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AN ORGANIZING CENTER FOR WAVE BIFURCATION
IN MULTIPHASE FLOW MODELS*

DAN MARCHESIN', BRADLEY J. PLOHR!, AND STEPHEN SCHECTERS

Abstract. We consider a one-parameter family of nonstrictly hyperbolic systems of conservation
laws modeling three-phase flow in a porous medium. For a particular value of the parameter, the
model has a shock wave solution that undergoes several bifurcations upon perturbation of its left
and right states and the parameter. In this paper we use singularity theory and bifurcation theory of
dynamical systems, including Melnikov’s method, to find all nearby shock waves that are admissible
according to the viscous profile criterion. We use these results to construct a unique solution of
the Riemann problem for each left and right state and parameter value in a neighborhood of the
unperturbed shock wave solution; together with previous numerical work, this construction completes
the solution of the three-phase flow model. In the bifurcation analysis, the unperturbed shock wave
acts as an organizing center for the waves appearing in Riemann solutions.
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1. Introduction. Existence, uniqueness, and well-posedness for initial-value
problems for mixed elliptic-hyperbolic systems of two conservation laws are impor-
tant unresolved issues. Mixed-type systems can have multiple solutions for the Cauchy
problem with Riemann initial data [1, 2] even when the viscous profile admissibility
criterion is employed to select physically meaningful shock waves, and despite that
the systems model physical phenomena. This type of nonuniqueness is expected to
occur in Stone’s model for three-phase flow in porous media, a mixed-type system of
common usage in petroleum engineering. Nonuniqueness contributes to doubts about
the physical validity of mixed-type models and about the well-posedness of Cauchy
problems with discontinuous initial data.

A different class of models, introduced by Corey [3], is also employed in petroleum
engineering. These models have an umbilic point in state space, an isolated point
where the characteristic speeds coincide, instead of the elliptic region typical of Stone’s
model. Nonuniqueness of the type mentioned above does not occur. The umbilic point
is the principal organizing center for Corey models; near this point, these models
behave as conservation laws with quadratic polynomial flux functions, which were
analyzed in [18, 7, 9, 10, 13, 17].
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A construction that provides unique Riemann solutions for a Corey model pos-
sessing maximal symmetry between phases was described in [8]. Despite the sim-
plifying nature of this symmetry, which is physically unrealistic, the solutions are
extremely complicated. An important tool employed to solve the Riemann problems
was a computer program capable of calculating all elementary shock and rarefaction
waves present in the solutions. The solutions for an O(e) perturbation of this model,
with € being a physical parameter that breaks some of the symmetry, were found by
de Souza [4] using similar techniques. However, the computer program was incapable
of resolving solutions in a small region of state space because of unavoidable numerical
inaccuracies. Analysis shows that this region has size O(e3) in terms of the perturba-
tion parameter €, which is restricted to be less than 0.05; the computer program could
not resolve nontrivial bifurcations occurring in a range of 10~4, which is comparable
to its numerical accuracy.

The goal in this paper is to find solutions of Riemann problems in the small region
left unresolved in [4]. For the model with e = 0 there is a shock wave solution with
left and right states U_¢ and Uyo. We prove that for each left state near U_g, right
state near U4, and € near 0 there is a solution of the Riemann problem. This solution
has a rich structure, comprising a strong shock wave near the unperturbed solution
together with weak shock and rarefaction waves. The construction analyzed in this
work provides a unique solution for each Riemann problem. Moreover, this solution
is consistent with the global solution of [4]. One interesting feature of the solution is
the occurrence of composite waves containing nonclassical (transitional) shock waves.

The analysis consists of two steps. First we consider solutions of the Rankine-
Hugoniot relation near the unperturbed shock wave. The solutions constitute a four-
dimensional submanifold of the space of left states, right states, shock speeds, and
perturbation parameter values. Associated with each such solution is a planar dynam-
ical system that determines its physical admissibility. Because the dynamical system
for the unperturbed shock wave is degenerate in several respects, we use singularity
and bifurcation theory, including Melnikov’s method, to determine the regions of the
manifold corresponding to admissible shock waves. The analysis is simplified by the
occurrence of invariant lines in the perturbed dynamical systems. Some of the calcu-
lations needed for the analysis are carried out using the Maple symbolic manipulation
program. In the second step, we concatenate weak rarefaction and shock waves with
the perturbed shock waves to obtain the Riemann solutions. Thus the unperturbed
shock wave acts as an organizing center for waves appearing in solutions of Riemann
problems. We expect the method of this paper, which is similar to that employed in
[16], to be useful in a wide class of systems of conservation laws.

The paper is organized as follows. In section 2 we state our main result, the
existence of solutions of Riemann problems; the proof is given in subsequent sections.
In section 3 we find the phase portraits for dynamical systems giving rise to shock
waves that are limits of traveling waves of a parabolic system associated with the
system of conservation laws. Some of the analysis is presented in section 4. The
shock waves that are found to be admissible are employed in the Riemann solutions
constructed in section 5. In Appendices A and B we define some special shock waves
and review terminology and facts from the theory of differential equations that we
use in our analysis.

2. Main result.

2.1. Problem statement. The model that we consider describes the flow of
three incompressible, immiscible fluids in a porous medium. Such flow is described
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by two equations, which derive from the principles of conservation of mass for each
fluid together with Darcy’s force law. Specifically, we adopt a Corey model [3] with
quadratic permeabilities. We refer the reader to [8] for the derivation of this model.
The equations have a threefold symmetry when the physical properties of the fluids
are assumed to be identical; the perturbations we consider change the viscosity of one
of the fluids.

More precisely, we consider the one-parameter family of conservation laws

(21) Ut+F(U, E)I :O,
where U = (u,v) € A, € € (—1,00), and
(2.2) F(U,e) := (F1(Uye€), F»(Uye)),
w2

(2.3) Fi(Uye) == A1 0D’

v2
(2.4) Fy,(Uye) := Do’

2
(2.5) D(Uye) := 11:_ p +vi4+(1-u—1v)?

Here u and v are the saturations of two of the phases, A denotes the saturation
triangle

(2.6) A:={(y,v) :0<u<l,0<v<l,and0<u+v<1},

and 1 + € is the ratio of the viscosities of the two phases. The system is strictly
hyperbolic, i.e., the eigenvalues of the Jacobian Fy (U, €) are real and distinct, for all
U within the interior of A except the isolated umbilic point

«  [(14+e 1
(2.7) U= (3+e’3+e>’

at which the Jacobian is a multiple of the identity matrix. For U # U™, let the
eigenvalues be denoted Ag (U, ¢) for k = 1, 2. Within open simply connected subsets
of A\{U*}, we can choose smooth families of corresponding right and left eigenvectors,
denoted (U, €) and Ix(U, €), respectively.

We shall solve initial-value problems for (2.1) with data

_J U, forx<0,
(2:8) U(z,O)—{UR forz >0

of Riemann type. In particular, we are interested in how the solutions vary with
the parameter e. The Riemann solutions that we construct are composed of centered
rarefaction and shock waves. All shock waves appearing in these solutions satisfy the
viscous-profile admissibility criterion for the identity viscosity matrix. (This choice of
viscosity matrix is made for mathematical simplicity.)

More precisely, a shock wave solution of (2.1) traveling at speed s has the form

U_ for z < st,
Uy for x> st,

(2.9) U(z,t) = {
where U_, U,, and s are related by the Rankine-Hugoniot conditions

(2.10) F(Uy,e) — F(U_,¢) —s(Uy —U_) =0.
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A shock wave will be called admissible if the parabolic equation

(2.11) Vi+ F(V,€)z = Vyz

A

has a traveling wave solution V(z,t) = V(z — st) such that

(2.12) . lim V(€) =Us.

