 1 , ..., T� m . It has no RS } RS, SA } SA,

or S } S waves.

Step 4. If some T� i is S } RS, then T� i+1 is R1 , and T� i+2 may or may
not be RS } S. In the first case we drop T� i , T� i+1 , and T� i+2; in the second
case we drop T� i and T� i+1.

Step 5. If T� i is SA } S, then T� i&1 is R2 , and T� i&2 may or may not be
S } SA. In the first case we drop T� i&2 , T� i&1 , and T� i ; in the second case we
drop T� i&1 and T� i .

Let us call the remaining sequence T� 1 , ..., T� p . It has no RS } RS, SA } SA,
S } S, S } RS, or SA } S waves, and it satisfies (a) and (b).

Step 6. Suppose no T� i is SA } RS. Then from the last comment it
follows easily that the sequence T� 1 , ..., T� p is just a 1-wave group followed
by a 2-wave group. The 1-wave group is R } S or (R } RS ) R1(RS } S ); the
two-wave group is S } A or (S } SA) R2(SA } A). The waves in parentheses
are optional. Thus � p

i=1 \(T� i )=2.

Step 7. Suppose that the sequence T� 1 , ..., T� p contains k�1 waves
SA } RS (with \=&2). These k waves separate k+1 wave groups
g0 , ..., gk . The sum of the Riemann numbers of the elementary waves in
each gi is at most 2. Thus we must have each wave group exactly as
described in Step 6, except that: (i) in g0 , ..., gk&1 , the last wave is R2 (so
that it can have a successor); (ii) in g1 , ..., gk , the first wave is R1 (so that
it can have a predecessor). K

Lemmas 3.1 and 3.2 together prove Theorem 2.2. Putting back the waves
discarded during the proof of Lemma 3.2, we see that the wave sequences
with �n

i=1 \(Ti )=2 are exactly as stated in the Wave Structure Theorem.
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4. Local Defining Maps and Wave Nondegeneracy Conditions

In this section we shall first give the local defining maps and non-
degeneracy conditions that we shall use for elementary waves of each type.
We recall from Sec. 2 that if w*: U* w�s* U*+ is an elementary wave of
type T for Ut+F*(U )x=0, the local defining map GT is a map from
U&_I_U+_F to Re (U\ being neighborhoods of U*\, I a neighbor-
hood of s*, and F a neighborhood of F*), and the number e depends only
on the wave type T. After giving the local defining maps and wave non-
degeneracy conditions, we shall show that if the nondegeneracy conditions
for waves of type T are satisfied at (U*& , s*, U*+ , F*), then properties
(D1)�(D3) hold.

To simplify the exposition, for most of this section we will suppress the
dependence of GT on F. Also, we will refer to the system of equations
GT (U& , s, U+ , F )=0 as the local defining equations for waves of type T.

In order to treat rarefaction waves, we define open subsets Ui , i=1, 2, of
the U-plane by

Ui=[U # U : D*i (U ) ri (U){0]. (4.1)

In Ui we can normalize ri (U ) to obtain a vector field r~ i (U ) such that
D*i (U) r~ i (U)#1. For each U& # U1 , define �1 to be the solution of

��1

�s
(U& , s)=r~ 1(�1(U&, s)), (4.2)

�1(U& , *1(U&))=U&. (4.3)

Then there is a rarefaction wave of type R1 for Ut+F(U )x=0 from U& to
U+ with speed s if and only if

U+&�1(U&, s)=0 with s=*1(U+)>*1(U&). (4.4)

Similarly, for U+ # U2 , define �2 to be the solution of

��2

�s
(s, U+)=r~ 2(�2(s, U+)), (4.5)

�2(*2(U+), U+)=U+ . (4.6)

Then there is a rarefaction wave of type R2 for Ut+F(U )x=0 from U& to
U+ with speed s if and only if

U&&�2(s, U+)=0 with s=*2(U&)<*2(U+). (4.7)
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Equations (4.4) and (4.7) are defining equations for rarefaction waves of
types R1 and R2 , respectively. The nondegeneracy conditions for rarefac-
tion waves of type Ri , which are implicit in our definition of rarefaction,
are the speed inequality and the genuine nonlinearity condition (2.1). It is
easy to see that properties (D1)�(D3) hold.

Next we consider shock waves. If there is to be a shock wave solution
of Ut+F(U )x=0 from U& to U+ with speed s, we must have that:

F(U+)&F(U&)&s(U+&U&)=0; (E0)

U4 =F(U )&F(U&)&s(U&U&) has an orbit from U& to U+. (C0)

The two-component equation (E0) is a defining equation. Condition (C0)
is an open condition, and therefore is regarded as a nondegeneracy condi-
tion, for all but transitional shock waves.

In Tables 4.1�4.4 we list additional defining equations and non-
degeneracy conditions for shock waves of various types. The additional
defining equations are either equality of the shock speed with a charac-
teristic speed or, for transitional shock waves, a separation equation that
implies condition (C0). The wave nondegeneracy conditions are open con-
ditions. The tables omit several types of nondegeneracy conditions, which
we assume implicitly: (a) U&{U+; (b) inequality conditions on the eigen-
values that are implied by the shock type (e.g., for an R } S shock,
*1(U&)<*2(U&)<s and *1(U+)<s<*2(U+)); and (c) condition (C0)
when it is an open condition (given the defining equations and the listed
nondegeneracy conditions).

The additional defining equations and nondegeneracy conditions for
classical and overcompressive shock waves are given in Tables 4.1�4.3; the
reader should also refer to Figs. 2.1�2.3. In these tables, conditions
(C1)�(C5) are that the connection 1 is not distinguished ; this means the
following. For RS } S and RS } RS shock waves, the connection 1 should
not lie in the unstable manifold of U& (i.e., the unique invariant curve
tangent to an eigenvector with positive eigenvalue). For S } SA and SA } SA
shock waves, the connection 1 should not lie in the stable manifold of U+ .
For RS } SA shock waves, the connection 1 should not lie in either the
unstable manifold of U& or the stable manifold of U+ .

To treat the transitional shock waves (refer to Fig. 2.4), suppose that
w*: U*& w�s* U*+ is a shock wave for Ut+F*(U )x=0 of type S } S, S } RS,
or SA } RS. (Shock waves of type SA } S are related to those of type S } RS
by the correspondence (2.18).) Thus we suppose that, for the differential
equation

U4 =F*(U )&F*(U*&)&s*(U&U*&), (4.8)
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TABLE 4.1

Additional Defining Equations and Nondegeneracy Conditions for Slow Shock Waves

Type of Shock Additional defining equations Nondegeneracy conditions

R } S none none
R } RS *1(U+)&s=0 (E1) D*1(U+) r1(U+){0 (G1)

l1(U+)(U+&U&){0 (B1)
RS } S *1(U&)&s=0 (E2) D*1(U&) r1(U&){0 (G2)

not distinguished connection (C1)
RS } RS *1(U&)&s=0 (E3) D*1(U&) r1(U&){0 (G3)

*1(U+)&s=0 (E4) D*1(U+) r1(U+){0 (G4)
l1(U+)(U+&U&){0 (B2)
not distinguished connection (C2)

TABLE 4.2

Additional Defining Equations and Nondegeneracy Conditions for Fast Shock Waves

Type of shock Additional defining equations Nondegeneracy conditions

S } A none none
SA } A *2(U&)&s=0 (E5) D*2(U&) r2(U&){0 (G5)

l2(U&)(U+&U&){0 (B3)
S } SA *2(U+)&s=0 (E6) D*2(U+) r2(U+){0 (G6)

not distinguished connection (C3)
SA } SA *2(U&)&s=0 (E7) D*2(U&) r2(U&){0 (G7)

*2(U+)&s=0 (E8) D*2(U+) r2(U+){0 (G8)
l2(U&)(U+&U&){0 (B4)
not distinguished connection (C4)

TABLE 4.3

Additional Defining Equations and Nondegeneracy Conditions for Overcompressive
Shock Waves

Type of shock Additional defining equations Nondegeneracy conditions

R } A none none
R } SA *2(U+)&s=0 (E9) D*2(U+) r2(U+){0 (G9)
RS } A *1(U&)&s=0 (E10) D*1(U&) r1(U&){0 (G10)
RS } SA *1(U&)&s=0 (E11) D*1(U&) r1(U&){0 (G11)

*2(U+)&s=0 (E12) D*2(U+) r2(U+){0 (G12)
not distinguished connection (C5)
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U*& is an equilibrium of saddle or saddle-attractor type, U*+ is an equi-
librium of saddle or repeller-saddle type, and there is a solution U� : R � R2

such that lim! � \� U� (!)=U*\ and U� (!) # 1* for all ! # R.
If U*& is a saddle of Eq. (4.8), let W&(U*& , s*) denote its unstable

manifold; if U*+ is a saddle of Eq. (4.8), let W\(U*& , s*) denote its
stable manifold. Similarly, if U*\ is a repeller-saddle or saddle-attractor,
let W\(U*&, s*) denote one of its center manifolds. The manifolds
W\(U*& , s*) both perturb smoothly to invariant manifolds of Eq. (2.2),
denoted W\(U& , s). When U*& is a saddle, W&(U& , s) is just the unstable
manifold of the saddle U& of Eq. (2.2); when U*+ is a saddle, W+(U& , s)
is the stable manifold of the saddle of Eq. (2.2) near U*+.

