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This paper is the fifth in a series that undertakes a systematic investigation of
Riemann solutions of systems of two conservation laws in one spatial dimen-
sion. In this paper, three degeneracies that can occur only in Riemann solutions
that contain doubly sonic transitional shock waves, together with the degener-
acies that pair with them, are studied in detail. Conditions for a codimension-
one degeneracy are identified in each case, as are conditions for folding of the
Riemann solution surface. Simple examples are given, including a numerically
computed Riemann solution that contains a doubly sonic transitional shock
wave.
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1. INTRODUCTION

We consider systems of two conservation laws in one space dimension,
partial differential equations of the form

Ut+F(U)x=0 (1.1)

with t > 0, x ¥ R, U(x, t) ¥ R2, and F: R2Q R2 a smooth map. The most
basic initial-value problem for Eq. (1.1) is the Riemann problem, in which
the initial data are piecewise constant with a single jump at x=0:

U(x, 0)=˛UL for x < 0
UR for x > 0

(1.2)



This paper is the fifth in a series of papers on the structure of solutions of
Riemann problems; the previous ones are [6–9].
We seek piecewise continuous weak solutions of Riemann problems in

the scale-invariant form U(x, t)=Û(x/t) consisting of a finite number of
constant parts, continuously changing parts (rarefaction waves), and jump
discontinuities (shock waves). Shock waves occur when

lim
tQ s−

Û(t)=U− ] U+= lim
tQ s+

Û(t) (1.3)

They are required to satisfy the following viscous profile admissibility cri-
terion: a shock wave is admissible provided that the ordinary differential
equation

U̇=F(U) − F(U−) − s(U − U−) (1.4)

has a heteroclinic solution, or a finite sequence of such solutions, leading
from the equilibrium U− to a second equilibrium U+. If there is a single
heteroclinic solution of (1.4) from U− to U+, then the viscous regularization
of (1.1),

Ut+F(U)x=eUxx

has a traveling wave with speed s that connects U− to U+.
In [6] it is shown that a structurally stable Riemann solution can

include doubly sonic transitional shock waves, which are represented by
saddle-attractor to repeller-saddle heteroclinic orbits; see Fig. 1. These
shock waves play a unique role in structurally stable Riemann solutions:
they separate sequences of waves that typically form complete Riemann
solutions. As far as I know, doubly sonic transitional shock waves have not
yet been observed in Riemann solutions to systems that have arisen in
applications. Moreover, they cannot occur when the flux function F is

Fig. 1. A saddle-attractor to repeller-saddle heteroclinic orbit.
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quadratic, a case that has been intensively studied (see [1, 2], and refer-
ences cited therein). However, [7] identifies two bifurcations by which a
structurally stable Riemann solution containing a transitional wave group
can metamorphose, as the left or right state of the Riemann solution varies,
into a Riemann solution that contains a doubly sonic transitional shock
wave. Transitional wave groups, the composite analogue of saddle-to-
saddle ‘‘undercompressive’’ shock waves, arise in mathematical models for
three-phase flow in a porous medium [4, 5, and 10].
In this paper we do three things:

• We study in detail the codimension-one Riemann solutions that
occur when a rarefaction that precedes or follows a doubly sonic
transitional shock wave in a structurally stable Riemann solution
shrinks to zero strength. At the same time we treat the degeneracies
that pair with these to continue the Riemann solution. In two cases
the continuation of the Riemann solution includes a transitional
wave group but does not include a doubly sonic transitional shock
wave; these are the two bifurcations just mentioned. This study
completes the the program begun in [8, 9] to study codimension-one
Riemann solutions in which a rarefaction in a structurally stable
Riemann solution shrinks to zero strength.
• We give a simple example of a structurally stable Riemann solution
that contains a doubly sonic transitional shock wave, and we show
that the Riemann solution computed by a standard upwind scheme
contains this shock wave. Such an example should be useful since
these waves are so unfamiliar.
• We give simple examples of the Riemann solution bifurcations
studied in this paper.

In a structurally stable Riemann solution, a doubly sonic transitional
shock wave is preceded by a 2-rarefaction and followed by a 1-rarefaction.
Either may shrink to zero strength; the two possibilities are dual and need
not both be studied. If the 2-rarefaction shrinks to zero strength, there are
three possibilities:

• The 2-rarefaction is itself a complete 2-wave group in the Riemann
solution.
• The 2-rarefaction is part of a 2-wave group consisting of two waves.
Thus it is preceded by a shock wave represented by a saddle to
saddle-attractor connection.
• The 2-rarefaction is part of a 2-wave group consisting of more than
two waves. It is thus preceded by a shock wave represented by a
saddle-attractor to saddle-attractor connection.
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The structurally stable Riemann solutions into which these metamorphose
when the codimension-one boundary is crossed are as follows [7]. In the
first case, the 2-rarefaction and the doubly sonic wave are replaced by a
single saddle to repeller-saddle shock wave, which now begins a transitional
wave group. In the second case, the saddle to saddle-attractor wave, the
2-rarefaction, and the doubly sonic wave are replaced by a single saddle to
repeller-saddle shock wave, which now begins a transitional wave group. In
the third case, the saddle-attractor to saddle-attractor shock wave, the
2-rarefaction, and the doubly sonic transitional shock wave are replaced by
a single doubly sonic transitional shock wave. The 2-wave group is thus
two waves shorter.
The third case is necessarily an F-boundary: the degenerate Riemann

solution persists under perturbation of UL and UR, but exists only along a
codimension-one surface in F-space. To my knowledge this type of codi-
mension-one Riemann solution, whose existence was pointed out in [7],
has not previously been analyzed. The first and second cases, by contrast,
can occur as UL-boundaries. In the second and third cases, it can happen
that both types of Riemann solutions are defined for Riemann data on the
same side of the bifurcation surface, so that we do not have local existence
and uniqueness of Riemann solutions in (UL, UR, F)-space.
The remainder of the paper is organized as follows. In Sections 2

and 3 we review terminology and results about structurally stable Riemann
solutions and codimension-one Riemann solutions from [6, 7]. In Sec-
tions 4–6 we treat in detail the three missing rarefaction cases. (Section 6
actually deals with the dual of the third case mentioned above.) In Sec-
tion 7 we give a number of examples.