Equivalently, we require that U = V(ﬁ ) be a solution of the planar differential equation
(2.13) U=GU,s,U_,e)

joining the equilibrium U_ to the equilibrium U, . Here we have used the notation
(2.14) G(U,s,U-,€) :=F(U,e) — F(U-,¢) —s(U = U-).

In (2.13) we think of s as a bifurcation parameter, so that (2.13) is a three-parameter
family of bifurcation problems.

In this paper, € is small and the Riemann data Uy and Ugr belong to small
neighborhoods of specific points U_¢ and U, respectively, which are defined by

(2.15) U_o = (u—0,v-0) = (?a ?) )
(2.16) Uio == (uy0,v40) = <ﬁ8+ 1, \~/§8+ 1> .

As we shall see, the pair (U_q,U,q) corresponds to an admissible shock wave, for the
€ = 0 model, with propagation speed

76v/3 + 116
(217) So = —121——*

This shock wave is degenerate in several respects: at U_g, so = A, whereas at
Uito, S0 = A2, loFyy -2 ®re = 0, and l3(Uo—U—_g) = 0. In the terminology of [13, 6],
the shock wave belongs to the double sonic locus D, the right hysteresis locus Hg,
and the right secondary bifurcation locus Bg. From the point of view of bifurcation
theory, the family of differential equations U=G (U, s,U_g,0) undergoes transcritical
bifurcation at U_o and pitchfork bifurcation at U, as s passes sg. In a sense, this
shock wave acts as an organizing center for the bifurcations of waves appearing in
Riemann solutions for the system of conservation laws (2.1).

2.2. Existence of Riemann solutions. The main result of this paper is the
following.

THEOREM 2.1. For € > 0 sufficiently small, there ezists a neighborhood N of the
pair (U-o,U4o) in A x A such that for all (Ur,Ug) € N, the Riemann problem (2.1),
(2.8) has a solution.

The proof of this result is given in section 5. It is based on the characterization of
admissible shock waves near (U_q, U,q), as given in section 3 and proven in section 4.

The construction provides much detail about the Riemann solutions. There are
two wave patterns: (a) a 1-family wave group on the left side of a 2-family wave group
or (b) a 1-family wave group separated from a 2-family wave group by a transitional
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FI1G. 2.1. A simplified diagram for the case when m lies between B and C.

wave group. In case (a), the 2-family wave group contains an admissible shock wave
with left state near U_ and right state near U, o, whereas in case (b), it is the tran-
sitional wave group that contains such a shock wave. All other shock and rarefaction
waves are weak; i.e., they are contained in a neighborhood of either U_q or of U,g.
For each fixed Uy, there is a curve in Ug-space that separates cases (a) and (b). Each
side of this curve is subdivided further according to the number and types of weak
rarefaction and shock waves appearing in the transitional and 2-family wave groups.
This Ug-subdivision depends on the position of Uy, relative to two curves, so that
there are three qualitatively distinct cases.

The subdivision into cases is explained, using diagrams, in section 5. A compari-
son of these diagrams with those in [4] shows that the local solution fits consistently
with the global solution.

Because the solution diagrams are complicated, it is helpful to first examine a
simplified diagram, Fig. 2.1. This diagram indicates the division into cases (a) and (b)
for a fixed Uy that exemplifies one of the three Uy cases. (We refer the reader to
Appendix A for the definitions of some special shock waves occurring in the following
discussion.)

(1) There is a certain line L(e) that extends through the vicinities of both U_g
and U. +0-

(2) There are precisely two points B and C on L(¢) near U_q that are left states
for admissible doubly sonic shock waves of family 2 with right states near U,q.

(3) The 1-wave curve W1 (UL) through Uy intersects L(€) at a unique point m.
(In Fig. 2.1, we have drawn the case where m lies between B and C.) The backward
1-wave curves through B and C, Wl(B) and Wl(C), are transverse to L(e), and the
position of Uy relative to these curves determines the qualitative structure of the
Ug-subdivision.

(4) Referring to Fig. 2.1, let g denote the rightmost of the two points B and
m, and let ¢t denote the rightmost of C' and m. The point ¢ is the left state of a
unique shock wave, with right state ¢” near Uyo but not on L(e), that is right sonic
in family 2. The point ¢ is the left state of a unique shock wave, with right state
t' € L(e) near Uy, that undergoes secondary bifurcation in family 2 on its right side.

(5) There is a distinguished curve leading from t’ to ¢”; each point U, on this
curve is the right state of a shock wave with left states U_ lying along the line segment
from ¢t to q. In the situation of Fig. 2.1, there is, for each U_ between t and ¢, a unique
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shock wave with right state U, near Uy and speed s satisfying Ao (U~) = s > Aa(Uy.).
In particular, corresponding to U_ = m is the point Uy = m”. The distinguished
curve comprises these points between t’' and m'”, whereas between m” and ¢”, it
comprises right states U, for shock waves with left state m.

(6) The curve separating case (a) from case (b) consists of the distinguished
curve t'¢"” adjoined by 2-family rarefaction curves emanating from ¢’ and ¢”. If Ug
lies on the left side of the separating curve, then there is a solution of the Riemann
problem composed of a 1-family wave group and a 2-family wave group. If Ug lies
on the right side of the separating curve, then there is a solution of the Riemann
problem composed of a 1-family wave group, a 2-family wave group, and a transi-
tional wave group between them. As Upg crosses the separating curve, the solution
of the Riemann problem varies continuously (i.e., the scale-invariant solution varies
continuously in L}, ).

3. Admissible shock waves.

3.1. Symmetry and degeneracy. The differential equation (2.13) has the
equilibrium U = U_ for each (s,U_,€). Moreover, it has certain symmetry prop-
erties, as we now describe. Define the line L(¢) to be

u

(3.1) L(e) := { (wv) : v =1 }

+e€

Then

(1) if U- € L(e), L(e) is invariant for (2.13) for every s;

(2) if e = 0 and U~ € L(0), the vector field (2.13) has a reflection symmetry
about L(0) for every s.
To see this, it suffices to consider the auxiliary differential equation

(3.2) U = F(U,¢)

and notice that L(e) is an invariant line for (3.2) and that the vector field (3.2) has a
reflection symmetry about L(0) when ¢ = 0.
We consider the bifurcation problem

(33) U = G(U$3aU—0,0)a

for which (2.13) is an unfolding. The following statements hold, as we have verified
using the Maple program.
(1) For the differential equation

(3.4) U = G(U, s0,U—0,0),

(a) there are exactly two equilibria on L(0), at U_q and U..o;

(b) the equilibrium U_ is a saddle-node; its center manifold can be taken to be
L(0), with separatrix branch joining U_g to U4, and its stable manifold is perpen-
dicular to L(0);

(c) the equilibrium Uy is a weak saddle point; its stable manifold is contained
in L(0), and its center manifold is perpendicular to L(0).

(2) As s passes sg in the family of differential equations (3.3), the equilibrium
at U_o undergoes transcritical bifurcation, and the equilibrium at U, undergoes
pitchfork bifurcation.
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Fi1G. 3.1. The phase portrait of (3.3) for different values of s.

(We refer the reader to Appendix B for a summary of terminology from ordinary
differential equations and bifurcation theory.) These statements are illustrated in
Fig. 3.1, in which all equilibria are hyperbolic except at s = sg.