Let 7 be a line segment through U� (0) transverse to U�4 (0) in the direc-
tion V. See Fig. 4.1. Then W\(U& , s) meet 7 in points U� \(U&, s), and

U� &(U& , s)&U� +(U& , s)=S(U& , s)V. (4.9)

The function S is called the separation function; it is defined on a
neighborhood of (U*&, s*), and, of course, S(U*& , s*)=0. The partial
derivatives of S are given as follows [22]. The linear differential equation

,4 +,[DF(U� (!))&s*I]=0 (4.10)

has, up to constant multiple, a unique bounded solution. For the correct
choice of this constant,

�S
�s

(U*& , s*)=&|
�

&�
,(!)(U� (!)&U*&) d!, (4.11)

DU &
S(U*& , s*)=&\|

�

&�
,(!) d!+ [DF(U*&)&s*I]. (4.12)

Since we want to treat the fast SA } S shock waves analogously to the
slow S } RS shock waves, using the correspondence (2.18), we shall also
consider the family of differential equations

U4 =F*(U )&F*(U*+)&s*(U&U*+) (4.13)

with solution U� from U*& to U*+ , as well as families of invariant manifolds
W� \ and separation function S� , defined for F near F*, U near U*& , s near
s*, and U+ near U*+ . Then

�S�
�s

(s*, U*+)=&|
�

&�
,(!)(U� (!)&U*+) d!, (4.14)

DU+
S� (s*, U*+)=&\|

�

&�
,(!) d!+ [DF(U*+)&s*I]. (4.15)
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Fig. 4.1. Geometry of the separation function. The diagram (a) corresponds to the
differential equation U4 =F(U )&F(U*&)&s*(U&U*&); diagram (b) corresponds to U4 =
F(U )&F(U&)&s(U&U&).

Additional local defining equations and nondegeneracy conditions for
transitional shock waves are given in Table 4.4. In this table, conditions
(T2)�(T4) are transversality conditions. Condition (T2) is that there is a
vector W such that

\ l1(U+)
��

&� ,(!) d!+ W

and \ l1(U+)(U+&U&)
��

&� ,(!)(U(!)&U&) d!+ are linearly independent. (T2)

Condition (T3) is that there is a vector W such that

\ l2(U&)
��

&� ,(!) d!+ W

and \ l2(U&)(U&&U+)
��

&� ,(!)(U(!)&U+) d!+ are linearly independent. (T3)

Condition (T4) is that

\ l1(U+) r1(U&)
(��

&� ,(!) d!) r1(U&)
l1(U+)(U+&U&)

��
&� ,(!)(U(!)&U&) d!+ is invertible. (T4)

It is easy to see that if w*: U*& w�s* U*+ is an elementary wave of some
type T for Ut+F*(U )x=0, then there are neighborhoods U\ of U*\ , I of

326 SCHECTER, MARCHESIN, AND PLOHR



File: 505J 305325 . By:CV . Date:12:07:07 . Time:16:36 LOP8M. V8.0. Page 01:01
Codes: 3388 Signs: 2096 . Length: 45 pic 0 pts, 190 mm

TABLE 4.4

Additional Defining Equations and Nondegeneracy Conditions for Transitional Shock Waves

Type of shock Additional defining equations Nondegeneracy conditions

S } S S(U& , s)=0 (S1) DS(U& , s){0 (T1)
S } RS *1(U+)&s=0 (E13) D*1(U+) r1(U+){0 (G13)

S(U& , s)=0 (S2) transversality (T2)
SA } S *2(U&)&s=0 (E14) D*2(U&) r2(U&){0 (G14)

S� (s, U+)&s=0 (S3) transversality (T3)
SA } RS *2(U&)&s=0 (E15) D*2(U&) r2(U&){0 (G15)

*1(U+)&s=0 (E16) D*1(U+) r1(U+){0 (G16)
S(U& , s)=0 (S4) transversality (T4)

s*, and F of F* such that the left-hand sides of the equations for waves
of type T that we have given constitute a C1 map GT : U&_I_
U+_F � Re, where e=2, 3, 4, or 5. (Recall that F�B, B being a the
Banach space of C2 maps). By checking the number e for each wave type,
the reader can verify the assignment of Riemann numbers in Table 2.2.

Theorem 4.1. Let w*: U*& w�s* U*+ be an elementary wave of type T for
Ut+F*(U )x=0, and assume that the appropriate wave nondegeneracy con-
ditions from Tables 4.1�4.4 are satisfied at (U*& , s*, U*+ , F*). Then there
are neighborhoods U\ of U*\ , I of s*, F of F*, and N of w* such that
GT is defined on U&_I_U+_F and satisfies properties (D1)�(D3).

Proof. As stated above, the result holds for rarefaction waves. For
shock waves, the proof of properties (D1) and (D3) uses only the non-
degeneracy conditions of classes G and C :

Case 1. w*: U*& w�s* U*+ has type R } S. Then for (U&, s, U+, F ) near
(U*& , s*, U*+, F*), condition (E0) holds if and only if, for the differential
equation (2.2), U& is a repeller equilibrium and U+ is a saddle equi-
librium. Moreover, the connection from U& to U+ is stable to perturba-
tion.

Case 2. w*: U*& w�s* U*+ has type R } RS. Then for (U&, s, U+ , F )
near (U*& , s*, U*+ , F*), conditions (E0) and (E1) hold if and only if for the
differential equation (2.2), U& is a repeller equilibrium and U+ is a
repeller-saddle equilibrium. The local center manifold of U+ is near that of
U*+ , and the nondegeneracy condition (G1) ensures that U+ and U*+ have
the same quadratic behavior on their center manifolds. Thus the connec-
tion of Eq. (4.8) from U*& to U*+ perturbs to a connection of Eq. (2.2) from
U& to U+ .
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Case 3. w*: U*& w�s* U*+ has type RS } S. The argument is similar to
case 2, but notice that to prove persistence of the connection, we use condi-
tion (C1) as well as (G2).

Case 4. w*: U*& w�s* U*+ has type RS } RS. Then for (U&, s, U+ , F )
near (U*& , s*, U*+ , F*), conditions (E0), (E3), and (E4) hold if and only
if U& and U+ are both repeller-saddle equilibria for the differential equa-
tion (2.2). To prove persistence of the connection, we invoke conditions
(G3), (G4), and (C2).

Case 5. The proofs for shock waves of fast type follow from the
preceding cases and the correspondence (2.18).

Case 6. The proofs for the overcompressive shock waves are left to
the reader.

Case 7. We will not give detailed arguments for the transition shock
waves; we simply remark that the only nondegeneracy conditions that are
used are those of class G. Also, we note that zeroes of the separation func-
tion correspond to connections that lie near 1*. There may, of course, be
connections from U& to U+ that do not lie near 1* (see Fig. 4.2 for an
example).

Property (D2) is verified for shock waves of types R } S, R } RS, RS } S,
RS } RS, S } S, SA } RS, and S } RS in Secs. 5�7. (See part 1 of Proposition
5.1, Lemma 5.3, the proof of part 2 of Proposition 5.2, Lemma 5.4,
Proposition 6.3, and Lemmas 7.1 and 6.2.) The overcompressive cases
R } A, R } SA, RS } A, and RS } SA can be proved in a similar manner and

Fig. 4.2. The connection 1 from U*& to U*+ in diagram (a) perturbs to a connection from
U& to U+ in diagram (b) that does not lie in a small neighborhood of 1.
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are left to the reader. The remaining cases follow from the transformation
(2.18). Note that the nondegeneracy conditions of class C are not used in
these proofs. K

5. 1-Wave and 2-Wave Groups

To simplify the notation in most of the remainder of the paper, we will
not show the dependence of the local defining maps GT and G on the flux
function F, and we will denote the flux function under consideration by F
rather than F*. Also, we will frequently denote an elementary wave simply
by U& w�s U+ and an allowed sequence of elementary waves by
U0 w�s 1 } } } w�sn Un .