2. BACKGROUND ON STRUCTURALLY STABLE RIEMANN
SOLUTIONS

We consider the system (1.1) with t ¥ R+, x ¥ R, U(x, t) ¥ R2, and
F: R2Q R2 a C2 map. Let

UF={U ¥ R2 : DF(U) has distinct real eigenvalues} (2.1)

be the strictly hyperbolic region in state-space. We shall call a Riemann solu-
tion Û strictly hyperbolic if Û(t) ¥UF for all t ¥ R. In this paper, all Riemann
solutions are assumed to be strictly hyperbolic. For U ¥UF, let l1(U) <
l2(U) denote the eigenvalues of DF(U), and let ai(U) and ri(U), i=1, 2,
denote corresponding left and right eigenvectors with ai(U) rj(U)=dij.
A rarefaction wave of type Ri is a differentiable map Û: [a, b] QUF,

where a < b, such that ÛŒ(t) is a multiple of ri(Û(t)) and t=li(Û(t)) for
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each t ¥ [a, b]. The states U=Û(t) with t ¥ [a, b] comprise the rarefac-
tion curve C̄. The definition of rarefaction wave implies that if U ¥ C̄, then

Dli(U) ri(U)=ai(U) D2F(U)(ri(U), ri(U)) ] 0 (2.2)

Condition (2.2) is genuine nonlinearity of the ith characteristic line field
at U. Assuming (2.2), we can choose ri(U) such that

Dli(U) ri(U)=1 (2.3)

In this paper we shall assume that wherever (2.2) holds, ri(U) is chosen so
that (2.3) holds. The speed s of a rarefaction wave of type R1 is s=l1(U+);
for a rarefaction wave of type R2, s=l2(U−).
A shock wave consists of a left state U− ¥UF, a right state U+ ¥UF,

a speed s, and a connecting orbit C, which corresponds to a solution of the
ordinary differential equation (1.4) from U− to U+. For any equilibrium
U ¥UF of (1.4), the eigenvalues of the linearization at U are li(U) − s,
i=1, 2. We shall use the terminology defined in Table I for such an equi-
librium. The type of a shock wave is determined by the equilibrium types of
its left and right states. (For example, w is of type R · S if its connecting
orbit joins a repeller to a saddle.)
An allowed sequence of elementary waves or a Riemann solution con-

sists of a sequence of waves (w1, w2,..., wn) with increasing wave speeds. We
write

(w1, w2,..., wn): U0 `
s1 U1 `

s2 · · ·`sn Un (2.4)

The type of (w1, w2,..., wn) is (T1, T2,..., Tn) if wi has type Ti.
Let

(wg
1 , wg

2 ,..., wg
n ): Ug

0 `
sg1 Ug

1 `
sg2 · · ·`s

g
n Ug

n (2.5)

Table I. Types of Equilibria

name symbol eigenvalues

Repeller R + +
Repeller-Saddle RS 0 +
Saddle S − +
Saddle-Attractor SA − 0
Attractor A − −
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be a Riemann solution for Ut+F*(U)x=0. The Riemann solution (2.5) is
structurally stable if there are neighborhoods Ui of Ug

i , Ii of sg
i , and F of

F* in an appropriate Banach space (see [6]), a compact setK in R2, and a
C1 map

G: U0 ×I1 ×U1 ×I2 × · · · ×In ×Un ×FQ R3n−2

with G(Ug
0 , sg

1 , Ug
1 , sg

2 ,..., sg
n , Ug

n , F*)=0 such that:

(P1) G(U0, s1, U1, s2,..., sn, Un, F)=0 implies that there exists a
Riemann solution

(w1, w2,..., wn): U0 `
s1 U1 `

s2 · · ·`sn Un

for Ut+F(U)x=0 with successive waves of the same types as
those of the wave sequence (2.5) and with each C̄i contained in
IntK;

(P2) DG(Ug
0 , sg

1 , Ug
1 , sg

2 ,..., sg
n , Ug

n , F*), restricted to the (3n − 2)-
dimensional space of vectors {(U̇0, ṡ1, U̇1, ṡ2,..., ṡn, U̇n, Ḟ) : U̇0=
0=U̇n, Ḟ=0}, is an isomorphism onto R3n−2.

Condition (P2) implies, by the implicit function theorem, that G−1(0) is a
graph over U0 ×Un ×F; (s1, U1,..., Un−1, sn) is determined by (U0, Un, F).
We also require that

(P3) (w1, w2,..., wn) can be chosen so each C̄i depends continuously
on (U0, Un, F).

Associated with each type of elementary wave is a local defining map,
which we use to construct maps G that exhibit structural stability. Let
w*: Ug

− `
s* Ug

+ be an elementary wave of type T for Ut+F*(U)x=0. The
local defining map GT has as its domain a set of the form U− ×I×U+×F

(with U± being neighborhoods of Ug
±, I a neighborhood of s*, and F a

neighborhood of F*). The range is some Re; the number e depends only on
the wave type T. The local defining map is such that GT(Ug

− , s*, Ug
+, F*)

=0. Moreover, if certain wave nondegeneracy conditions are satisfied at
(Ug

− , s*, Ug
+, F*), then there is a neighborhoodN of C̄* such that:

(D1) GT(U− , s, U+, F)=0 if and only if there exists an elementary
wave w: U− `

s U+ of type T for Ut+F(U)x=0 with C̄ con-
tained inN;

(D2) DGT(Ug
− , s*, Ug

+, F*), restricted to the space {(U̇− , ṡ, U̇+, Ḟ) : Ḟ
=0}, is surjective.
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Condition (D2) implies, by the implicit function theorem, that G−1
T (0) is a

manifold of codimension e. In fact,

(D3) w can be chosen so that C̄ varies continuously on G−1
T (0).

We now discuss local defining maps and nondegeneracy conditions for
the types of elementary waves that occur in this paper.
First we consider rarefactions. For i=1, 2, let

Ui={U ¥U : Dli(U) ri(U) ] 0}

In Ui we assume that Eq. (2.3) holds. For each U− ¥U1, define k1 to be the
solution of

“k1

“s
(U− , s)=r1(k1(U− , s))

k1(U− , l1(U−))=U−

By (2.3), if k1(U− , s)=U, then s=l1(U). Thus there is a rarefaction wave
of type R1 for Ut+F(U)x=0 from U− to U+ with speed s if and only if

U+−k1(U− , s)=0 (2.9)

s=l1(U+) > l1(U−) (2.10)

Similarly, for each U+ ¥U2, define k2 to be the solution of

“k2

“s
(s, U+)=r2(k2(s, U+))

k2(l2(U+), U+)=U+

By (2.3), if k2(s, U+)=U, then s=l2(U). Thus there is a rarefaction wave
of type R2 for Ut+F(U)x=0 from U− to U+ with speed s if and only if

U− −k2(s, U+)=0 (2.11)

s=l2(U−) < l2(U+) (2.12)

Equations (2.9) (resp. (2.11)) are defining equations for rarefaction
waves of type R1 (resp. R2). The nondegeneracy conditions for rarefaction
waves of type R1 (resp. R2), which are implicit in our definition of rarefac-
tion, are the speed inequality (2.10) (resp. (2.12)), and the genuine nonli-
nearity condition (2.2).
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Next we consider shock waves. If there is to be a shock wave solution
of Ut+F(U)x=0 from U− to U+ with speed s, we must have that:

F(U+) − F(U−) − s(U+− U−)=0 (E0)

the differential equation (1.4) has an orbit from U− to U+ (C0)

The two-component equation (E0) is a defining equation. In the context of
structurally stable Riemann solutions, condition (C0) is an open condition,
and therefore is regarded as a nondegeneracy condition, for all but transi-
tional shock waves (those of types S · S, S · RS, SA · S, or SA · RS). For
these waves, a separation function must be defined. Let us consider S · RS
waves. Suppose Eq. (1.1) has an S · RS shock wave w*: Ug

− `
s* Ug

+. Then
for (U− , s) near (Ug

− , s*), the differential equation (1.4) has a saddle at U−
with unstable manifold W−(U− , s). For (U− , s)=(Ug

− , s*), (1.4) has a
saddle-node at Ug

+; we denote its center manifold by W+(Ug
− , s*). This

center manifold perturbs to a family of invariant manifoldsW+(U− , s).
Let Ũ(y) be the connection of (1.4), with (U− , s)=(Ug

− , s*), from Ug
−

to Ug
+. Let S be a line segment through Ũ(0) transverse to U̇̃(0), in the

direction V. Then W±(U− , s) meet S in points Ū±(U− , s), and we define
S(U− , s) by

Ū−(U− , s) − Ū+(U− , s)=S(U− , s) V

See Fig. 2.