The statements concerning the bifurcation problem (3.3) can be phrased in terms
of geometric conditions for wave curves [19]. Property (1b) means that, for U = U_g
and € = 0, A\; < so = Ag; the eigenvectors can be chosen to be I; = r¥ = (—1,1)
and Iy = r§ = (1,1); and lpFyy - 72 ® 2 > 0. Similarly, property (1c) means
that, for U = Uyp and € = 0, A\; < sp = Ag; the eigenvectors can be chosen to be
L=rT=(,1) and Iz = r] = (=1,1); lo(Uyo — Ug) = 0; laFyy - 72 ® 72 = 0; and
LaFyyy -r2 ®ra ®re+ 3loFyy -2 @ ryre > 0. Thus, in the terminology of [13, 6], the
shock wave (U_g, U0, So) belongs to the double sonic locus D, the right hysteresis
locus Hpg, and the right secondary bifurcation locus Bg.

3.2. Bifurcation problem. Let U/ be a closed neighborhood in the U-plane
of the line segment from U_y to Uyg, and let Z C R be a closed neighborhood
of sgp. The bifurcation problem (3.3) on U x T is actually stable to perturbations
within the class of bifurcation problems that have a reflection symmetry about a
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given line for each value of the bifurcation parameter. However, once symmetry-
breaking perturbations, such as those that occur in the unfolding (2.13), are allowed,
the bifurcation problem (3.3) must be regarded as having infinite codimension. The
reason is that a saddle connection exists along the line L(0) for an interval of values
for s. Therefore we cannot hope to construct a universal unfolding of the bifurcation
problem (3.3). (Universal unfoldings of equilibrium bifurcation problems are discussed
in [5]; universal unfoldings of bifurcation problems that involve both equilibrium and
separatrix connection bifurcations are discussed in [15].)

Our goal is therefore simply to analyze how the degenerate bifurcation prob-
lem (3.3) with U € U and s € 7 unfolds within the specific family (2.13). Therefore
we shall study the bifurcation problem (2.13) for each fixed (U-, €) near (U_¢,0) and
for (U,s) € U x I. Since transcritical bifurcations are stable to perturbation within
the class of bifurcation problems that have a known “trivial equilibrium” for all values
of the parameter, this bifurcation problem has a transcritical bifurcation at U_. It
also has one or more equilibrium bifurcations near U,g. In addition, there may be
separatrix connections from an equilibrium near U_ to one near U.

We say that the bifurcation problem for (U_, €) is nondegenerate on U x Z provided
that

(I) the only equilibrium bifurcations that occur are the transcritical bifurcation
at U_ and saddle-node bifurcations near U,;
(II) the only separatrix connections that occur join saddle points, and they break
in a nondegenerate manner as s varies;

(III) for each fixed s, at most one bifurcation of types mentioned in (I) and (II)
occurs;

(IV) no bifurcation of type mentioned in (I) or (II) occurs on the boundary of Z,
and no equilibrium or separatrix connection meets the boundary of I.

For appropriate I/ and Z and for (U_, €) near (U_o,0), the bifurcation problem (2.13)
on U x T is stable to perturbation if conditions (I)-(IV) hold. Condition (IV) holds
for all (U_, €) sufficiently near (U-¢,0). Conditions (I)-(III) all fail at (U—o,0).

Let us consider the possible separatrix connections in more detail. The differen-
tial equation (3.4) has equilibria at U_¢ and U4o. The center manifold L(0) of U_g
perturbs to an invariant curve We(s,U_, ) of (2.13), which contains the other equi-
libria near U_q. If U~ € L(€), then W¢(s,U—,€) = L(e) for each s. A saddle (resp.,
saddle-node) of (2.13) near U_¢ has its unstable (resp., center) manifold contained in
W¢(s,U_,€). On the other hand, an equilibrium @ of (2.13) near U, has a unique
invariant manifold W (Q, s,U—, €) near L(0): if Q is a saddle or saddle-node (resp.,
node), W(Q, s,U_,¢) is its stable manifold (resp., strong stable manifold).

Let Sg denote the set of points (s, U_, €) near (so, U—o, 0) such that W¢(s,U_,€)
meets W(Q,s,U_,¢) for some equilibrium @ of (2.13) near U,g. Clearly the set
of (s,U_,€) near (sg,U—o,0) such that (2.13) has a separatrix connection in U is
contained in Sg. We note that in a neighborhood of (sg,U_0,0), { (s,U—,¢€) : U- €
L(e) } is contained in Sg, since for such (s,U_,€), (1) We(s,U_,€) = L(e), (2) there
is a unique equilibrium Q of (2.13) near Uy in L(e), and (3) W(Q,s,U-,€) = L(e).
In fact we have the following proposition.

PROPOSITION 3.1. In a neighborhood of (so,U—0,0), S¢ = {(s,U-,¢) : U_ €
L(e) }.

The proof is deferred to section 4. Proposition 3.1 implies in particular that
for (s,U-,¢€) near (so,U-o,0), separatrix connections of (2.13) in & occur only along
invariant lines, and that they do not break as s varies. Thus condition (II) can be
satisfied only when separatrix connections are absent.
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In a neighborhood of (U_y,0) in (U, €)-space, we define the following transition
varieties, on which one of conditions (I)—(III) is violated:

Bg: the closure of the set of (U_, €) for which (2.13) has a transcritical bifurcation
at an equilibrium near U, ;

He: the closure of the set of (U_, €) for which (2.13) has a hysteresis bifurcation
at an equilibrium near U,;

Dg: the set of (U_, €) such that for some s, (2.13) has both a transcritical bifur-
cation at U_ and an equilibrium bifurcation near U,.

(The term “transition variety” and the notation B, H, and D come from [5, pp. 140
and 205].)

PROPOSITION 3.2. In a neighborhood of (U_g,0), B¢ = {(U-,€) : U- € L(e) }.

The proof is deferred to section 4.

PROPOSITION 3.3. For (U_,¢€) near (U_o,0), the bifurcation problem (2.13) on
U x T is degenerate if and only if (U—,¢€) € Bg UHg U Dg.

Proof. If (U_,€) ¢ Bo UHgUDg, (I) and (IV) are satisfied, and (III) is partially
satisfied in the sense that for each s, at most one equilibrium bifurcation occurs. But
Propositions 3.1 and 3.2 imply that if (U_,¢) ¢ Bg, then no separatrix connection
occurs. Thus if (U_,€) ¢ Bg U Hg U Dg, (II) and the rest of (III) are vacuously
satisfied. |

3.3. Normal form. To analyze the bifurcation problem (2.13), we construct
a pair of real-valued functions that encode the local dynamics near U_g and Ul,.
We then note that certain transformations of the function pair preserve the dynam-
ical information. Using these manipulations, we transform the pair of functions into
a simpler “normal form,” which we then analyze. While our functions do not di-
rectly describe separatrix connections from equilibria near U_g to equilibria near U,
Propositions 3.1 and 3.2 relate these connections to the local dynamics near U,g.

We first multiply (2.13) by the factor (14€)2DD_, thereby clearing denominators
on the right-hand side, and we absorb this factor on the left-hand side by changing the
independent variable. We then define a transformation (U, s,U_,¢€) — (X,0, X_,¢),
where X = (z,y) and X_ = (z_,y_), as follows:

(3.5) = (u—u4o)+ (v—140),
(3.6) y = —(u—u4o) + (v — v40),
(3.7) o = s — s,

(3.8) - = (u-—u)+(v_—v o),
(3.9) Y- = —(u- = u_o) + (v- —v-o),
(3.10) €e=¢e.

We thereby obtain a family of cubic vector fields H := (H;, Hs) such that
(3.11) X = H(X,0,X_,¢).