In this section we prove the Structural Stability Theorem in the absence
of transitional wave groups and SA } RS waves. We first analyze the 1- and
2-wave groups separately, and then prove our result.

Proposition 5.1. 1. Let U*& w�s* U*+ be an R } S shock wave for
Ut+F(U )x=0, so that the left-hand side of the defining equation (E0) is a
map GT from (U&, s, U+)-space to R2. Then the linear map

DGT (U*&, s*, U*+) | [(U4 &, s* , U4 +) : U4 &=0] (5.1)

is surjective. Moreover, there is a nonzero vector �U+ ��s such that
DGT (U*& , s*, U*+) } (0, s* , U4 +)=0 if and only if U4 +=(�U+ ��s)s* .

2. Let

U*0 w�
s1
*

} } } w�
s*k Uk* (5.2)

be a composite 1-wave group (k�2) or a 1-rarefaction wave (k=1) for
Ut+F(U )x=0, with local defining map G. Assume that each wave satisfies
its nondegeneracy conditions. Then

DG(U0*, s1*, ..., sk*, Uk*) | [(U4 0 , s* 1 , ..., s* k , U4 k) : U4 0=0] (5.3)

is surjective. Moreover, if k� is the index of the last rarefaction (so that
k� =k&1 or k), then there are nonzero vectors �Ui ��sk , k� �i�k, such that

DG(U0*, s1*, ..., sk*, Uk*) } (0, s* 1 , ..., s* k , U4 k)=0 (5.4)

if and only if : s* i=s* k and U4 i=(�Ui��sk) s4 k for k� �i�k; s* i=0 and U4 i=0 for
0<i<k� .

Remark. The sum of the Riemann numbers of the elementary waves
(2.14) in a 1-wave group is 1. Therefore, for a 1-wave group, G is a map
from R3k+2 into R3k&1.
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Proposition 5.1 has the following familiar interpretation in terms of wave
curves.

In the situation of part 1 of Proposition 5.1, if we fix U&=U*& in the
defining equation GT (U& , s, U+)=0, then by the implicit function
theorem we can solve for U+ as a function of s near s=s*, U+=U*+. The
curve U+(s) is part of the 1-shock curve based at U*& ; its tangent vector
at s=s* is �U+ ��s.

In the situation of part 2 of Proposition 5.1, if we fix U0=U0* in
G(U0 , s1 , ..., sk , Uk)=0, we can solve for the remaining Ui and si in terms
of sk near (s1*, ..., sk*, Uk*). For i<k� these are actually independent of sk .
The curve Uk(sk) is part of the composite 1-wave curve based at U0*, or
part of the 1-rarefaction curve based at U0* if k=1; its tangent vector at
s=s* is �Uk��sk .

Once Proposition 5.1 is proved, the correspondence (2.18) immediately
yields.

Proposition 5.2. 1. Let U*& w�s* U*+ be an S } A shock wave for
Ut+F(U )x=0, so that the left-hand side of the defining equation (E0) is a
map GT from (U&, s, U+)-space to R2. Then

DGT (U*&, s*, U*+) | [(U4 &, s* , U+) : U+=0] (5.5)

is surjective. Moreover, there is a nonzero vector �U&��s such that
DG(U*& , s*, U*+) } (U4 &, s* , 0)=0 if and only if U4 &=(�U&��s) s* .

2. Let

Ul* ww�
s*l+1 } } } ww�

sn* Un* (5.6)

be a composite 2-wave group (n&l�2) or a 2-rarefaction (n&l=1) for
Ut+F(U )x=0, with local defining map G. Assume each wave satisfies its
nondegeneracy conditions. Then

DG(Ul*, s*l+1 , ..., sn*, Un*) | [(U4 l , s* l+1 , ..., s* n , U4 n) : U4 n=0] (5.7)

is surjective. Moreover, if l� +1 is the index of the first rarefaction (so that
l� =l or l+1), then there are nonzero vectors �Ui ��sl+1 , l�i�l� , such that

DG(Ul*, s*l+1 , ..., sn*, Un*) } (U4 l , s* l+1 , ..., s* n , 0)=0 (5.8)

if and only if : s* i+1=s* l+1 and U4 i=(�Ui��sl+1) s* l+1 for l�i�l� ; s* i+1=0
and U4 i=0 for l� <i<n.

The geometric interpretation of Proposition 5.2 is in terms of backwards
wave curves. In the situation of part 1 of Proposition 5.2, if we fix

330 SCHECTER, MARCHESIN, AND PLOHR



File: 505J 305329 . By:CV . Date:12:07:07 . Time:16:36 LOP8M. V8.0. Page 01:01
Codes: 2858 Signs: 1588 . Length: 45 pic 0 pts, 190 mm

U+=U*+ in GT (U& , s, U+)=0, we can solve for U& as a function of s
near U&=U*& , s=s*. The curve U&(s) is part of the backwards 2-shock
curve based at U*+ ; its tangent vector at s=s* is �U&��s. Similarly,
in the situation of part 2 of Proposition 5.2, if we fix Un=Un* in
G(Ul , sl+1 , ..., sn , Un)=0, we can solve for the remaining Ui and si in
terms of sl+1 , near (Ul*, s*l+1 , ..., sn*). The curve Ul (sl+1) is part of the
backwards composite 2-wave curve based at Un*, or part of the backwards
2-rarefaction curve based at Un* if l=n&1; this tangent vector at s=s* is
�Ul ��sl+1 .

Proof of Proposition 5.1. 1. We have

DGT (U*& , s*, U*+) } (0, s* , U4 +)=(DF(U*+)&s*I ) U4 +&s* (U*+&U*&)=0

(5.9)

if and only if

U4 +=(DF(U*+)&s*I )&1 (U*+&U*&)s* . (5.10)

Thus the kernel of the linear map (5.1) from R3 to R2 is one-dimensional,
so that it is surjective. Moreover, Eq. (5.10) implies that

�U+

�s
=(DF(U*+)&s*I )&1 (U*+&U*&){0. (5.11)

2. The proof of this part will be given after two lemmas.

Lemma 5.3. Let U*& w�s* U*+ be an R } RS shock wave for
Ut+F(U )x=0, so that the left-hand sides of the defining equations (E0) and
(E1) form a map GT from (U& , s, U+)-space to R2. Then

DGT (U*&, s*, U*+) | [(U4 &, s* , U4 +) : U4 &=0] (5.12)

is invertible if and only if the wave nondegeneracy conditions are verified.

Proof. Referring to Table 4.1, we linearize Eqs. (E0) and (E1) at
(U*& , s*, U*+) and apply to the vector (0, s* , U4 +), obtaining

DF(U*+)&s*I ) U4 +&s* (U*+&U*&)=0 (5.13)

D*1(U*+) U4 +&s* =0. (5.14)

To show that this system of three equations in three unknowns has no non-
trivial solutions when (G1) and (B1) hold, let li and ri denote li (U*+) and
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ri (U*+), respectively, write U4 +=ar1+br2 , and multiply the first equation
by l1 and l2 . We obtain:

l1[(DF(U*+)&s*I )(ar1+br2)&s* (U*+&U*&)]=&s* l1(U*+&U*&)=0,

(5.15)

l2[(DF(U*+)&s*I )(ar1+br2)&s* (U*+&U*&)]

=b(*2(U*+)&s*)&s* l2(U*+&U*&)=0, (5.16)

D*1(U*+) r1+bD*1(U*+) r2&s* =0. (5.17)

Equation (5.15) and assumption (B1) imply s* =0. Then Eq. (5.16) and
s*=*1(U*+){*2(U*+) imply b=0. Finally Eq. (5.17) and assumption (G1)
imply that a=0. Conversely, if (G1) or (B1) fails, one easily finds non-
trivial solutions. K

Lemma 5.4. Let U*& w�s* U*+ be an RS } RS shock wave for
Ut+F(U )x=0, so that the left-hand sides of the defining equations (E0), (E3),
and (E4) form a map GT from (U& , s, U+)-space to R4. If assumptions (G3),
(G4), and (B2) are satisfied, then DGT (U*&, s*, U*+) is surjective, and the one-
dimensional kernel is spanned by a vector whose U&-component is linearly
independent from r1(U*&).