Fig. 2. Geometry of the separation function for S · RS shock waves. (a) Phase portrait of
U̇=F(U) − F(Ug

−) − s*(U − Ug
−). (b) Phase portrait of a nearby vector field U̇=F(U) −

F(U−) − s(U − U−) for which the equilibrium atUg
+ has split into a saddle and a repeller, and for

which S(U− , s) is positive. (c) Phase portrait of a nearby vector field U̇=F(U) − F(U−) −
s(U − U−) for which the equilibrium atUg

+ has disappeared, and for which S(U− , s) is negative.
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The family of unstable manifolds W−(U− , s) is as smooth as F. The
center manifolds W+(U− , s) are not uniquely defined. However, if F is Ck,
k <., then W+(U− , s) can be chosen to depend in a Ck manner on (U− , s)
in a neighborhood of (Ug

− , s*). More precisely, while Ū+(U− , s) is uniquely
defined for those (U− , s) for which the differential equation (1.4) has equi-
libria near Ug

+, Ū+(U− , s) is not uniquely defined for other (U− , s).
However, the derivatives of S at (Ug

− , s*) through order k are independent
of the choice.
The partial derivatives of S are given as follows [6]. The linear differ-

ential equation

ḟ+f[DF(Ũ(t)) − s*I]=0

has, up to constant multiple, a unique bounded solution. For the correct
choice of this constant,

“S
“s

(Ug
− , s*)= −F

.

−.
f(t)(Ũ(t) − Ug

−) dt (2.15)

DU− S(Ug
− , s*)= −1F.

−.
f(t) dt2 {DF(Ug

−) − s*I} (2.16)

The construction of a separation function for SA · RS shock waves is
exactly the same, except W−(Ug

− , s*) is a center manifold of (1.4) at Ug
− ,

which perturbs to a family of invariant manifolds W−(U− , s) that is not
uniquely defined.
In Table II we list additional defining equations and nondegeneracy

conditions for the types of shock waves that occur in this paper; the labeling

Table II. Additional Defining Equations and Nondegeneracy Conditions for Various Shock
Waves

type of shock wave additional defining equations nondegeneracy conditions

RS · RS l1(U−) − s=0 (E3) Dl1(U−) r1(U−) ] 0 (G3)
l1(U+) − s=0 (E4) Dl1(U+) r1(U+) ] 0 (G4)

a1(U+)(U+− U−) ] 0 (B2)
not distinguished connection (C2)

S · SA l2(U+) − s=0 (E6) Dl2(U+) r2(U+) ] 0 (G6)
not distinguished connection (C3)

S · RS l1(U+) − s=0 (E13) Dl1(U+) r1(U+) ] 0 (G13)
S(U− , s)=0 (S2) transversality (T2)

SA · RS l2(U−) − s=0 (E15) Dl2(U1) r2(U1) ] 0 (G15)
l1(U+) − s=0 (E16) Dl1(U+) r2(U+) ] 0 (G16)
S(U− , s)=0 (S4) transversality (T4)
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of the conditions is from [6]. The wave nondegeneracy conditions are open
conditions. Conditions (C2) and (C3) are that the connection C is not dis-
tinguished; for an RS · RS (resp. S · SA) shock wave, this means that the
connection C should not lie in the unstable manifold of U− (resp. the stable
manifold of U+). The transversality condition (T2) is that there is a vector
V in R2 such that the vectors

R a1(U+)

F
.

−.
f(t) dt
S (DF(U−) − sI) V and R a1(U+)(U+− U−)

F
.

−.
f(t)(U(t) − U−) dt

S
(2.17)

are linearly independent. The transversality condition (T4) is that

R a1(U+) r1(U−) a1(U+)(U+− U−)

1F.
−.
f(t) dt2 r1(U−) F

.

−.
f(t)(U(t) − U−) dt

S is invertible (2.18)

The geometric import of (T2) is as follows. The system (1.1) has an
S · RS shock wave U− `

s U+ near a given S · RS shock wave Ug
− `

s* Ug
+

provided the following system of local defining equations is satisfied:

F(U+) − F(U−) − s(U+− U−)=0 (2.19)

l1(U+) − s=0 (2.20)

S(U− , s)=0 (2.21)

The left-hand side of this system is a map from 5-dimensional U−sU+-space
to R4. If the nondegeneracy conditions (G13) and (T2) hold at (Ug

− ,
s*, Ug

+), then this map has surjective derivative there, so the set of solutions
is a curve in U−sU+-space; moreover, this curve projects regularly to curves
E1 in U− -space and E2 in U+-space. These are the curves of possible left and
right states for S · RS shock waves.
Similarly, the system (1.1) has an SA · RS shock wave U− `

s U+ near
a given SA · RS shock wave Ug

− `
s* Ug

+ provided an appropriate system of
local defining equations is satisfied. The system is Eqs. (2.19)–(2.21)
together with

l2(U−) − s=0
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The left-hand side of this system is, for fixed F, a map from 5-dimensional
U−sU+-space to R5. If the nondegeneracy conditions (G15), (G16), and
(T4) hold at (Ug

− , s*, Ug
+), then this map has surjective derivative there.

Therefore for each F near F* there is a unique SA · RS shock wave
U− `

s U+ nearUg
− `

s* Ug
+. The triple (U− , s, U+) depends smoothly onF.

For the Riemann solution (2.5), let wg
i have type Ti and local defining

map GTi , with range R
ei. For appropriate neighborhoods Ui of Ug

i , Ii of sg
i ,

F ofF*, andNi ofC
g
i , we can define amapG: U0 ×I1 × · · · ×In ×Un ×FQ

Re1+· · ·+en by G=(G1,..., Gn), where

Gi(U0, s1,..., sn, Un, F)=GTi (Ui−1, si, Ui, F)

The map G is called the local defining map of the wave sequence (2.5).
We define the Riemann number of an elementary wave type T to be

r(T)=3 − e(T)

where e(T) is the number of defining equations for a wave of type T. For
convenience, if w is an elementary wave of type T, we shall write r(w)
instead of r(T).
A 1-wave group is either a single R · S shock wave or an allowed

sequence of elementary waves of the form

(R · RS)(R1 RS · RS) · · · (R1 RS · RS) R1(RS · S) (2.25)

where the terms in parentheses are optional. If any of the terms in
parentheses are present, the group is termed composite.
A transitional wave group is either a single S · S shock wave or an

allowed sequence of elementary waves of the form

S · RS(R1 RS · RS) · · · (R1 RS · RS) R1(RS · S) (2.26)

or

(S · SA) R2(SA · SA R2) · · · (SA · SA R2) SA · S (2.27)

the terms in parentheses being optional. In cases (2.26) and (2.27), the
group is termed composite.
A 2-wave group is either a single S · A shock wave or an allowed

sequence of elementary waves of the form

(S · SA) R2(SA · SA R2) · · · (SA · SA R2)(SA · A) (2.28)
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where again the terms in parentheses are optional. If any of the terms in
parentheses are present, the group is termed composite.
In [6] the following are proved.