The symmetry of (2.13) when € = 0 and U_- € L(0) imply that the equation
X=H (X,0,X_,0) is, for each X_ on the z_-axis and each o, symmetric about the
z-axis; in particular, the z-axis is invariant. Furthermore, the statements made in
section 2.1 concerning (3.3) correspond to the following facts about the equation

(3.12) X = H(X, 0,0,0),

for which (3.11) is an unfolding.
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(1) For the differential equation
(3.13) X = H(X,0,0,0),

(a) there are exactly two equilibria on the z-axis, for = z_¢ and z = 0, where
= -(3-V3)/12;
(b) the equilibrium at z = z_ is a saddle-node; its center manifold can be taken
to be the z-axis, with separatrix branch joining x_q to 0, and its stable manifold is
the y-axis;
(c) the equilibrium at z = 0 is a weak saddle point; its stable’ manifold is

contained in the z-axis, and its center manifold is tangent to the y-axis.

(2) As o passes 0 in the family of differential equations (3.12), the equilibrium at
T = x_¢ undergoes transcritical bifurcation, and the equilibrium at £ = 0 undergoes
pitchfork bifurcation.

We now analyze the bifurcations at z = z_o and at £ = 0. The analysis for
x = z_ is standard: for fixed (z_,y_,€), (3.11) has a transcritical bifurcation at the
point X = X_, which corresponds to U = U_, when o = 6*(X_, €) := A(U-, €) — $o.
To determine orientations, we invoke property (1b) above and find that the reduced
differential ‘equation on the center manifold is equivalent to the normal form =
z2 — oz, so that the bifurcation is as illustrated in Fig. 3.1 (except for a change
of notation). Thus X_ is to the right of (resp., equals; resp., is to the left of) a
second nearby equilibrium when o is less than (resp., equals; resp., is greater than)
o*(X_,€). Moreover, a connection near the z-axis from X_ to an equilibrium near
the origin (which corresponds to U = Us,g) is possible only when X_ equals, or is
to the right of, the second equilibrium. Therefore, the location of X_ relative to the
nearby equilibrium is what is significant for our problem. The relative location is
encoded in the function

T :

(3.14) k(o,z_,y_,€) =0 —o*(z—,y—,€);

a connection from X_ to an equilibrium near the origin is possible only when the
condition k(o,z—,y—,€) < 0 holds.

For the bifurcation at z = 0, we use Liapunov—-Schmidt reduction and the methods
of [5]. When the center manifold is one-dimensional for each parameter value, as is the
case here, Liapunov-Schmidt reduction gives exactly the same information as center
manifold reduction. (This follows from Lemma 6.1 in [12].)

We begin by noting that (Hi); < 0, (H1)y = 0, and (H1)s < O at the ori-
gin. Therefore we can solve the equation H;(X,0,X_,€) = 0 for = near the origin,
obtaining

(315) x=¢(ya 0,$—,y—a€)»

where (0) = 0 and (8v/8y)(0) = 0. Furthermore, (8¢/90)(0) < 0. We then
define

(3.16) h(y,0,2_,y—,¢€) := Hy(¥(y,0,2_,y—,€),y,0,T_,y_,€).

Using the Maple program, we can write h and k as series in y and o with co-
efficients series in the variables (X_,¢). We calculate only terms of total weighted
degree of at most 5, where the weights are 1 for y, 2 for o, and 3 for z_, y_, and ¢;
that is, we calculate only the terms 3’07z ! €™ with i +2j + 3k + 31+ 3m < 5. The
result is
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(3.17)

o= {(- o) (e 39
NV

(- s )

(23 o

691 137
( T 3)+---}0y+{0+~--}02

{
{
-
+{( 14+26\/_> }y +{0+--}oy?
-
{
{

+

+

+

+

225803 97429 ) .
( 192 144 ‘/§)+' '}"y+{0+”}y

(4661 1312\/_> } 8

(1200 592v/3) + }y5

+

(3.18)

K( gm0 (1212, T g 14 106 gL
T—Y—€) =0~ \ 1331 T1331v°) % T\ 1331  3003V°)°

All coefficients in parentheses are positive. Since

11 26

there is a pitchfork bifurcation at (y,o) = (0,0) when (z_,y—,€) = (0,0,0).
The mapping (u—,v_,€) — (z_,y-,€) given by (3.8)—(3.10) takes Bg, Hg, and

D¢ to sets By, Hy, and Dy that have simple descriptions in terms of A and k. To
simplify notation, let

(3.20) pi= (T, y—,¢€).
Then
Oh  Oh
(3.21) By = {p : for some (y, o) near (0,0), h = 5@; =3 = 0 at (y,o, p) },
2
(3.22) Hp= {u : for some (y, o) near (0,0), h = Z—Z g Z =0 at (y,0, ,u)}

(3.23) Dy = {u : for some (y, o) near (0,0), h = g—z =k=0at (y,o,u) }
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We now apply singularity theory [5] to the functions h and k. As in [5], the
function A may be transformed by an invertible transformation of the unfolding pa-
rameter u; a p-dependent, orientation-preserving transformation of the bifurcation
parameter o; a (o, u)-dependent, orientation-preserving transformation of the state
variable y; and multiplication by a positive function. The function k¥ may then be
transformed using the same transformation of the unfolding parameters p and o, as
well as multiplication by a positive function. (Recall that it is the sign of k that is
significant.)

Therefore, the following equivalence relation is appropriate to our problem. Two
pairs of real-valued functions (h(y, o, u), k(o, 1)) and (f(z, A, v),g(A,v)), where y, z,
o, A € R and p, v € R3, are equivalent provided that there are germs of smooth
mappings

(3.24) z2=Z(y,o,p) with Z(0) =0, %%(0) >0,
. OA
(3.25) A= A(o,p) with A(0) =0, 5;(0) > 0,
(3.26) / v= N(u) with N(0)=0 and N’(0) invertible
and germs of smooth real-valued functions
(3.27) S(y,o,p) with S(0) >0,
(3.28) T(o,u) with T(0) >0
such that
(3.29) S-f(Z,A,N)=h
(3.30) T-g(A,N)=k

If (h,k) and (f,g) are equivalent, then the mapping y — N(u) = v carries the
sets By, Hp, and Dy, defined as above, to sets B, H, and D defined analogously in
terms of f(z,\,v) and g(A,v):

(3.31) B:= { : for some (2, A) near (0,0), f = 6—]; gf\ 0 at (z, A, u)}

=1, _of _f _
(3.32) H = {V : for some (2, A) near (0,0), f = 5~ 922 = 0 at (z,\,v) } ,

(3.33) D:= {1/ : for some (2, ) near (0,0), f = %—E =g=0at (2,\,v) }

Let v := (o, 3,7) and define the pair of functions (f(z,\,v),g(A,v)) b
(3.34) f(z,\v) =28 = Az 4+ a+ (2%,
(3.35) g\ v)=A—1.

PROPOSITION 3.4. The pairs (h,k) and (f,g) are equivalent. A coordinate trans-
formation ¥ := (Z,A,N) realizing the equivalence is given, to first order, by the
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following formulas:

(3.36) z=Z(y,0,p) = 4\/§%y s V2 a (800435 - 461916\/5) y_

2 b
V2a

+5w (—19561800 + 11302237\/5) e+-ee,

76 5
(337) A—A(U,#)—U‘(ﬁ—m 3)6"}‘"',

and, with N := (A, B,C),
(338) o= AW =4V25 (9-4v3) - +2V25 (-4+3v8) e+,

(339) B=Bu) = a‘-bf-zs- (245395893 - 141677216\/5) y_

+—[2- (—126002996 + 72749637\/5) €+,
2ab®

1212 + 7443 62 101
(40) y=0(= LTS, (Iﬁ?ﬁ*ggﬁ 3) e

In these equations,

(3.41) a:=1/-12 +13V3,
(3.42) b:=1/—691 +411v3.