Proof. Referring to Table 4.1, we linearize Eqs. (E0), (E3), and (E4) at
(U*& , s*, U*+) and apply to the vector (U4 & , s* , U4 +), obtaining

(DF(U*+)&s*I ) U4 +&(DF(U*&)&s*I ) U4 &&s* (U*+&U*&)=0,

(5.18)

D*1(U*&) U4 &&s* =0. (5.19)

D*1(U*+) U4 +&s* =0, (5.20)

It suffices to show that the only solution of Eqs. (5.18)�(5.20) with U4 &

being multiple of r1(U*&) is U4 &=U4 +=0, s* =0.
Write U4 +=ar1(U*+)+br2(U*+), U4 &=cr1(U*&), and multiply Eq. (5.18)

by l1(U*+) and l2(U*+). We obtain

&s* l1(U*+)(U*+&U*&)=0, (5.21)

(*2(U*+)&s*) b&s* l2(U*+)(U*+&U*&)=0, (5.22)

D*1(U*+)(ar1(U*+)+br2(U*+))&s* =0, (5.23)

D*1(U*&) cr1(U*&)&s* =0, (5.24)
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Equation (5.21) and assumption (B2) imply that s* =0. Then Eq. (5.22) and
strict hyperbolicity imply that b=0, and Eq. (5.24) and assumption (G3)
imply that c=0. Since s* =b=0, Eq. (5.23) and assumption (G4) imply
that a=0. K

Remark. If any of the nondegeneracy conditions (G3), (G4), or (B2)
fails to hold, then DGT (U*&, s*, U*+), restricted to the four-dimensional
space considered in the proof, fails to be invertible.

We are now ready to prove the second assertion of Proposition 5.1. For
simplicity of exposition, we shall do this only for a representative case for
n=5 with the following wave types:

U0* w�
s1
*

U1* of type R } RS, (5.25)

U1* w�
s2
*

U2* of type R1 , (5.26)

U2* w�
s2
*

U3* of type RS } RS, (5.27)

U3* w�
s4
*

U4* of type R1 , (5.28)

U4* w�
s5
*

U5* of type RS } S. (5.29)

Then the defining system of equations G(U0 , s1 , ..., s5 , U5)=0 is as
follows:

F(U1)&F(U0)&s1(U1&U0)=0, (5.30)

*1(U1)&s1=0, (5.31)

U2&�1(U1 , s2)=0, (5.32)

F(U3)&F(U2)&s3(U3&U2)=0, (5.33)

*1(U2)&s3=0, (5.34)

*1(U3)&s3=0, (5.35)

U4&�1(U3 , s4)=0, (5.36)

F(U5)&F(U4)&s5(U5&U4)=0, (5.37)

*1(U4)&s5=0. (5.38)

Differentiating at (U0*, s1*, ..., s5*, U5*) yields:

(DF(U1*)&s1*I ) U4 1&(DF(U0*)&s1*I ) U4 0&s* 1(U1*&U0*)=0, (5.39)

D*1(U1*) U4 1&s* 1=0, (5.40)

U4 2&D�1(U1*, s2*)(U4 1 , s* 2)=0, (5.41)
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(DF(U3*)&s3*I ) U4 3&(DF(U2*)&s3*I ) U4 2&s* 3(U3*&U2*)=0, (5.42)

D*1(U2*) U4 2&s* 3=0, (5.43)

D*1(U3*) U4 3&s* 3=0, (5.44)

U4 4&D�1(U3*, s4*)(U4 3 , s* 4)=0, (5.45)

(DF(U5*)&s5*I ) U4 5&(DF(U4*)&s5*I ) U4 4&s* 5(U5*&U4*)=0, (5.46)

D*1(U4*) U4 4&s* 5=0. (5.47)

Let U4 0=0. By Lemma 5.3, Eqs. (5.39)�(5.40) imply that s* 1=0,
U4 1=0. Then Eq. (5.41) implies that U4 2=cr1(U2*) for some c. Therefore
Lemma 5.4 and Eqs. (5.42)�(5.44) imply that U4 2=U4 3=0 and s* 3=0. Since
U4 2=0, Eq. (5.41) implies that s* 2=0.

Because U4 3=0, Eq. (5.45) implies that U4 4=s* 4r~ 1(U4*). (Recall that
r~ 1(U ) has been normalized so that D*1(U ) r~ 1(U )#1.) By Eq. (5.47),
s* 4=s* 5 . Moreover, (DF(U4*)&s5*I ) U4 4=0, so by Eq. (5.46), U4 5=
(DF(U5*)&s5*I )&1 (U5*&U4*) s* 5 . Thus we are led to define

�U4

�s5

=r~ 1(U4*), (5.48)

�U5

�s5

=(DF(U5*)&s5*I )&1 (U5*&U4*). (5.49)

Therefore, in this representative case, the linear map (5.3) from R15 to
R14 has one-dimensional kernel, so that it is surjective. K

Remark. If any of the nondegeneracy conditions (G1), (B1), (G3),
(G4), or (B2) fails, then the linear map (5.3) is not surjective. If condition
(G2) fails, then U4 5=0.

Finally, we prove the main result of this section. In this result and its
proof, we return to denoting the flux function under consideration by F*,
and to showing the dependence of the local defining map G on F.

Theorem 5.5 (Structural Stability for Classical Riemann Solutions).
Suppose that the allowed sequence of elementary waves (2.7) has
�n

i=1 \(wi*)=2. Assume that there is an integer k, 0<k<n, such that

U0* w�
s1
*

} } } w�
sk* Uk* (5.50)

is a 1-wave group and

Uk* ww�
s*k+1 } } } ww�

sn* Un* (5.51)
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is a 2-wave group. Let �Uk��sk be the tangent to the 1-wave curve defined in
Proposition 5.1; let �Uk��sk+1 be the tangent to the 2-wave curve defined
in Proposition 5.2. Assume hypotheses (H1) and (H3) of the Structural
Stability Theorem, and assume that

(H21) �Uk ��sk and �Uk��sk+1 are linearly independent.

Then the wave sequence (2.7) is structurally stable.

Assumption (H21) says that the 1-wave curve based at U0* and the back-
wards 2-wave curve based at Un* meet transversally at Uk*. This is the wave
group interaction condition in the absence of transitional wave groups and
SA } RS waves. A result similar to Theorem 5.5 follows from the work of
Liu [15], in which global assumptions on the flux function assure transver-
sality of wave curves. The work of Furtado [6] implies a similar result, in
the context of the Lax admissibility criterion, if local transversality is
assumed.

Proof.

Step 1. By Theorem 4.1, applied to each wave, there are neighbor-
hoods Ui of Ui*, Ii of si*, and F of F*, such that the local defining map
G=(G1 , ..., Gn) of the wave sequence (2.7), which maps U0_I1_ } } } _
In_Un_F to R3n&2, has the property that G(U0 , s1 , ..., sn , Un , F )=0
implies the existence of waves wi : Ui w�s i Ui+1 for Ut+F(U )x=0 of the
correct types, for which the maps 1� i are continuous.

Step 2. Assume that G(U0 , s1 , ..., sn , Un , F )=0. We must show that
_1�_2� } } } �_n .

Step 2.1. First we show that the last wave of the 1-wave group has
speed strictly less than the first wave of the 2-wave group, i.e., _k<_k+1.
It suffices to show that _k*<_*k+1. Here _i* is a speed interval for the wave
sequence (2.7). Now U*k&1 w�sk* Uk* is a wave of type R1 , R } S, or RS } S,
and Uk* ww�

s*k+1 U*k+1 is a wave of type R2 , S } A, or S } SA.

Step 2.1.1. Suppose that U*k&1 w�
sk* Uk* is of type R1 . Then

_k*=[*1(U*k&1), *1(Uk*)]. If the next wave is of type R2 , then _*k+1=
[*2(Uk*), *2(U*k+1)]. If it is of type S } V, then _*k+1=[s*k+1 , s*k+1] and
*1(Uk*)<s*k+1. In either case _k*<_*k+1.