Theorem 2.1 (Wave Structure). Let (2.5) be an allowed sequence of
elementary waves. Then

(1) ;n
i=1 r(wg

i ) [ 2;

(2) ;n
i=1 r(wg

i )=2 if and only if the following conditions are
satisfied.

(1) Suppose that the wave sequence (2.5) includes no SA · RS
shock waves. Then it consists of one 1-wave group, followed
by an arbitrary number of transitional wave groups (in any
order), followed by one 2-wave group.

(2) Suppose that the wave sequence (2.5) includes m \ 1 shock
waves of type SA · RS. Then these waves separate m+1
wave sequences g0,..., gm. Each gi is exactly as in (1) with
the restrictions that:

(a) if i < m, the last wave in the group has type R2;

(b) if i > 0, the first wave in the group has type R1.

Theorem 2.2 (Structural Stability). Suppose that the allowed
sequence of elementary waves (2.5) has ;n

i=1 r(wg
i )=2. Assume that:

(H1) each wave satisfies the appropriate wave nondegeneracy condi-
tions;

(H2) the wave group interaction conditions, as stated precisely in [6],
are satisfied;

(H3) if wg
i is a f · S shock wave and wg

i+1 is an S · f shock wave, then
sg
i < sg

i+1.

Then the wave sequence (2.5) is structurally stable.

In the remainder of the paper, by a structurally stable Riemann solu-
tion we shall mean a sequence of elementary waves that satisfies the
hypotheses of Theorem 2.2.

3. CODIMENSION-ONE RIEMANN SOLUTIONS

In order to consider conveniently codimension-one Riemann solutions,
the definitions of rarefaction and shock waves in Section 2 must be gener-
alized somewhat.
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For the purposes of this paper, a generalized rarefaction wave of type
Ri has the same definition as a rarefaction of type Ri, except that we allow
a=b in the interval of definition [a, b].
A generalized shock wave consists of a left state U− , a right state U+

(possibly equal to U− ), a speed s, and a sequence of connecting orbits
C̃1, C̃2,..., C̃k of Eq. (1.4) from U−=Ũ0 to Ũ1, Ũ1 to Ũ2,..., Ũk−1 to Ũk=U+.
Note that Ũ0, Ũ1,..., Ũk must be equilibria of Eq. (1.4). We allow for the
possibility that Ũj−1=Ũj, in which case we assume that C̃j is the trivial
orbit {Ũj}.
Associated with each generalized rarefaction or generalized shock

wave is a speed s, defined as before, and a curve C̄: the rarefaction curve or
the closure of C̃1 2 · · · 2 C̃k.
A generalized allowed wave sequence is a sequence (2.5) of generalized

rarefaction and shock waves with increasing wave speeds. If U0=UL and
Un=UR, then associated with a generalized allowed wave sequence
(w1, w2,..., wn) is a solution U(x, t)=Û(x/t) of the Riemann problem
(1.1)–(1.2). Therefore we shall also refer to a generalized allowed wave
sequence as a Riemann solution.
A generalized allowed wave sequence (2.5) is a codimension-one

Riemann solution provided that there is a sequence of wave types
(Tg
1 ,..., Tg

n ) with ;n
i=1 r(Tg

i )=2, neighborhoods Ui ıU of Ug
i , Ii ı I

of sg
i , andF of F*, a compact setK in R2, and a C1 map

(G, H): U0 ×I1 × · · · ×In ×Un ×FQ R3n−2×R (3.1)

with G(Ug
0 , sg

1 ,..., sg
n , Ug

n , F*)=0 and H(Ug
0 , sg

1 ,..., sg
n , Ug

n , F*)=0 such
that the following conditions are satisfied. These conditions are a simplifi-
cation of the list in [7] that are adequate for the present paper. The num-
bering of [7, 8] has been retained.

(Q1) If G(U0, s1,..., sn, Un, F)=0 and H(U0, s1,..., sn, Un, F) \ 0
then there is a generalized allowed wave sequence

(w1, w2,..., wn): U0 `
s1 U1 `

s2 · · ·`sn Un

for Ut+F(U)x=0 with each C̄i contained in IntK;

(Q2) if G(U0, s1,..., sn, Un, F)=0 and H(U0, s1,..., sn, Un, F) > 0,
then (w1, w2,..., wn) is a structurally stable Riemann solution of
type (Tg

1 ,..., Tg
n ) and G exhibits its structural stability.

(Q3) IfG(U0, s1,..., sn, Un, F)=0 andH(U0, s1,..., sn, Un, F)=0 then
(w1, w2,..., wn) is not a structurally stable Riemann solution.
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(Q71) the linear map

DG(Ug
0 , sg

1 ,..., sg
n , Ug

n , F*) restricted to

{(U̇0, ṡ1,..., ṡn, U̇n, Ḟ) : U̇0=U̇n=0 and Ḟ=0} (3.3)

is an isomorphism.

If this holds, then, as in the structurally stable case, the equation G=0 may
be solved for (s1, U1,..., Un−1, sn) in terms of (U0, Un, F) near (Ug

0 , sg
1 ,...,

sg
n , Ug

n , F*). Let

H̃(U0, Un, F)=H(U0, s1(U0, Un, F),..., sn(U0, Un, F), Un, F) (3.4)

Then one of the following occurs:

(E2) H̃ is independent of Un, and DU0H̃(Ug
0 , Ug

n , F*) ] 0.

(E3) H̃ is independent of U0, and DUnH̃(Ug
0 , Ug

n , F*) ] 0.

(E4) H̃ is independent of U0 and Un, and DFH̃(Ug
0 , Ug

n , F*) ] 0.

Condition (Q71) together with (E2), (E3) or (E4) implies that (G, H)−1 (0)
is a graph over a codimension-one manifold S in U0 ×Un ×F, and M :=
(G, H)−1 ({0} ×R+) is a manifold-with-boundary of codimension 3n − 2.
We can define maps C̄i: MQ IntK. We require that

(Q5) (w1, w2,..., wn) can be chosen so that each map C̄i is continuous.