The proof is deferred to section 4.
For the pair (f, g) of (3.34)-(3.35), it is easy to calculate that

(3.43) B={v:a=0},
3
(3.44) H={u:a=%}.
To determine D, we note that D is found by simultaneously solving the equations
(3.45) 2B -2+ a+ B2 =0,
(3.46) 322 - \+282=0,
(3.47) A—y=0

and projecting the solution set within (2, A, v)-space into v-space. By solving the
second equation for A and substituting into the other equations, we see that D meets
each plane # = const. in a curve parameterized by z as follows:

(3.48) a=22%+4 322,
(3.49) v =322 + 2B2.

This curve is regular except for a cusp at (a,7) = (63/27,-32/3).



1202 D. MARCHESIN, B. PLOHR, AND S. SCHECTER

B>0

Fi1G. 3.2. The transition varieties and bifurcation diagrams for the normal form pair (f,g).
The parameter 3 is held constant in each picture.

Each surface B, H, and D meets each plane § = const. in a curve. The intersec-
tions of these curves are depicted in Fig. 3.2. The set BND consists of a transverse in-
tersection at (a,v) = (0, —32/4) and a quadratic intersection at (o, ) = (0,0); HND
consists of the cusp in D and a transverse intersection at (c,v) = (8%/27,58%/12).
Notice that, in (o, 8,7)-space, BND and H N D each consists of two curves tangent
at the origin to the (-axis.
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3.4. Projections of transition varieties. Let ® denote the transformation
from (U_, €)-space to v-space given by

(350) ) (U—aﬁ)"*/i=(x—,y—,e)'—”/=(an3,’¥),

where the first arrow is given by (3.8)—(3.10) and the second arrow is given by (3.38)—
(3.40). Then ® maps a neighborhood of (U_,0) diffeomorphically to a neighborhood
of the origin, and it maps the transition varieties Bg, Hg, and Dg for the original
bifurcation problem to B, H, and D, respectively.

PROPOSITION 3.5. For |e| small, the sets Bg, Hg, and Dg meet a neighborhood
of U_g in the plane € = const. in the manner shown in Fig. 3.3.

Proof. From Proposition 3.2, Bg meets the plane € = const. in the line v_ =
(1+eu-.

Next we show that Hg meets the plane € = ¢ in a curve. Let S, denote the image
under @ of this plane. It suffices to show that H is transverse to the plane Sy, for
then H meets each plane S, in a curve. To this end, notice that the transformation
(3.38)—(3.40) maps a neighborhood of 0 in (z_,y_, €)-space to a neighborhood of 0 in
(o, B,7)-space, and that its linearization at 0 takes the vectors (1,0,0) and (0,1,0)
to the vectors

(3.51) (0, 0,(1212 + 744\/5)/1331) ,
(3.52) (4\/5 a (9 - 4\/5) /63,72 (245395893 - 141677216\/§) /(ab®), 0) ,

respectively. The plane spanned by the latter vectors, namely Sy, is transverse to
(B,~v)-plane, which is tangent to . Thus H is transverse to S.

Now we establish that Bg and Hg coincide in the plane € = 0 and do not meet
in other planes € = const. On the one hand, Bg N H¢ is a curve since

(3.53) BenNHe=®(BNH)=3{(a,8,7) : a=6=0}.

On the other hand, Bg N Hg is just the set of pairs (U_,€) near (U_g,0) for which
the bifurcation problem (2.13) has a pitchfork bifurcation near (U,s) = (Uso,so).
If e =0and U_ € L(0), (2.13) is symmetric about L(0) for each s, and the pitch-
fork bifurcation with center manifold perpendicular to L(0) is stable to perturbation
in the class of bifurcation problems with this symmetry. Thus the set { (U_-,0) :
U_ € L(0), U~ near U_q } is contained in Bg N Hg. Since each of these sets is a
smooth curve, they are equal.

We have seen that, in («, 5,~)-space, the sets BN D and H N D each consists of
two curves tangent at the origin to the §-axis. Since Sy is transverse to the j3-axis,
it follows that each S, is transverse to each of these four curves. Therefore S,, for
¢ # 0, meets each of these curves once.

The previous remarks establish the validity of most of Fig. 3.3. We note in
addition that the inverse image of the point (0, 1,0) under the linearization of (3.38)-
(3.40) at 0 is a vector with positive e-component. This is why the picture for € > 0
(and not € < 0) in Fig. 3.3 corresponds to that for # > 0 in Fig. 3.2. ]

In addition to showing the sets B, H, and D, Fig. 3.2 includes bifurcation diagrams
for 2 = f(z, \,v) with v = (a, 3,7) in various regions. The diagrams show the (), z)-
plane, and the curves constitute the set of equilibria, i.e., z such that f(z,\,v) = 0.
For a A such that there is only one equilibrium, it is a saddle point; when there are
three equilibria, the outside ones (at large |z|) are saddle points and the middle one is
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€>0

Vo

€<0

F1G. 3.3. The transition varieties and bifurcation diagrams for the bifurcation problem (2.13).
The parameter € is held constant in each picture.

an attracting node. Also shown in these diagrams is the point along the \-axis where
g\ v)=0.

By virtue of Proposition 3.4, these diagrams correspond to equivalent ones, shown
in Fig. 3.3, for the vector field U = G(U,s,U_,¢€) with (U-,€) in various regions.
Each diagram of Fig. 3.3 has horizontal axis being the s-interval Z and vertical axis
being the y-coordinate of U (given by (3.6)). Equations (3.36)—(3.37) define, for fixed
pu = (U_,€), the map connecting the (s, y)-diagram to the (), z)-diagram; notice that
the derivative of this map at the origin is a diagonal matrix with positive diagonal
entries. The curves correspond to equilibria near U, and the half-line corresponds
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F1G. 3.4. Curves serving as boundaries in the construction of Riemann solutions. Here 3 > 0

s fized.

to having s < A2(U_,€). For s > X\(U_,¢€), U- is a node, whereas for s < A\y(U_, ¢),
U_ is a saddle point; a connection from U_ to U, exists only if s < A2(U_,¢).

Each point on the half-line represents the position of the incoming separatrix from
the saddle at U_; this half-line ends in a dot, the position of the incoming separatrix
from the saddle-node at U_. The reason the half-lines are placed as drawn is that
they do not meet the curves of equilibria except when (U_,e) € B (in which case
the curves of equilibria contain the half-line); this is the content of Propositions 3.1
and 3.2. When (U_, €) € B, the unstable manifold of U_ connects to the equilibrium
on L(e) near Uyg. When (U_, €) ¢ B, the situation is as follows: the unstable manifold
of U_ approaches a node near Uy if there are three equilibria near U, and the half-
line lies between two of the equilibria, but there is no connection from U_ to any U,
if either (a) there is only one equilibrium near U, or (b) there are three equilibria
near Uy and the half-line lies outside all of the equilibria.

3.5. Boundary curves. The construction of Riemann solutions requires know-
ing several curves in the vicinity of U, that serve as boundaries separating different
cases. We shall construct these boundaries using the normal form (f,g) and then
transform them to the U, -plane. Figure 3.4 shows the situation for fixed 8 > 0. (The
case § < 0 is analogous.)

The curve D, as projected into the (v, a)-plane, corresponds to the curve D’ in
the (A, z)-plane given by (3.46); the corresponding points have A = v, by (3.47). Each
pair of corresponding points represents a shock wave that is doubly sonic in family 2;
only for those on DB and D'B”, and on CD and C'D’, does the dynamical system
U = G(U,s,U_,e) have a connecting orbit joining the saddle-nodes U_ and U;.