Step 2.1.2. If Uk* ww�
s*k+1 U*k+1 is of type R2 , the argument is similar.

Step 2.1.3. If U*k&1 w�
sk* Uk* is of type V } S and the next wave is of

type S } V, then _k*=[sk*, sk*], _*k+1=[s*k+1 , s*k+1], and sk*<s*k+1 by
assumption (H3).

Step 2.2. Next we consider waves within the 1-wave group; we argue
that _1�_2� } } } �_k . We will give the argument only in the case k=5
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with waves as in Eqs. (5.25)�(5.29). The inequalities hold because from
Eqs. (5.30)�(5.38) we have that:

_1=[s1 , s1] with s1=*1(U1), (5.52)

_2=[*1(U1), *1(U2)], (5.53)

_3=[s3 , s3] with s3=*1(U2)=*1(U3), (5.54)

_4=[*1(U3), *1(U4)], (5.55)

_5=[s5 , s5] with s5=*1(U4). (5.56)

Step 2.3. The argument that _k+1�_k+2� } } } �_n (i.e., the
argument for waves within the 2-wave group) is similar to step 2.2.

Step 3. Next, we show that

DG(U0*, s1*, ..., sn*, Un*, F*) | [(U4 0 , s* 1 , ..., s* n , U4 n , F4 ) : U4 0=U4 n=0, F4 =0]
(5.57)

is invertible. To do this we show that the only solution of

DG(U0*, s1*, U1*, s2*, ..., sn*, Un*, F*) } (0, s* 1 , U4 1 , s* 2 , ..., s* n , 0, 0)=0 (5.58)

is the trivial one. If Eq. (5.58) holds, then by Proposition 5.1, for k� =k&1
or k, we have that

s* i=s* k and U4 i=
�Ui

�sk
s* k for k� �i�k; (5.59)

s* i=0 and U4 i=0 for 0<i<k� . (5.60)

By Proposition 5.2, for l� =k or k+1, we have that:

s* i+1=s* k+1 and U4 i=
�Ui

�sk+1

s* k+1 for k�i�l� ; (5.61)

s* i+1=0 and U4 i=0 for l� <i<n. (5.62)

Since �Uk��sk and �Uk��sk+1 are linearly independent by (H21), Eqs.
(5.59) and (5.61) imply that s* k=0=s* k+1 . It follows easily that the only
solution of Eq. (5.58) is the trivial one.

Step 4. Finally, we note that under our hypotheses, continuity, in
the Hausdorff topology, of the rarefaction waves follows from basic
theorems on the perturbation of solutions to ordinary differential equa-
tions, while continuity of the connecting orbits for shock waves follows
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from stability to perturbation of the connections representing classical
shock waves. K

Remark. If (H21) does not hold, then the linear map (5.57) is not
invertible.

6. Transitional Wave Groups

In this section we extend the proof of Theorem 5.5 to the case in which
transitional wave groups, but not SA } RS waves, are present. We also
discuss the geometry of transitional wave groups.

Let

Uk* ww�
s*k+1 } } } w�

s l* Ul* (6.1)

be a sequence of one or more transitional wave groups for Ut+F(U )x=0.
Then the local defining map Gt of the wave sequence (6.1) is a map into
R3(l&k), since the sum of the Riemann numbers for the l&k waves is 0. Let
V and W be vectors in R2 . The wave sequence (6.1) is good with respect
to (V, W ) provided that DGt(Uk*, s*k+1 , ..., sl*, Ul*), restricted to

[(U4 k , s* k+1 , ..., s* l , U4 l ) : U4 k is a multiple of V and U4 l is a multiple of W],

(6.2)

is invertible. (The space (6.2) has dimension 3(l&k).)
We now give the main result of this section, which is analogous to

Theorem 5.5. Again, in this result and its proof, we return to denoting the
flux function under consideration by F*, and to showing the dependence of
the local defining map on F.

Theorem 6.1 (Structural Stability with Transitional Wave Groups).
Suppose that the allowed sequence of elementary waves (2.7) has
�n

i=1 \(wi*)=2. Assume that there are integers k and l, 0<k<l<n, such
that

U0* w�
s1
*

} } } w�
sk* Uk* is a 1-wave group; (6.3)

Uk* ww�
s*k+1 } } } w�

s l* Ul* is a sequence of transitional wave groups; (6.4)

Ul* ww�
s*l+1 } } } w�

sn* is a 2-wave group. (6.5)
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Let Gt be the local defining map of Uk* ww�
s*k+1 } } } w�

s l* Ul*; let �Uk��sk be the
tangent to the 1-wave curve defined in Proposition 5.1; let �Ul ��sl+1 be the
tangent to the 2-wave curve defined in Proposition 5.2. Assume hypothesis
(H1) and (H3) of the Structural Stability Theorem, and assume that

(H22) G t is good with respect to (�Uk��sk , �Ul��sl+1).

Then the wave sequence (2.7) is structurally stable.

Proof. We follow the steps in the proof of Theorem 5.5.

Step 1. By Theorem 4.1, applied to each wave, there are neighbor-
hoods Ui of Ui*, Ii of si*, and F to F* such that the local defining map
G=(G1 , ..., Gn) of the wave sequence (2.7), which maps U0_I1_ } } } _
In_Un_F to R3n&2, has the property that G(U0 , s1 , ..., sn , Un , F )=0
implies the existence of waves wi : Ui w�s i Ui+1 for Ut+F(U )x=0 of the
correct types, for which the maps 1� i are continuous.

Step 2. This step is essentially the same. First we show that the last
wave of any wave group in the wave sequence (2.7) has speed strictly less
than the first wave of the next wave group. Note that if the two wave
groups are transitional, the two waves in question are V } S and S } V waves,
so that assumption (H3) is needed. Then we treat waves within wave
groups, taking Eqs. (6.27)�(6.31) below as our model for transitional wave
groups.

Step 3. Suppose that Eq.(5.58) holds. By Proposition 5.1, for
k� =k&1 or k, we have that:

s* i=s* k and U4 i=
�Ui

�sk
s* k for k� �i�k; (6.6)

s* i=0 and U4 i=0 for 0<i<k� . (6.7)

By Proposition 5.2, for l� =l or l+1, we have that:

s* i+1=s* l+1 and U4 i=
�Ui

�sl+1

s* l+1 for l�i�l� ; (6.8)

s* i+1=0 and U4 i=0 for l� <i<n. (6.9)

Then from Eqs. (6.6), (6.8), and (H22) we conclude that

s* k=0 and s* l+1=0, (6.10)

s* i=0 for k+1�i�l and U4 i=0 for k�i�l. (6.11)
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It follows easily that the only solution of Eq. (5.58) is the trivial one, so
that the linear map (5.57) is invertible.

Step 4. In addition to the observations made in Step 4 of Theorem
5.5, we note that the connections defined by zeroes of the separation func-
tion vary continuously in the Hausdorff topology. K

Remark. If (H22) does not hold, then the linear map (5.57) is not
invertible.

The remainder of this section is devoted to the question of when (H22)
holds and to its geometric interpretation in terms of wave curves.

We first state a lemma on shock waves of type S } RS.

Lemma 6.2. Let U*& w�s* U*+ be an S } RS shock wave for
Ut+F(U )x=0, so that the left-hand sides of the defining equations (E0),
(E13), (S2) form a map GT from (U& , s, U+)-space to R4 . Assume the
nondegeneracy conditions are satisfied. Let V be a vector in U&-space such
that

\ l1(U*+)
��

&� ,(!) d!+ (DF(U*&)&s*I ) V and \ l1(U*+)(U*+&U*&)
��

&� ,(!)(U(!)&U*&) d!+
(6.12)

are linearly independent. Then the linear map

DGT (U*&, s*, U*+) | [(U4 & , s* , U4 +) : U4 & is a multiple of V] (6.13)

is invertible.

Remark. The existence of vectors V satisfying condition (6.12) follows
from condition (T2). If V does not satisfy condition (6.12), or if the
nondegeneracy condition (G13) fails, then the linear map (6.13) is not
invertible.