(G, H) is again called a local defining map. If (E2) holds, there is a codi-
mension-one manifold S2 through (Ug

0 , F*) in (U0, F)-space such that
S=Un ×S2 . In this case the codimension-one Riemann solution is termed
a UL-boundary. If (E3) holds we have a dual UL-boundary. If (E4) holds,
there is a codimension-one manifold S2 through F* in F-space such that
S=U0 ×Un ×S2 . In this case the codimension-one Riemann solution is
termed an F-boundary.
A rarefaction of zero strength is one whose domain has zero length.

A shock wave of zero strength is one with UL=UR (and hence C={UL}).
A generalized allowed wave sequence is minimal if

• there are no rarefactions or shock waves of zero strength;

• no two successive shock waves have the same speed.

Among the minimal generalized allowed wave sequences we include
sequences of no waves; these are given by a single U0 ¥ R2, and represent
constant solutions of Eq. (1.1).
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We shorten a generalized allowed wave sequence by dropping a rare-
faction or shock wave of zero strength, or by amalgamating adjacent shock
waves of positive strength with the same speed. Every generalized allowed
wave sequence can be shortened to a unique minimal generalized allowed
wave sequence. Two generalized allowed wave sequences are equivalent if
their minimal shortenings are the same. Equivalent generalized allowed
wave sequences represent the same solution U(x, t)=Û(x/t) of Eq. (1.1).
Let (Ug

0 , sg
1 , Ug

1 , sg
2 ,..., sg

n , Ug
n , F*) be a generalized allowed wave

sequence that is a codimension-one Riemann solution of type (Tg
1 ,..., Tg

n ).
Let M denote the associated manifold-with-boundary, “M being a graph
over the manifold S. Suppose there is an equivalent generalized allowed
wave sequence (UÄ

0 , sÄ1 , UÄ

1 , sÄ2 ,..., sÄm, UÄ

m, F*) that is a codimension-one
Riemann solution in “N, N=(GÄ, HÄ)−1 ({0} ×R+), where IntN con-
sists of structurally stable Riemann solutions of some type (TÄ1 ,..., TÄm).
Suppose in addition that “N is also a graph over S, and the points in “M
and “N above the same point in S are equivalent. Then the codimension-
one Riemann solution (2.5) (or its equivalent generalized wave sequence) is
said to lie in a join.

M and N are each graphs over the union of one side of S and S

itself. If M andN are graphs over different sides of S, we have a regular
join; ifM andN are graphs over the same side ofS, we have a folded join.
In the case of a folded join, we do not have local existence and uniqueness
of Riemann solutions.
In the following three sections we shall consider a Riemann solution

(2.5) in which a wave of type SA · RS is preceded or followed by a rarefac-
tion of zero strength.
Under additional nondegeneracy conditions, we shall show that such a

Riemann solution (2.5) is of codimension one and lies in a join. Our
arguments will have three steps:

Step 1. We verify that (2.5) is a codimension-one Riemann solution.

Step 2. We construct a Riemann solution equivalent to (2.5) and
verify that it too is a codimension-one Riemann solution.

Step 3. We show that the two types of codimension-one Riemann
solutions are defined on the same codimension-one surface
S in U0UnF-space; the two types of codimension-one
Riemann solutions above a given point in S are equivalent;
and the Riemann solution join that we therefore have is of a
certain type (UL-boundary or F-boundary, regular or folded
join).
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All three steps will make use of the local defining map (G, H). In each case,
G is the map that would be used for structurally stable Riemann solutions
of type (T1,..., Tn). In Steps 1 and 2 we shall carefully verify (Q71) and
either (E2) or (E4), and we shall explain enough of the geometry to make
the other conditions evident.

4. MISSING ‘‘STAND-ALONE’’ 2-RAREFACTION

Theorem 4.1. Let (2.5) be a Riemann solution of type (T1,..., Tn) for
Ut+F*(U)x=0. Assume there is an integer k such that Tk ] f · SA,
Tk+1=R2, Tk+2=SA · RS, Tk+3=R1. Assume:

(1) All hypotheses of Theorem 2.2 are satisfied, except that the
2-rarefaction wg

k+1 has zero strength.

(2) The forward wave curve mapping Uk(U0, s) is regular at (Ug
0 , s*).

Then (2.5) is a codimension-one Riemann solution. It has an equivalent
codimension-one Riemann solution that lies in the boundary of structurally
stable Riemann solutions of type (T1,..., Tk, S · RS, R1, Tk+4,..., Tn) because
the S · RS shock wave becomes an SA · RS shock wave. Riemann solution
(2.5) (and its equivalent) lies in a regular join that is a UL-boundary.

Let us briefly explain assumption (2). According to [6], assumption
(1) implies that there exist smooth mappings si(U0, s) and Ui(U0, s),
1 [ i [ k, such that

si(Ug
0 , s*)=sg

i and Ui(Ug
0 , s*)=Ug

i (4.1)

and for each (U0, s),

U0 |Ł

s1(U0, s) · · ·|Ł

sk(U0, s) Uk(U0, s) (4.2)

is an admissible wave sequence of type (T1,..., Tk) for Ut+F*(U)x=0. The
mapping Uk(U0, s) is a forward wave curve mapping. The assumption that it
is regular is actually somewhat restrictive. It implies that no 2-rarefaction
(equivalently, no fast transitional wave group or SA · RS shock wave)
precedes wg

k+1.

Proof. We first fix the flux function F* and denote it throughout the
proof by F. We shall assume for simplicity that k=1. Then (2.5) begins
with the wave sequence

Ug
0 `
sg1 Ug

1 `
sg2 Ug

2 `
sg3 Ug

3 `
sg4 Ug

4
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with the first wave a one-wave, T2=R2, T3=SA · RS, T4=R1. We have

sg
2=sg

3=l2(Ug
2 )=l1(Ug

3 ) and Ug
1=Ug

2

Step 1. We note that (U0, s1,..., s3, U3) near (Ug
0 , sg

1 ,..., sg
3 , Ug

3 )
represents an admissible wave sequence of type (T1, R2, SA · RS) if and
only if

U1 −g(U0, s1)=0 (4.5)

U1 −k2(U2, s2)=0 (4.6)

F(U3) − F(U2) − s3(U3 − U2)=0 (4.7)

l2(U2) − s3=0 (4.8)

l1(U3) − s3=0 (4.9)

S(U2, s3)=0 (4.10)

l2(U2) − s2 \ 0

Here U1=g(U0, s1) is, for fixed U0, the one-wave curve; in general, Uk=
g(U0, s) would be a forward wave-curve mapping. The function S(U2, s3) is
the separation function for SA · RS shock waves defined in Section 2.
Let G(U0, s1,..., sn, Un) be the local defining map for wave sequences of

type (T1, R2, SA · RS, R1, T5,..., Tn) near (Ug
0 , sg

1 ,..., sg
n , Ug

n ), G=(G1, G2),
where G1(U0, s1,..., s3, U3) is given by the left hand sides of Eqs. (4.5)–
(4.10), and G2(U3, s4,..., sn, Un) is the local defining map for wave sequences
of type (R1, T5,..., Tn). From the theory of [6],