More generally, since f is independent of v, the curve D’ corresponds to turning
points for f (i.e., solutions of (3.45)—(3.46)). Thus a shock wave from U_ to a state
Uy corresponding to a point on D’ is right sonic in family 2. Such a shock wave is
admissible, and of the 2-family, when U_ lies in the open region above and to the
right of the curve DgBCDg in Fig. 3.3.

A point in H’ is a hysteresis point for f. Therefore, it corresponds to a state Uy in
the 2-family inflection locus, where genuine nonlinearity fails: A,(Uy, €)r2(Us, €) = 0.
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The line segment BC corresponds to several distinct curves as follows. Let m =
(7,0) lie on BC, and let m’ lie on B’C’ with A-coordinate . The subset of the (z, A)-
plane where f(z,),0,8,7) = 0 consists of the A-axis and the parabola containing
B”(C’. This set represents the Hugoniot locus of the state U_ corresponding to m.
The state U, corresponding to any point on the A-axis to the left of C’ is a saddle
point, while the one corresponding to a point on B”C’ is a node. The only admissible
shock waves for U_ correspond to points on the A-axis to the left of m/.

The curves B’C’ and B"”(C’ are also obtained by another construction. Let m”
be the point on B”C’ with A-coordinate 4. Then as m moves along BC, m’' and
m'' sweep out B’C’ and B”C’, respectively. The shock wave represented by the pair
(m, m") is of the 2-family and is left sonic; it has no viscous profile, however.

Finally, consider the curves ad, bb, and cé. Solving (3.45) and (3.47) for fixed o
yields the curves a’a’, ¥'d’, and ¢/, respectively; these curves have vertical tangent
in the (), z)-plane along D’. A pair of corresponding points on one of these curves
represents an admissible 2-family shock wave that is left sonic.

4. Proofs of Propositions 3.1, 3.2, and 3.4. We prove these propositions in
reverse order.

Proof of Proposition 3.4. From (3.19), h is an unfolding of a pitchfork bifurcation.
Now f is a universal unfolding of the normal form of the pitchfork; the coefficients of
2% and )z are chosen to agree in sign with those of ¢ and oy in (3.19). According to
[5], there are germs of smooth functions Z(y, o, u), A(o, ), A(u), B(w), and S(y, o, 1),
with Z(0) = A(0) = A(0) = B(0) =0, S(0) > 0, (0Z/8y) (0) > 0, and (0A/d0o) (0) >
0, such that with N = (A, B, 0),

(4.1) h=S-f(ZA,N).

(Here we have noted that f, as defined by (3.34), is independent of ~.)
Let m denote a coordinate of u (i.e., z_, y_, or €). Write

(42) Z(y,O',O) = a1y+a20+a3y2+"‘,
(4.3) S(y,0,0) = 50+ s1y + 520 + 83y° + -+,
Oh
(4.4) 8_m(y’ 0,0) = b(()m) + bgm)y + bém)o + bgm)y2 +oee,
(4.5) A(o,0) =coo+---.

Differentiate both sides of (4.1) with respect to m, set y = 0, write both sides as series
in y and o, and retain only the terms 1, y, o, and y2. We obtain

m 0A
(46) 0" =s05—-(0),

m oA 0A
(4.7) bg ) = —Soala—m(O) + Sla—m(O),

(4.8) b™ = —so (ng—fl(o) + aza—A(0)> + SQa—A(O),

om om
(m) _ 28_Z _ a_A za_B _ a_A Q_é
(4.9) by = so <3a,1 o (0) — a3 o (0) + af o (0) s1015— (0) + s3 5 (0).

The numbers a;, s;, and ¢y can be determined as follows. Since X = H (X,0,0)
is symmetric about the z-axis, h(y,o,0) = —h(—y, 0,0). Therefore

(4.10) h(y,0,0) =y [’ 01(¥*) — 092(4°,0)] ,
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where g;(0) = —14 4+ 26v/3/3 > 0 and g»(0) = —691/48 + 137+/3/16 > 0. We write

(4.11) h(y,,0) = g2(y*, 0)y (ngf—é% - o> ,
which suggests choosing

(4.12) Z(y,0,0) = ygr"’g; "%,

(4.13) A(o,0) =0,

(4.14) S(,0,0) = g1 5",

It follows from Golubitsky—Schaeffer theory that any choice of functions Z(y, o,0),
A(0,0), and S(y,0,0) that works for 4 = 0 can be used; we choose to use (4.12)-
(4.14). Then

(4.15) a1 = g0 0) = 222,
(4.16) az =0,
1022
(4.17) a3=§6—y2( )=0,
_ 1280200 _ V202
(4.18) so =g, "*(0)g,"*(0) = 57—
(4.19) 81 = %(0) =0,
a8 (677409 — 3897161/3) v/2b
(4.20) 2= 5,0 = 3072a )
(11666 — 6621v/3) v2b
(4.21) s3=— %50 ;
(4.22) co=1

The computation of the quantities s2 and s3 from (4.12)—(4.14) requires that we know
(0g2/00)(0), ¢/ (0), and (02g2/0y?)(0); these are determined by the yo?, ¥, and y®c
terms of (3.17).

We can now solve the system (4.12)—(4.14) for each m. Using the results together
with a;, ag, and (4.13), we have Z, A, A, and B to first order. This is how (3.36)-
(3.39) are obtained.

It remains to define T'(o, u) and C(u), with T'(0) > 0 and C(0) = 0, so that

(4.23) k=T-(A-0C).
Now k = 0 provided that o = o*(u), where o*(p) is given by (3.18). We define
(4.24) C(p) = Ao™ (1), 1)

1212 + 7443 ( 62 101 )
= — - 3)e+---

1331 1331 3993

Thus k and A — C are both 0 on the set 0 = ¢*(1). Then since [0(A — C)/du](0) #
0, we can find T so that (4.23) holds. One can check that the derivative of the
transformation (z_,y_,€) — (o, 8,7) is invertible at the origin. O
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Proof of Proposition 3.2. The bifurcation problem (3.3) has an invariant line for
each s; at s = s¢, the equilibrium at U, which has the invariant line as its stable
manifold, undergoes a pitchfork bifurcation with center manifold transverse to the
invariant line. Any perturbation of (3.3) within the class of bifurcation problems
having an invariant line for each s will have a “trivial equilibrium” U(s) near U, on
the invariant line for all s near sg; at some s near sg, this equilibrium will undergo
a bifurcation. On the two-dimensional parameter-dependent center manifold, both
partial derivatives of the reduced vector field are zero at (U(s),s). It follows that
in a neighborhood of (U_¢,0), {(U-,€e) : U- € L(e)} C Bg. Notice that this
set is a two-dimensional manifold, as is Bg = ®~1(B). Therefore, the two sets are
equal. 0

Proof of Proposition 3.1. We show that Sg is a submanifold of codimension
one in (s,U_,e€)-space. Since {(s,U_,€) : U- € L(e)} is contained in Sg and is
also a submanifold of codimension one, the two sets coincide in a neighborhood of
(So, U. -0y 0) .