Proof. Referring to Table 4.4, we linearize Eqs. (E0), (E13), and (S2) at
(U*& , s*, U*+) and apply to the vector (U4 & , s* , U4 +), obtaining

(DF(U*+)&s*I ) U4 +&(DF(U*&)&s*I ) U4 &&s* (U*+&U*&)=0, (6.14)

D*1(U*+) U4 +&s* =0, (6.15)

|
�

&�
,(!)[&(DF(U*&)&s*I ) U4 &&s* (U(!)&U*&)] d!=0. (6.16)
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Let ri=ri (U*+), li=li (U*+), write U4 +=ar1+br2 , and let U4 &=cV. We
multiply Eq. (6.14) by l1 and l2 and obtain:

&l1[c(DF(U*&)&s*I ) V+s* (U*+&U*&)]=0, (6.17)

(*2(U*+)&s*) b&l2[c(DF(U*&)&s*I ) V+s* (U*+&U*&)]=0, (6.18)

D*1(U*+)(ar1+br2)&s* =0, (6.19)

&\|
�

&�
,(!) d!+ [c(DF(U*&)&s*I ) V]

&s* |
�

&�
,(!)(U(!)&U*&) d!=0. (6.20)

Now Eqs. (6.12), (6.17), and (6.20) imply that c=s* =0, so that Eq. (6.18)
and s*=*1(U*+) imply that b=0. Then condition (G13) and Eq. (6.19)
imply that a=0. K

The next proposition is the key to understanding transitional wave
groups geometrically.

Proposition 6.3. Let

Uk* ww�
s*k+1 } } } w�

s l* Ul* (6.21)

be a single transitional wave group for Ut+F(U )x=0, with local defining
map G. Assume each wave satisfies its nondegeneracy conditions. Then there
exists a subspace 2 of Uk-space, of dimension 0 or 1, such that if V � 2, then

DG(Uk*, ..., Ul*) | [(U4 k , ..., U4 l ) : U4 k is a multiple of V] (6.22)

is surjective onto R3(l&k), and the projection of the one-dimensional kernel to
Ul-space is one-dimensional. Conversely, if V # 2, then one of these conclu-
sions fails.

Proof. Step 1. Suppose that the wave sequence (6.21) is a single
S } S wave. We rewrite the linear map (6.22) in this case as

DGT (U*& , s*, U*+) | [(U4 & , s* , U4 +) : U4 & is a multiple of V]. (6.23)

By linearizing (E0) and (S1) at (U*& , s*, U*+) and applying to
(U4 & , s* , U4 +), we rewrite the equation DGT (U*& , s*, U*+)(U4 & , s* , U4 +)=0
as

(DF(U*+)&s*I ) U4 +&(DF(U*&)&s*I ) U4 &&s* (U*+&U*&)=0, (6.24)

DS(U*& , s*)(U4 & , s* )=0. (6.25)
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Case (a). Suppose that (�S��s)(U*& , s*){0. Let U4 &=cV, V{0
arbitrary. Then we can solve Eq. (6.25) for s* , and then solve Eq. (6.24)
for U4 +:

U4 +=(DF(U*+)&s*I )&1 {(DF(U*&)&s*I )

&
(U*+&U*&) DU&

S(U*& , s*)
(�S��s)(U*&, s*) = cV. (6.26)

Therefore the linear map (6.23) has a one-dimensional kernel, so that it is
surjective.

Since the linear operator in braces in (6.26) is a rank one perturbation
of an invertible operator, it is invertible or has rank 1. We must set 2 equal
to the kernel of this operator; thus the dimension of 2 is 0 or 1. If V � 2,
one sees from (6.26) that the projection of the kernel of the linear map
(6.23) to U+-space is one-dimensional.

Case (b). Suppose that (�S��s)(U*&, s*)=0. Then by (T1),
U*+{U*& and DU&

S(U*& , s*){0. Let 2=Ker DU&
S(U*& , s*), a one-

dimensional subspace of R2. If V � 2 and U4 &=cV, then Eqs. (6.24)�(6.25)
are satisfied if and only if c=0, s* is arbitary, and U4 +=(DF(U*+)&s*I )&1

(U*+&U*&)s* .

Step 2. Suppose that the wave sequence (6.21) is a composite trans-
itional wave group of the slow form (2.15). We shall do only the case n=5
with the following wave types (we set k=0 to simplify the notation):

U0* w�
s0
*

U1* of type S } RS, (6.27)

U1* w�
s2
*

U2* of type R1 , (6.28)

U2* w�
s3
*

U3* of type RS } RS, (6.29)

U3* w�
s4
*

U4* of type R1 , (6.30)

U4* w�
s5
*

U5* of type RS } S. (6.31)

Then the equation G(U0 , s1 , ..., s5 , U5)=0 becomes:

F(U1)&F(U0)&s(U1&U0)=0, (6.32)

*1(U1)&s1=0, (6.33)

S(U0 , s1)=0, (6.34)
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followed by equations Eqs. (5.32)�(5.38). Notice G is a map into R15.
Differentiating at (U0*, ..., Un*), we obtain

(DF(U1)&s1 I ) U4 1&(DF(U0)&s1I ) U4 0&s* 1(U1&U0)=0, (6.35)

D*1(U1) U4 1&s* 1=0, (6.36)

| ,(!)[&(DF(U0*)&s1*I ) U4 0&s* 1(U(!)&U0)] d!=0, (6.37)

followed by equations Eqs. (5.41)�(5.47).
Let 2 denote the space of vectors U4 0 such that

\ l1(U1*)
��

&� ,(!) d!+ (DF(U0*)&s*I) U4 0 and \ l1(U1*)(U1*&U0*)
��

&� ,(!)(U(!)&U0*) d!+
(6.38)

are linearly dependent. The space 2 is one-dimensional because of condi-
tion (T2). Suppose that V � 2. We shall identify the kernel of the linear
map (6.22).

Let (U4 0 , s* 1 , ..., s* 5 , U4 5) satisfy Eqs. (6.35)�(6.37) and (5.41)�(5.47) with
U4 0=cV. By Lemma (6.2), U4 0=U4 1=0 and s* 1=0. Continuing as in the
proof of the second assertion of Proposition (5.1), we find that the solution
space is one-dimensional and that its projection to U5-space is the one-
dimensional space

2� =[U4 5 : (DF(U5*)&s5*I ) U4 5 is a multiple of U5*&U4*]. (6.39)

Step 3. For the mapping G(U0 , s1 , ..., s5 , U5) studied in step 2,
suppose that W � 2� . We shall show that

DG(U*0 , s1*, ..., s5*, U5*) | [(U4 0 , s* 1 , ..., s* 5 , U4 5) : U4 5 is a multiple of W]
(6.40)

is surjective and that the projection of the one-dimensional kernel to
U0-space is one-dimensional (in fact it is 2). Using the correspondence
(2.18), this implies that the proposition is true for a typical transitional
wave group (6.21) of the fast form (2.16).

Suppose V � 2 and W � 2� . Let K1 denote the kernel of

DG(U0*, s1*, ..., s5*, U5*) | [(U4 0 , s* 1 , ..., s* 5 , U4 5) : U4 0 is a multiple of V], (6.41)

K2 the kernel of the linear map (6.40), and K the kernel of
DG(U0*, s1*, ..., s5*, U5*). Then

K1=K & [(U4 0 , s* 1 , ..., s* 5 , U4 5) : U4 0 is a multiple of V], (6.42)

K2=K & [(U4 0 , s* 1 , ..., s* 5 , U4 5) : U4 5 is a multiple of W]. (6.43)
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We have that dim K1=1 (from step 2), that dim K2�1 (since the map
(6.40) has domain of dimension 16 and range of dimension 15), and that
dim K=2 (because the surjectivity of the linear map (6.41) implies that of
DG(U0*, s1*, ..., s5*, U5*)). But K1 & K2=[0], since by step 2 the projection
of K1 to U5-space is precisely 2� . Therefore dim K2=1. Since K1 & K2=[0],
the projection of K2 to U0-space is not contained in the span of V. Thus
this projection is one-dimensional and transverse to V. Since this is true for
any V � 2, in fact the projection is 2. K

Remark. If any wave in the sequence (6.21) fails to satisfy a non-
degeneracy condition of class G, B, or S, then it is impossible to find a
vector V in U0-space such that both conclusions of Proposition 6.3 hold.

The geometric significance of Proposition 6.3 is the following. Let C be
a regular curve (one-dimensional submanifold) in Uk-space through Uk*
whose tangent line at Uk* is Span V, V � 2. Then

[(Uk , sk+1 , ..., sl , Ul ) : Uk # C and G(Uk , sk+1, ..., sl , Ul )=0] (6.44)

is itself a regular curve near (Uk*, s*k+1 , ..., sl*, Ul*), and the projection of
this curve to Ul-space is a regular curve C� through Ul*. Thus the transi-
tional wave group (6.21) transforms ``most'' regular curves in Uk-space
through Uk* into regular curves in Ul-space through Ul*.