DG1(Ug
0 , sg

1 ,..., sg
3 , Ug

3 ), restricted to

{(U̇0, ṡ1,..., ṡ3, U̇3) : U̇0=0}, is an isomorphism (4.11)

and

DG2(Ug
3 , sg

4 ,..., sg
n , Ug

n ), restricted to

{(U̇3, ṡ4,..., ṡn, U̇n) : U̇3=U̇n=0}, is an isomorphism (4.12)

Therefore (Q71) holds.
From (4.11), we can solve Eqs. (4.5)–(4.10) for (s1, U1,..., s3, U3) in

terms of U0 near (Ug
0 , sg

1 ,..., sg
3 , Ug

3 ). Once U3 is found, the remainder of the
Riemann solution is obtained by solving for (s4, U4,..., Un−1, sn) in terms of
(U3, Un). Since a solution of G=0 represents a Riemann solution of the
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desired type if and only if l2(U2) − s2 \ 0, we now study H̃(U0) :=
l2(U2) − s2. To verify (E2), we calculate

DH̃(Ug
0 ) U̇0=Dl2(Ug

2 ) U̇2 − ṡ2 (4.13)

by linearizing Eqs. (4.5)–(4.10) at (Ug
0 , sg

1 ,..., sg
3 , Ug

3 ), solving for (ṡ1, U̇1,...,
ṡ3, U̇3) in terms of U̇0, and substituting the formulas for U̇2 and ṡ2 into
Eq. (4.13).
Linearizing Eqs. (4.5)–(4.10) at (Ug

0 , sg
1 ,..., sg

3 , Ug
3 ) yields:

U̇1 − Dg(Ug
0 , sg

1 )(U̇0, ṡ1)=0 (4.14)

U̇1 − Dk2(Ug
2 , sg

2 )(U̇2, ṡ2)=0 (4.15)

(DF(Ug
3 ) − sg

3I) U̇3 − (DF(Ug
2 ) − sg

3I) U̇2 − ṡ3(Ug
3 − Ug

2 )=0 (4.16)

Dl2(Ug
2 ) U̇2 − ṡ3=0 (4.17)

Dl1(Ug
3 ) U̇3 − ṡ3=0 (4.18)

DS(Ug
2 , sg

3 )(U̇2, ṡ3)=0 (4.19)

Because of the nondegeneracy conditions for SA · RS shock waves,
which are part of assumption (1), the only solution of Eqs. (4.16)–(4.19) is
U̇2=U̇3=0 and ṡ3=0. To find (ṡ1, U̇1, ṡ2), we let

U̇1=ar1(Ug
1 )+br2(Ug

1 ) (4.20)

We then multiply Eq. (4.14) and

U̇1 −
“k2

“s2
(Ug

2 , sg
2 ) ṡ2=0 (4.21)

by a1(Ug
1 ) and a2(Ug

1 ). We obtain the system

a − a1(Ug
1 ) DU0g(Ug

0 , sg
1 ) U̇0 − a1(Ug

1 )
“g

“s1
(Ug

0 , sg
1 ) ṡ1=0 (4.22)

b − a2(Ug
1 ) DU0g(Ug

0 , sg
1 ) U̇0 − a2(Ug

1 )
“g

“s1
(Ug

0 , sg
1 ) ṡ1=0 (4.23)

a=0 (4.24)

b − ṡ2=0 (4.25)
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We solve for (ṡ1, a, b, ṡ2). Then, using Eq. (4.13),

DH̃(Ug
0 ) U̇0= − ṡ2

=1a1(Ug
1 )
“g

“s1
(Ug

0 , sg
1 )2

−1 3a2(Ug
1 )
“g

“s1
(Ug

0 , sg
1 ) a1(Ug

1 )

− a1(Ug
1 )
“g

“s1
(Ug

0 , sg
1 ) a2(Ug

1 )4 DU0g(Ug
0 , sg

1 ) U̇0 (4.26)

In Eq. (4.26), note that:

• a1(Ug
1 )
“g

“s1
(Ug

0 , sg
1 ) is nonzero, since the one-wave curve g(Ug

0 , s1) is
transverse to the 2-rarefaction curve at Ug

1 by assumption (1).

• The bracketed row vector is nonzero and is orthogonal to
“g

“s1
(Ug

0 , sg
1 ).

• The range of DU0g(Ug
0 , sg

1 ) includes vectors that are linearly inde-
pendent of “g

“s1
(Ug

0 , sg
1 ), by assumption (2).

Thus DH̃(Ug
0 ) is a nonzero vector, so that (E2) holds. Therefore

C={U0 : H̃(U0)=0} is a smooth curve near Ug
0 , and for (U0, Un) near

(Ug
0 , Ug

n ), a solution of type (T1, R2, SA · RS, R1, T5,..., Tn) exists provided
U0 is on the side of C to which this vector points.

Step 2. Next we consider the point (Ug
0 , sg

1 , Ug
1 , sg

3 , Ug
3 , sg

4 ,..., s
g
n , Ug

n )
in R3n−1. We shall investigate the existence of nearby points (U0, s1, U1,
s, U, s4,..., sn, Un) that represent Riemann solutions of type (T1, S · RS, R1,
T5,..., Tn).
We note that if (U0, s1, U1, s, U) near (Ug

0 , sg
1 , Ug

1 , sg
3 , Ug

3 ) represents
an admissible wave sequence of type (T1, S · RS), then we must have

U1 −g(U0, s1)=0 (4.27)

F(U) − F(U1) − s(U − U1)=0 (4.28)

l1(U) − s=0 (4.29)

S(U1, s)=0 (4.30)

l2(U1) − s \ 0 (4.31)

(Of course, if l2(U1) − s=0, the S · RS wave has become an SA · RS wave.)
We shall see that the linearization of Eqs. (4.27)–(4.30) at (Ug

0 , sg
1 , Ug

1 ,
sg
3 , Ug

3 ), restricted to {(U̇0, ṡ1, U̇1, ṡ, U̇) : U̇0=0}, is an isomorphism. As in
Step 1, it follows that (Q71) holds.
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It also follows that Eqs. (4.27)–(4.30) can be solved for (s1, U1, s, U) in
terms of U0 near (Ug

0 , sg
1 , Ug

1 , sg
3 , Ug

3 ). Once U is found, the remainder of
the Riemann solution is obtained by solving for (s4, U4,..., Un−1, sn) in
terms of (U, Un).
We have a Riemann solution of the desired type if and only if the

function H̃(U0) :=l2(U1) − s \ 0. To calculate

DH̃(Ug
0 ) U̇0=Dl2(Ug

1 ) U̇1 − ṡ (4.32)

we linearize Eqs. (4.27)–(4.30) at (Ug
0 , sg

1 , Ug
1 , sg

3 , Ug
3 ), solve the linearized

equations for (ṡ1, U̇1, ṡ, U̇) in terms of U̇0, and substitute the formulas for
U̇1 and ṡ into Eq. (4.32).
The linearization of Eqs. (4.27)–(4.30) at (Ug

0 , sg
1 , Ug

1 , sg
3 , Ug

3 ) is

U̇1 − Dg(Ug
0 , sg

1 )(U̇0, ṡ1)=0 (4.33)

(DF(Ug
3 ) − sg

3I) U̇ − (DF(Ug
1 ) − sg

3I) U̇1 − ṡ(Ug
3 − Ug

1 )=0 (4.34)

Dl1(Ug
3 ) U̇ − ṡ=0 (4.35)

DS(Ug
1 , sg

3 )(U̇1, ṡ)=0 (4.36)

We make the substitution (4.20). Multiplying Eq. (4.34) by a1(Ug
3 ) yields

− a(l1(Ug
1 ) −l2(Ug

1 )) a1(Ug
3 ) r1(Ug

1 ) − ṡa1(Ug
3 )(Ug

3 − Ug
1 )=0 (4.37)

Also, Eq. (4.36) simplifies to

−a(l1(Ug
1 )−l2(Ug

1 )) 1F.
−.
f(t) dt2 r1(Ug

1 )− ṡ F
.