To study Sg, we first smoothly parameterize the equilibria of (2.13) near the
point (U, 80,U_0,0). From (3.17), (0h/¢)(0) # 0; then by the implicit function
theorem, for (y,o,z_,y_,€) near the origin,

(4.25) h(y,0,2—,y—,€) =0
if and only if
(426) €= ¢(y, 0,$—7y—)>

where ¢ is smooth. The equilibria of (3.11) near the origin are thus parameterized by
(y,0,2_,y_) as follows:

(4.27) €e=¢(y,0,2_,y-),

(428) z=’d)(y707$—ay—7¢(y70’m—’y—))‘

If we then invert the transformation (3.5)—(3.10), we obtain the following parameter-
ization by (y,0,z_,y_) of the equilibria of (2.13) near (U0, 09, U—g, 0):

1
(4.29) U= U4 + 5(1’ + y),
1
(4.30) V=v4ot 5(37 - ),
(4.31) 8§ =89+ o0,
1
(4.32) U- =u_g+ 5(:1:_ +y-),
1
(4.33) v =v_o+ 5(3:_ -y-),
(4.34) €=¢(y,0,2_,y-),

where (4.28) is used to define z.
Now we apply Melnikov’s method [11, 14] to find the set of points (y,o,z_,y_)
for which there is a separatrix connection. To simplify the notation, let

(4.35) P:=(y,0,2_,y-);
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also define U(P) by (4.29)—(4.30) (with z given by (4.28)), s(P) by (4.31), and u(P)
by (4.32)—(4.34). For the differential equation

(4.36) U = G(U,s(P), u(P)),

we distinguish the invariant manifolds W°(s(P), u(P)) and W(U(P), s(P), u(P)). Let
q(t) denote the solution of (3.4) with lim;,_ q(t) = U_g and lim;— q(t) = Uso,
and let N denote the line segment in the U-plane through ¢(0) perpendicular to L(0).
Then W¢(s(P), u(P)) (resp., W(U(P), s(P), u(P))) meets N in a point U; (P) (resp.,
U2(P)). We measure the separation between them by

(4.37) d(P) = ¢(0) A (U1(P) — U2(P));

here v A w means det(v,w). We remark that d is not smooth, but it is C*, where
k can be made arbitrarily large by restricting the neighborhood of 0 on which d is
defined.

Let
t
(4.38) J(t) = exp <_ / div G(q(s), 5(0), 1(0)) ds) .
0
If m denotes a coordinate of P, from the arguments of [14] it follows that
od . . ou
439 520 = Jin [-70i0) A 50
o) ) 9
+ [ I@ A 5| Glalt),s(P),u(P)
—o0 M| p=o
For m =y,
5]
(4.40) =|  Glat),s(P),u(P)) =0,
Yip=o

since s does not depend on y, and, to first order, u does not depend on P. On the other
hand, lim;—,o J(¢)4(t) is a positive multiple of the vector (1,1), and (OU/dy)(0) =
(1,-1). Therefore (0d/dy)(0) # 0.

The implicit function theorem implies that, for P near 0, d(P) = 0 if and only if

(441) Y= (Z(U»w—»y—),

where ¢ is smooth. It follows that the transformation (3.7 )—(3.10) takes Sg to the set
of (6,z_,y_,€) such that

(4.42) e=¢ (5(0, :c_,y_),a,a;_,y_) .

Since this set is a C* submanifold of codimension one in (o, X €)-space, Sg is a C*
submanifold of codimension one in (s, U €)-space. O

5. Solutions of Riemann problems. In this section we describe the solutions
of initial-value problems for the system of conservation laws (2.1) for initial data (2.8),
thereby proving Theorem 2.1. We assume that Uy, is near U_q, Ug is near U, ¢, and
€ > 0 is fixed. The solutions all contain an admissible shock wave, either of family 2
or of transitional type, with left state near U_¢ and right state near U,; these waves
have been characterized in section 3.
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F1G. 5.2. The case when m lies between B and C.

5.1. Solution diagrams. The solutions are presented in Figs. 5.1-5.3. In each
figure, Uy, is fixed, and the corresponding wave curve of family 1, W, (Uy), is drawn
in the top diagram, which shows a neighborhood of U_g. The right state Ug varies
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FI1G. 5.3. The case when m lies to the right of C.

over a neighborhood of U,g, which appears in the bottom two diagrams. On the
bottom left we show the curves that define the boundaries of the several regions with
distinct solution constructions. On the bottom right we indicate the structure of
Riemann problem solutions by drawing representative wave curves of family 2 and
of transitional type. Curves with arrows denote 2-rarefaction curves; dashed curves
denote 2-shock curves (except for some on L(e) that mark transitional shock waves);
a plus denotes a composite wave, i.e., a 2-rarefaction wave followed by a 2-shock wave
(or transitional shock wave, if it lies on L(e)) that is left sonic; and dotted curves mark
certain 2-shock waves that are sonic on one side or the other. Points labeled with the
same letters are joined by shock waves with the same speeds; for example, the pairs
of points (m, m’) and (m, m”) correspond to shock waves with the same speed.

The three figures account for the three qualitatively distinct cases, which arise as
follows. When € = 0, the 1-family eigenvector at U_¢ is transverse to the invariant
line L(0). Therefore, for sufficiently small ¢ and Uy, close enough to U_g, W1 (UL) is
transverse to the invariant line L(e) at their intersection point, m. The three cases
differ in the position of m relative to the points B and C of Fig. 3.3. We remark that
the solutions for Uy, close to U_g generalize immediately to treat states Uy that are
close to any Upg with the following properties: (a) W1(ULg) crosses L(0) transversally
at U_o; and (b) the fastest speed of the 1-wave from UL to U_g is strictly less than
the 2-family characteristic speed of U_g. We refer the reader to [8] and [4] for details
about 1-family wave curves.

To construct the solution of the Riemann problem we use certain admissible shock
waves with left states near U_¢ and right states near U . The implication of the
bifurcation diagrams in Fig. 3.3 is that such a shock wave (U_, Uy, s) is admissible if
and only if either

(1) both U_ and U, belong to L(e) and s < A\(U_,¢€);
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(2) U- lies in the open region above and to the right of the curve DgBCDg,
A2(Us,€) < s < A(U-,¢€), and Uy is a node; or

(8) U- lies on the open curves DgB or DgC, s = A\y(Uy,€), and Uy is a saddle-
node.
This shock wave is of the 2-family except in situation (1) when s < A\3(Us,€) and U,
is a saddle point, in which case it is a transitional shock wave.

5.2. Solution regions. The various boundary curves shown in Figs. 5.1-5.3
correspond to those shown in Fig. 3.4. The (v, a)-diagram of Fig. 3.4 maps to the top
diagrams in Figs. 5.1-5.3, as described in Proposition 3.5, whereas the (), z)-diagram
maps to the bottom diagrams. The latter mapping combines the equivalence (3.36)-
(3.37) of the bifurcation diagrams in the (), 2)- and (o, y)-planes together with the
replacement of o by = = ¥(y,0,z_,y_, €); since (99 /0y)(0) = 0 and (8%/d)(0) < 0,
an (z, y)-diagram is obtained from a (), z)-diagram by simply reversing the orientation
of the horizontal axis.

The discussion of Fig. 3.4 in section 3.5 yields the following information. Shown
in the top diagrams of Figs. 5.1-5.3 are the portions D of the left projection of the
double sonic locus D¢ that are admissible. The bottom diagrams of each figure show
the right projection D’ of the double sonic locus. (Notice, however, that in Figs. 5.2
and 5.3 the right projection of the portion of D between p and B is absent, as is the
portion between C and n in Fig. 5.3; this is because these portions cannot be used in
the solution.)

Next, consider Fig. 5.1. Each state on the line segment mgq is the left state for a
unique shock wave that is left sonic in family 2; the corresponding right state, which
lies on m'q/, is a saddle point, so that this shock wave is of transitional type. By
contrast, each state on gt is the left state for three left sonic shock waves of family 2.
One of them is a transitional shock wave with right state lying on ¢’t’. Another shock
wave has as its right state a node lying on the curve ¢”t, and the right state of the
third is a saddle point; there are no viscous profiles for these two shock waves. Notice,
however, that there is an admissible (local) 2-shock wave from the state on ¢’t’ to the
state on ¢"t’. In the same way, in Fig. 5.2, the line segment mt corresponds to the
curves m’t’ and m''t'.