The details of how the transformation occurs, however, vary with the
nature of the transitional wave group.

Case 1. Suppose that the wave sequence (6.21) is a single S } S wave
that satisfies the nondegeneracy condition. Then the local defining map GT

goes from (U& , s, U+)-space to R3, and G&1
T (0) is a two-dimensional

manifold whose tangent space at (U*& , s*, U*+) is

K=Ker DGT (U*&, s*, U*+). (6.45)

Let 6& denote projection to U&-space and 6+ projection to U+-space.
We distinguish three cases (see Fig. 6.1).

Case 1(a). Suppose that dim 6&K=2=dim 6+K. Any regular
curve C through U*& is transformed into a regular curve C� through U*+ ,
and the tangent line to C� at U*+ depends on that to C at U*&. This is the
case (�S��s)(U*& , s*){0 and 2=[0].

Case 1(b). Suppose that dim 6&K=2 and dim 6+ K=1. Generi-
cally, the projection of G &1

T (0) to 6+-space has a fold. Any regular curve
C through U*& that is transverse to 2=6& Ker(6+ | K) is transformed
into a regular curve C� through U*+; the tangent space to C� is always 6+K.
This is the case (�S��s)(U*& , s*){0 and dim 2=1.
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Fig. 6.1. The geometry of G&1
T (0) and the projections 6& and 6+ for a single S } S wave.

The three cases (a), (b), and (c) are described in the text.

Case 1(c). Suppose that dim 6&K=1. Generically, the projection to
U&-space has a fold. Consider a regular curve C through U*& that is trans-
verse to 2=6&K. The portion of C lying to one side of 2 is transformed
into a regular curve C� through U*+ , whose tangent space is always
6+ Ker(6& | K ). This is the case(�S��s)(U*& , s*)=0.

Case 2. Suppose that the wave sequence (6.21) is a composite transi-
tional wave curve of the slow form (2.15). From Lemma 6.2 it follows that
there is a certain curve D consisting of states Uk that are the left states of
S } RS shock waves. This curve goes through Uk*; the corresponding right
states and wave speeds are near U*k+1 and s*k+1 , respectively. The line
tangent to D at Uk* is 2. Now

[(Uk , sk+1 , ..., sl , Ul ) : Uk=Uk* and G(Uk , sk+1 , ..., sl , Ul )=0] (6.46)

is a curve with regular projection to Ul-space; the image is a curve D� with
tangent space 2� . In fact, if the last wave of the sequence (6.21) is of type
R1 , then the set (6.46) is defined by the equations

Ui=Ui* for k�i�l&1, (6.47)

si=si* for k+1�i�l&1, (6.48)

Ul=�(U*l&1 , sl ) for sl near sl*, (6.49)
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Fig. 6.1��Continued
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so that D� is the 1-rarefaction curve through Ul*. If, instead, the last wave
of the sequence (6.21) is of type RS } S, then the set (6.46) is defined by the
equations

Ui=Ui* for k�i�l&2, (6.50)

si=si* for k+1�i�l&2, (6.51)

Ul&1=�(U*l&1, sl&1) for sl&1 near sl*, (6.52)

sl=sl&1 , (6.53)

F(Ul )&F(Ul&1)&sl (Ul&Ul&1)=0. (6.54)

Thus D� is the curve Ul (sl ), with Ul (sl*)=Ul*, given above. Any curve C
through Uk* that is transverse to D transfers to D� . Thus the image curve
(not just its tangent line) is independent of C.

Case 3. In the situation of the previous case, a curve in Ul-space
transverse to D� transfers to D in Uk-space. Applying the symmetry (2.18),
one sees how the transfer works for fast composite wave curves. Again the
image curve is independent of C.

To complete our discussion of a single transitional wave group, we not
that if in Theorem 5.1 there is a single transitional wave group, then
hypothesis (H22) has the following interpretation: the one-wave curve is
transverse to 2 in Uk-space and the transformed one-wave curve in Ul -space
(which exists by the previous discussion) is transverse to the 2-wave curve.

Next we discuss sequences of r�2 transitional wave groups. Let
k=m0<m1< } } } <mr=l. Let

U*m 0
� } } } � U*m 1

� } } } � U*mr (6.55)

be a sequence of transitional wave groups; for each i=1, ..., r,

U*m i&1
� } } } � U*mi (6.56)

is a transitional wave group. The local defining map Gt of the sequence
(6.55), which maps from (Um0

, ..., Umr)-space to R3(m r&m 0), decomposes as
Gt=(G1, ..., G r), where Gi=(Gmi&1

, ..., Gm i ). Associated with each Gi is a
map G� i defined on (Umi&1

, ..., Um i )-space; G� i is the local defining map of
the sequence (6.56). Let 6i denote the projection of (Umi&1

, ..., Um i )-space
to Umi-space. Let 7 0=span V/Um0

-space,

Ki=Ker DG� i (U*mi&1
, ..., U*m i ) | [(U4 mi&1

, ..., U4 mi ) : U4 mi&1
# 7i&1], (6.57)

7i=6iKi/Umi-space. (6.58)
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Using these definitions, for a given V # Um0
-space, we can define inductively

70, K 1, 71, K2, 72, ..., Kr, 7 r. We also note that if each wave in the i th
transitional wave group satisfies its nondegeneracy conditions, then a sub-
space 2i&1 of Umi&1

-space can be defined by Proposition 5.3.

Theorem 6.4. In the above situation, assume each wave in the sequence
(6.55) satisfies its nondegeneracy conditions. Then Gt is good with respect to
(V, W) if and only if :

(1) for i=0, ..., r&1, 7i and 2i are transverse;

(2) 7r and W are transverse.

In view of Theorem 6.4 and the previous discussion, hypothesis (H22) of
Theorem 6.1 has the following geometric interpretation when there are r
transitional wave groups: the first transitional wave group transforms the
1-wave curve to a regular curve C1, the second transforms C1 to a regular
curve C2, ..., the r th transforms C r&1 to a regular curve C r, and C r is
transverse to the backwards 2-wave curve.

Proof. Assume Gt is good with respect to (V, W). We shall show that
for i=1, ..., r:

(a) DG� i (U*mi&1
, ..., U*mi ) | [U4 mi&1

, ..., U4 mi&1
) : U4 m i&1

# 7i&1] is surjec-
tive;

(b) 7i is one-dimensional.

Then by Proposition 6.3, 7i and 2i are transverse for i=0, ..., r&1.
Since Gt is good with respect to (V, W ), clearly (1) holds for i=1.

Therefore dim K1=1. Suppose that dim 71=0. Then there is a nonzero
vector (U4 m0

, ..., U4 m r ) with U4 i=0, m1�i�mr ; s* i=0, m1<i�mr ; U4 0 a
multiple of V ; and DGt(U*m0

, ..., U*mr)(U4 m0
, ..., U4 mr)=0. This contradicts

the assumption that Gt is good with respect to (V, W ). Therefore
dim 71=1.

Proceeding inductively, suppose that 2� j�r and for i=1, ..., j&1, (a)
and (b) hold. Since the linear map DG(U*m 0

, ..., U*mr), restricted to

[(U4 m0
, ..., U4 mr) : U4 m0

is a multiple of V and U4 mr is a multiple of W],

(6.59)

is invertible, for any Z # R the system

DG� 1(U*m0
, ..., U*m1

)(U4 m0
, ..., U4 m 1

) =0 (6.60)

b

DG� j&1(U*mj&2 , ..., U*mj&1
)(U4 mj&2

, ..., U4 mj&1
)=0 (6.61)
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DG� j (U*mj&1
, ..., U*m j )(U4 m j&1

, ..., U4 mj ) =Z (6.62)

DG� j+1(U*mj , ..., U*m j+1
)(U4 mj , ..., U4 m j+1

) =0 (6.63)

b

DG� r(U*mr&1
, ..., U*mr)(U4 m r&1

, ..., U4 mr) =0 (6.64)

has a solution with U4 m0
a multiple of V and U4 mr a multiple of W. By the

induction hypothesis and Eq. (6.61), we must have U4 mj&1
# 7 j&1. Then

using Eq. (6.63) we see that (a) holds for i=j. Therefore dim K j=1. If
dim 7 j=0, then we can construct a nonzero vector (U4 m0

, ..., U4 m r) with
U4 i=0 for mj�i�mr , s* i=0 for mj<i�mr , U4 0 a multiple of V, and

DGt(U*m0
, ..., U*m r)(U4 m0

, ..., U4 mr)=0. (6.65)

This is impossible, so that dim 7 j=1. This completes the proof by induc-
tion of statement (1).