−.
f(t)(U*(t)−Ug

1 ) dt=0
(4.38)

By the nondegeneracy condition (T4) for SA · RS shock waves, which is
part of assumption (1), Eqs. (4.37)–(4.38) imply

a=ṡ=0

Multiplying Eq. (4.33) by a1(Ug
1 ) and a2(Ug

1 ) yields Eqs. (4.22)–(4.23),
which can now be solved to yield b and ṡ1; the solution is the same as in
step 1. Equation (4.35) and the equation obtained by multiplying Eq. (4.34)
by a2(Ug

3 ) can now be solved to yield U̇.
Substituting a=ṡ=0 into Eq. (4.32) yields

DH̃(Ug
0 ) U̇0=b (4.40)

which from Eq. (4.25) is the opposite of Eq. (4.26).
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Thus DH̃(Ug
0 ) is a nonzero vector, so that (E2) holds. Therefore

C={U0 : H̃(U0)=0} is a smooth curve near Ug
0 , and for (U0, Un) near

(Ug
0 , Ug

n ), a solution of type (T1, S · RS, R1, T5,..., Tn) exists provided U0 is
on the side of C to which this vector points.

Step 3. It is easy to see that the curves C defined in Steps 1 and 2
coincide. The join is regular because the vectors DH̃(Ug

0 ) in Steps 1 and 2
point in opposite directions. i

5. MISSING RAREFACTION IN A 2-WAVE GROUP CONSISTING
OF TWO WAVES

Theorem 5.1. Let (2.5) be a Riemann solution of type (T1,..., Tn) for
Ut+F*(U)x=0. Assume there is an integer k such that Tk+1=S · SA,
Tk+2=R2, Tk+3=SA · RS, Tk+4=R1. Assume:

(1) All hypotheses of Theorem 2.2 are satisfied, except that the
2-rarefaction wg

k+2 has zero strength.

(2) The forward wave curve mapping Uk(U0, s) is regular at (Ug
0 , s*).

(3) Let Ũ(t) be the connection of

U̇=F*(U) − F*(Ug
k+2) − sg

k+3(U − Ug
k+2)

fromUg
k+2 toUg

k+3, and let f(t) be a nontrivial bounded solution of

ḟ+f[DF*(Ũ(t)) − sg
k+3I]=0

Then the vectors

R a1(Ug
k+3)

F
.

−.
f(t) dt
S (DF*(Ug

k ) − sg
k+3I)

“Uk
“s

(Ug
0 , s*)

and

R a1(Ug
k+3)(Ug

k+3 − Ug
k )

F
.

−.
f(t)(U(t) − Ug

k ) dt
S

are linearly independent.

(4) The expression D defined by Eq. (5.72) below is nonzero.
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Then (2.5) is a codimension-one Riemann solution. It has an equivalent
codimension-one Riemann solution that lies in the boundary of structurally
stable Riemann solutions of type (T1,..., Tk, S · RS, R1, Tk+5,..., Tn) because an
equilibrium appears that breaks the connection of the S · RS shock wave.
Riemann solution (2.5) (and its equivalent) lies in a join that is a
UL-boundary. If k=1, the join is regular or folded according to whether the
expression

(BE − AF)((KL − IN) g13+(KM − JN) g23)
D((AG − DE) g13+(BG − DF) g23)

(5.4)

defined below is negative or positive. If k > 1, an analagous condition holds.

Proof. We first fix the flux function F* and denote it throughout the
proof by F. We shall assume for simplicity that k=1. Then (2.5) begins
with the wave sequence

Ug
0 `
sg1 Ug

1 `
sg2 Ug

2 `
sg3 Ug

3 `
sg4 Ug

4 `
sg5 Ug

5

with the first wave a one-wave, T2=S · SA, T3=R2, T4=SA · RS, T5=R1.
We have

sg
2=sg

3=sg
4=l2(Ug

3 )=l1(Ug
4 ) and Ug

2=Ug
3

Step 1. We note that (U0, s1,..., s4, U4) near (Ug
0 , sg

1 ,..., sg
4 , Ug

4 )
represents an admissible wave sequence of type (T1, S · SA, R2, SA · RS) if
and only if

U1 −g(U0, s1)=0 (5.7)

F(U2) − F(U1) − s2(U2 − U1)=0 (5.8)

l2(U2) − s2=0 (5.9)

U2 −k2(U3, s3)=0 (5.10)

F(U4) − F(U3) − s4(U4 − U3)=0 (5.11)

l2(U3) − s4=0 (5.12)

l1(U4) − s4=0 (5.13)

S(U3, s4)=0 (5.14)

l2(U3) − s3 \ 0

Here g(U0, s1) and S(U3, s4) are as in Section 4.
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Let G(U0, s1,..., sn, Un) be the local defining map for wave sequences
of type (T1, S · SA, R2, SA · RS, R1, T6,..., Tn) near (Ug

0 , sg
1 ,..., sg

n , Ug
n ), G=

(G1, G2), where G1(U0, s1,..., s4, U4) is given by the left hand sides of
Eqs. (5.7)–(5.14), and G2(U4, s5,..., sn, Un) is the local defining map for
wave sequences of type (R1, T6,..., Tn). As in Section 4,

DG1(Ug
0 , sg

1 ,..., sg
4 , Ug

4 ), restricted to

{(U̇0, ṡ1,..., ṡ4, U̇4) : U̇0=0}, is an isomorphism
(5.15)

and

DG2(Ug
4 , sg

5 ,..., sg
n , Ug

n ), restricted to

{(U̇4, ṡ5,..., ṡn, U̇n) : U̇4=U̇n=0}, is an isomorphism (5.16)

Therefore (Q71) holds.
As in Section 4, we can solve Eqs. (5.7)–(5.14) for (s1, U1,..., s4, U4) in

terms of U0 near (Ug
0 , sg

1 ,..., sg
3 , Ug

3 ). Once U4 is found, the remainder of the
Riemann solution is obtained by solving for (s5, U5,..., Un−1, sn) in terms of
(U4, Un). Since a solution of G=0 represents a Riemann solution of the
desired type if and only if l2(U3) − s3 \ 0, we now study H̃(U0) :=
l2(U3) − s3. To verify (E2), we calculate