Also, portions of the Hugoniot locus of the point m appear Figs. 5.1-5.3. The
states on L(e) to the right of m’ are saddle points, except for those along m’t’ in
Fig. 5.3, which are nodes. For each right state along the segment m’q’ in Fig. 5.2
there is a shock wave from m with the same speed and with right state on m’q”; these
right states are joined by an admissible (local) 2-shock wave. Similarly, in Fig. 5.3,
the segment t'q’ joins to the curve t/q".

5.3. Structure of solutions. We now describe the solutions for each of re-
gions 1-12 in Figs. 5.1-5.3. For Ug in region 1, the first wave in the solution is a
1-wave from UL to a middle state on Wy (UyL); this state lies above m in Figs. 5.1 and
5.2 and above n in Fig. 5.3. The 1-wave is followed by a 2-wave group comprising a
2-rarefaction wave to a state on D, a doubly sonic 2-shock wave to D', and finally a
2-rarefaction wave to Ur. The solution in region 3 is similar, except that the middle
state lies below m in Fig. 5.1 and below p in Figs. 5.2 and 5.3. For U in region 2, the
solution is a 1-wave to a middle state on W;(UL), followed by a 2-rarefaction wave
to a state that lies to the right of the curve DBCD, followed by a 2-shock wave that
is left sonic. Part of the boundary of region 2, the curves ¢”t' in Fig. 5.1 and m”t/
in Fig. 5.2, is the limit of points, constructed as above, as the middle state tends
to m from below. Another part, the curve p'm” in Fig. 5.2 (resp., p'n’ in Fig. 5.3),
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consists of 2-shock waves, from middle states on W1(UL) between p and m (resp., p
and n), that are left sonic. On the other side of this boundary lies region 11, which is
reached by 2-shock waves from middle states on W;(UL) between p and m (resp., p
and n). The shock curves in this region end when the shock waves become right sonic
in family 2; this happens on the remaining boundaries of region 11, namely p’q” and,
in Fig. 5.3, t'n’. Regions 10 and 12 are reached by following each of these right sonic
shock waves with a 2-rarefaction wave.

In the remaining regions, the solutions have a three-wave structure, with a tran-
sitional wave in the middle. A transitional wave is one of two types: (1) a transitional
shock wave from the first middle state m to a second middle state, which lies on the
dashed portion of L(e) to the right of m’ in Figs. 5.1 and 5.2 and ¢’ in Fig. 5.3; or
(2) a transitional composite wave, occurring in Figs. 5.1 and 5.2, which consists of a
2-rarefaction wave from the first middle state m to a state located between m and ¢
followed by a transitional shock wave, left sonic in family 2, to a second middle state,
which lies between ¢’ and m/. In regions 6 and 7, the transitional wave is followed by a
2-rarefaction wave originating at the second middle state, whereas in regions 5 and 8
it is followed by a 2-shock wave. Some 2-shock curves in regions 5 and 8 end when
the shock speeds coincide with the speed of the transitional shock wave; this occurs
along the curves ¢’t’. The other 2-shock curves in regions 5 and 8 end when the shock
waves become right sonic in family 2, along the dotted boundaries of these regions.
The adjoining regions 4 and 9 are reached by following these right sonic 2-shock waves
with 2-rarefaction waves.

Appendix A. Definitions of special shock waves. We find it convenient to
make the following definitions. A shock wave with left state U_, right state U, and
speed s is said to be

(1) sonic on the left in family i if \;(U-) = s;

(2) sonic on the right in family j if s = A\;(UL);

(3) doubly sonic in families i and j (or, when ¢ = j, of family i) if \;(U-) =s =

(U+)a

(4) undergoing secondary bifurcation in family i on its right side provided that

A (U+) and l,(U_,.) [U+ - U_] = O,

(5) undergoing hysteresis bifurcation in family i on its right side provided that

= Xi(Uy) and L;(U4)F"(Uy) - ri(Us) @ mi(Us) = 0.

Appendix B. Terminology from ordinary differential equations. We
review some terminology and facts from ordinary differential equations. Let Uy be
an equilibrium of the planar differential equation U=H (U), and let the eigenvalues
of DH(Up) be A1 and A\2. The equilibrium U is said to be hyperbolic if R(\;) # 0,
1 = 1,2. Suppose that both ); are real; then Uy is a saddle point if A; Ay < 0, whereas
it is a mode if A\; A2 > 0. If exactly one A\; = 0, then U is semihyperbolic.

Let \; be an eigenvalue of a saddle or the nonzero eigenvalue of a semihyperbolic
equilibrium, and let V; be a corresponding eigenvector of DH(Up); then there is a
unique invariant curve through U tangent to V;, called the stable (resp., unstable)
manifold of Uy if \; < O (resp., A; > 0). Let Uy be a node with eigenvalues \; < Az <0
(resp., A1 > A2 > 0), with corresponding eigenvectors V; and Va; then there is a
unique invariant curve through Up, tangent to Vi, called the strong stable (resp.,
strong unstable) manifold of Uy.

Let Up be a semihyperbolic equilibrium and let V' be an eigenvector of DH (Up)
for the eigenvalue 0; then there is an invariant curve through Uy tangent to V called
the center manifold of Uy (which need not be unique). Let the differential equation



1214 D. MARCHESIN, B. PLOHR, AND S. SCHECTER

s

saddle point
or saddle node
weak saddle point

F1G. B.1. The phase portraits of a saddle point or weak saddle point (on the left) and a saddle-
node (on the right).

on the center manifold be = a3z% + a3z® + - - -, and let A be the nonzero eigenvalue
at Up. Then Uy is a saddle-node if ag # 0, whereas it is a weak saddle point if ay = 0
and Aas < 0.

A solution curve that tends to Uy as t — oo, from which some nearby solutions
diverge as t — oo, is called a separatriz. One may replace t — oo by t — —oo in this
definition. At a saddle point, each branch of the stable and unstable manifolds is a
separatrix. At a weak saddle with a negative eigenvalue, each branch of the stable and
center manifolds is a separatrix. At a saddle-node with a negative eigenvalue, each
branch of the stable manifold and one branch of the center manifold is a separatrix.
See Fig. B.1. Similar observations apply to weak saddle points and to saddle-nodes
with a positive eigenvalue. A separatriz connection is a solution curve that is a
separatrix as t — oo and as t — —oo0.

Let U = H (U, s) be a one-parameter family of differential equations in the plane.
Suppose that for some sq there is a semihyperbolic equilibrium at Up. The type of
bifurcation at (Up, so) is determined by the differential equation on the parameter-
dependent center manifold at (Up, so). In this paper we encounter the following equi-
librium bifurcations (represented to lowest order in appropriate coordinates):

B.1) saddle-node bifurcation: i =+s+ 22
B.2) transcritical bifurcation: & = +2° £ sz;
B.3) hysteresis bifurcation: i =+s+ 23
B.4) pitchfork bifurcation: i = +z% + sz.

Saddle-node bifurcations occur stably in one-parameter families. Transcritical bifur-
cations occur stably in families in which there is a known “trivial equilibrium” (z = 0
in appropriate coordinates). Pitchfork bifurcations occur stably in families with Z,-
symmetry. If a saddle-node or transcritical bifurcation occurs at (Up, so), Uy is always
a saddle-node. In this paper, whenever a hysteresis or pitchfork bifurcation occurs at
(Uo, s0), Up is a weak saddle point.
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