To prove statement (2) given statement (1), we simply note that if 7r

contains W, we can easily construct a nonzero vector in the kernel of the
linear map (6.59).

Now assume that statements (1) and (2) hold. If (U4 m0
, ..., U4 mr) is in the

kernel of the linear map (6.59), then

(U4 m0
, ..., U4 m 1

) # K1, ..., (U4 mr&1
, ..., U4 mr) # Kr. (6.66)

But statement (2) implies that U4 mr=0. Therefore the vectors
(U4 mr&1

, ..., U4 mr)=0, ..., (U4 m0
, ..., U4 m1

)=0. K

7. Doubly Sonic Transitional Waves

In this section we extend the proof of Theorem 6.1 to the case in which
SA } RS waves are present.

Lemma 7.1. Let U*& w�s* U*+ be an SA } RS shock wave for
Ut+F(U )x=0, so that the left-hand sides of the defining equations (E0),
(E15), (E16), (S4) form a map GT from (U& , s, U+)-space to R5. Assume
that the nondegeneracy conditions are satisfied. Then DGT (U*& , s*, U*+) is
invertible.

Proof. Referring to Table 4.4, we linearize Eqs. (E0), (E15), (E16), and
(S4) at (U*&, s*, U*+) and apply to the vector (U4 & , s* , U4 +), obtaining
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(DF(U*+)&s*I ) U4 +&(DF(U*&)&s*I ) U4 &&s* (U*+&U*&)=0, (7.1)

D*2(U*&) U4 &&s* =0, (7.2)

D*1(U*+) U4 +&s* =0, (7.3)

|
�

&�
,(!)[&(DF(U*&)&s*I ) U4 &&s* (U(!)&U*&)] d!=0. (7.4)

Write U4 &=ar1(U*&)+br2(U*&) and U4 +=cr1(U*+)+dr2(U*+) and multi-
ply Eqs. (7.1)�(7.4) by l1(U*+) and l2(U*+). We obtain:

&l1(U*+)[(*1(U*&)&s*) ar1(U*&)+s* (U*+&U*&)]=0,

(7.5)

(*2(U*+)&s*) d&l2(U*+)[(*1(U*&)&s*) ar1(U4 *&)+s* (U*+&U*&)]=0,

(7.6)

D*2(U*&)(ar1(U*&)+br2(U*&))&s* =0,

(7.7)

D*1(U*+)(cr1(U*+)+dr2(U*+))&s* =0,

(7.8)

&|
�

&�
,(!) d!(*1(U*&)&s*) ar1(U*+)&s* |

�

&�
,(!)(U(!)&U*&) d!=0.

(7.9)

By condition (T4), Eqs. (7.5) and (7.9) imply that a=s* =0. Then Eqs. (7.7)
and (G15) imply that b=0, Eq. (7.6) implies d=0, and Eqs. (7.8) and
(G16) imply that c=0. K

Theorem 7.2 (Structural Stability with Doubly Sonic Transitional
Waves). Suppose that the allowed sequence of elementary waves (2.7) has
�n

i=1 \(wi*)=2. Assume that this sequence has m�1 waves of type SA } RS
separating wave sequences g0 , ..., gm . Assume hypotheses (H1) and (H3) of
the Structural Stability Theorem, and assume that each sequence gi ,
i=0, ..., m, satisfies the appropriate hypothesis (H21) of Theorem 5.5 or
hypothesis (H22) of Theorem 6.1. Then the wave sequence (2.7) is struc-
turally stable.

Proof. We follow the steps of Theorems 5.5 and 6.1. Step 1 is essentially
the same as in Theorem 6.1. For Step 2, we first show strict inequality
between the last speed of one wave group and the first speed of the next
wave group within the same gi . However, for i=0, ..., m&1, the 2-wave
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group of gi , the following SA } RS wave, and the 1-wave group of gi+1

should be amalgamated into a wave sequence

(wl (i ) , ..., wp(i+1)) (7.10)

for which it is only true that

_l (i )� } } } �_p(i+1) . (7.11)

For Step 3, let wk1
, ..., wk m be the SA } RS waves, so that the gi are

g0 : U0* � } } } � U*k1&1 (7.12)

g1 : U*k 1
� } } } � U*k2&2 (7.13)

b

gm : U*k m � } } } � Un*. (7.14)

Let G be the local defining map of the wave sequence (2.7), and suppose
that

DG(U0*, s1*, ..., sn*, Un*) } (0, s* 1 , ..., s* n , 0)=0. (7.15)

From Lemma 7.1 we have that

U4 k1&1=U4 k 1
=0, s* k 1

=0, (7.16)

U4 k2&1=U4 k 2
=0, s* k 2

=0, (7.17)

b

U4 km&1=U4 km=0, s* k m=0. (7.18)

From this and U4 0=U4 n=0, Step 3 in the proofs of Theorem 5.5 and 6.1
tells us that within each gj , all other U4 i=0 and s* i=0. Finally, Step 4 is the
same as in Theorem 6.1. K

To obtain a geometric interpretation of Theorem 7.2, consider a
Riemann problem

Ut+F*(U )x=0, (7.19)

U(x, 0)={U*L
U*R

for x<0,
for x>0.

(7.20)

with solution (2.7) satisfying U0*=U*L , Un*=U*R , and the assumptions of
Theorem 7.2. As in the proof of Theorem 7.2, let the m waves of type
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SA } RS in the sequence (2.7) be U*k i&1 w�
s*k i U*ki , i=1, ..., m. Suppose that

we vary the Riemann problem data slightly to

U(x, 0)={UL

UR

for x<0,
for x>0.

(7.21)

The new Riemann solutions is as follows:

1. The middle portion of the new solution,

Uk 1&1 � } } } � Ukm (7.22)

is exactly the same as the middle portion of the old situation. In particular,
Uk 1&1=U*k1&1 and Ukm=U*km .

2. The initial portion of the new solution,

U0 � } } } Uk1&1 , (7.23)

is a sequence of the same types of waves as the first portion of the old
solution. Of course, U0=UL .

3. The last portion of the new solution,

Uk m � } } } � Un , (7.24)

is a sequences of the same types of waves as the last portion of the old
solution. Of course, Un=UR .

At present it is not known whether SA } RS waves occur in any physi-
cally meaningful systems of conservation laws.

8. Discussion

In this paper we have presented a large class of Riemann solutions,
whose component shock waves have viscous profiles, that are structurally
stable with respect to perturbation of the left state, the right state, and the
flux function.

It should not be hard to show that this class contains every Riemann
solution whose structural stability is exhibited by its local defining map,
subject to the restrictions that (1) rarefaction waves lie in the strictly hyper-
bolic region UF and (2) shock waves have their left and right states in UF .
Most of the proof of this is contained in various remarks made in the
course of this paper. These remarks cover the necessity of assumptions
(H1) and (H2) of the Structural Stability Theorem; some additional work
will be necessary to verify the necessity of (H3).
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We conjecture that if a Riemann solution is structurally stable, then its
stability is exhibited by its local defining map. If this were true, then the
class of structurally stable solutions presented here would be complete.

It also should not be hard to remove restrictions (1) and (2) above. The
only new waves that appear to arise in structurally stable Riemann solu-
tions are the following. (a) A new type of transitional wave group, consist-
ing of a 2-rarefaction wave to a special point in the boundary of UF ,
followed by a 1-rarefaction wave from that point, can occur. These trans-
itional rarefaction waves are discussed in Ref. [9]. (b) Shock waves of with
repeller and attractor equilibria can now have complex eigenvalues.
However, it should be noted that the physical significance of mixed-type
models with data in the elliptic region is often unclear.

Of course, it would be interesting to extend the results of this paper to
systems of N>2 conservation laws. It would also be interesting to study
the effect of removing the restriction D(U)#I. In physical applications, the
viscosity matrix is not the identity, and not even constant. There is work
in progress on this effect for a class of models with quadratic flux functions
[7]. For all of these extensions of the current work, the concept of wave
manifold [8] should be helpful.
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