DH̃(Ug
0 ) U̇0=Dl2(Ug

3 ) U̇3 − ṡ3 (5.17)

by linearizing Eqs. (5.7)–(5.14) at (Ug
0 , sg

1 ,..., sg
4 , Ug

4 ), solving for (ṡ1, U̇1,...,
ṡ4, U̇4) in terms of U̇0, and substituting the formulas for U̇3 and ṡ3 into
Eq. (5.17).
Linearizing Eqs. (5.7)–(5.14) at (Ug

0 , sg
1 ,..., sg

4 , Ug
4 ) yields:

U̇1 − Dg(Ug
0 , sg

1 )(U̇0, ṡ1)=0 (5.18)

(DF(Ug
2 ) − sg

2I) U̇2 − (DF(Ug
1 ) − sg

2I) U̇1 − ṡ2(Ug
2 − Ug

1 )=0 (5.19)

Dl2(Ug
2 ) U̇2 − ṡ2=0 (5.20)

U̇2 − Dk2(Ug
3 , sg

3 )(U̇3, ṡ3)=0 (5.21)

(DF(Ug
4 ) − sg

4I) U̇4 − (DF(Ug
3 ) − sg

4I) U̇3 − ṡ4(Ug
4 − Ug

3 )=0 (5.22)

Dl2(Ug
3 ) U̇3 − ṡ4=0 (5.23)

Dl1(Ug
4 ) U̇4 − ṡ4=0 (5.24)

DS(Ug
3 , sg

4 )(U̇3, ṡ4)=0 (5.25)
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As in Section 4, Eqs. (5.22)–(5.25) yield U̇3=U̇4=0 and ṡ4=0. We set

U̇0=ir1(Ug
0 )+jr2(Ug

0 ) (5.26)

U̇1=ar1(Ug
1 )+br2(Ug

1 ) (5.27)

U̇2=cr1(Ug
2 )+dr2(Ug

2 ) (5.28)

We multiply Eq. (5.18) by a1(Ug
1 ) and a2(Ug

1 ), and we multiply Eqs. (5.19)
and (5.21) by a1(Ug

2 ) and a2(Ug
2 ). We get:

a − a1(Ug
1 ) Dg(Ug

0 , sg
1 )(ir1(Ug

0 )+jr2(Ug
0 ), ṡ1)=0 (5.29)

b − a2(Ug
1 ) Dg(Ug

0 , sg
1 )(ir1(Ug

0 )+jr2(Ug
0 ), ṡ1)=0 (5.30)

c(l1(Ug
2 ) − sg

2 ) − a(l1(Ug
1 ) − sg

2 ) a1(Ug
2 ) r1(Ug

1 )

− b(l2(Ug
1 ) − sg

2 ) a1(Ug
2 ) r2(Ug

1 ) − ṡ2a1(Ug
2 )(Ug

2 − Ug
1 )=0 (5.31)

− a(l1(Ug
1 ) − sg

2 ) a2(Ug
2 ) r1(Ug

1 ) − b(l2(Ug
1 ) − sg

2 ) a2(Ug
2 ) r2(Ug

1 )

− ṡ2a2(Ug
2 )(Ug

2 − Ug
1 )=0 (5.32)

Dl2(Ug
2 )(cr1(Ug

2 )+dr2(Ug
2 )) − ṡ2=0 (5.33)

c=0 (5.34)

d − ṡ3=0 (5.35)

Simplifying the notation, Eqs. (5.29)–(5.35) become

a − (g11i+g12 j+g13 ṡ1)=0 (5.36)

b − (g21i+g22 j+g23 ṡ1)=0 (5.37)

Cc − Aa − Bb − Dṡ2=0 (5.38)

− Ea − Fb − Gṡ2=0 (5.39)

Hc+d − ṡ2=0 (5.40)

c=0 (5.41)

d − ṡ3=0 (5.42)

Here the capital letters have the obvious meanings. This system can be
solved for (ṡ1, a, b, ṡ2, c, d, ṡ3) in terms of (i, j) provided

(AG − DE) g13+(BG − DF) g23 ] 0 (5.43)
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Equation (5.43) expresses transversality, at Ug
1 , of the one-wave curve

U1=g(Ug
0 , s1) to the curve of left states of S · SA shock waves; this trans-

versality is part of assumption (1). We then find that

DH̃(Ug
0 )(ir1(Ug

0 )+jr2(Ug
0 )

=−ṡ3=
(BE − AF)((g11g23 −g13g21) i+(g12g23 −g13g22) j)

(AG − DE) g13+(BG − DF) g23
(5.44)

Note that:

• BE − AF is clearly nonzero.

• Since Dg(Ug
0 , sg

1 ) is surjective by assumption (1), either g11g23 −g13g21
or g12g23 −g13g22 is nonzero. Thus there exist (i, j) such that the
second factor in the numerator of expression (5.44) is nonzero.

• The denominator of Eq. (5.44) is nonzero by Eq. (5.43).

Thus DH̃(Ug
0 ) is a nonzero vector, so that (E2) holds. Therefore C=

{U0 : H̃(U0)=0} is a smooth curve near Ug
0 , and for (U0, Un) near

(Ug
0 , Ug

n ), a solution of type (T1, S · SA, R2, SA · RS, R1, T6,..., Tn) exists
provided U0 is on the side of C to which this vector points.

Step 2. Next we consider the point (Ug
0 , sg

1 , Ug
1 , sg

4 , Ug
4 , sg

5 ,..., sg
n , Ug

n )
in R3n−4. We shall investigate the existence of nearby points (U0, s1, U1, s,
U, s5,..., sn, Un) that represent Riemann solutions of type (T1, S · RS, R1,
T6,..., Tn).
We begin by considering the three-parameter family of differential

equations

U̇=F(U) − F(U1) − s(U − U1) (5.45)

near (U1, s, U)=(Ug
1 , sg

2 , Ug
2 ). From [9] we have

Lemma 5.2. There is a function c(U1, s), defined near (U1, s)=
(Ug

1 , sg
2 ), such that (5.45) undergoes a saddle-node bifurcation near Ug

2 when
the surface c=0 is crossed. For c > 0 (resp.=0, < 0) there are no (resp. 1, 2)
equilibria of (5.45) near Ug

2 . We may take

Dc(Ug
1 , sg

2 )(U̇1, ṡ)=−a1(Ug
2 )(DF(Ug

1 ) − sg
2I) U̇1 − ṡa1(Ug

2 )(Ug
2 − Ug

1 )
(5.46)
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Next we construct a separation function S̃(U1, s), (U1, s) near (Ug
1 , sg

4 ),
that can be used to study connections of

U̇=F(U) − F(U1) − s(U − U1) (5.47)

from U1 to equilibria near Ug
4 . For (U1, s)=(Ug

1 , sg
4 ), (5.47) has a

heteroclinic solution Ũ(t) from the saddle-attractor Ug
3 to the repeller-

saddle Ug
4 . Let S be a line segment through Ũ(0) transverse to U̇̃(0), in the

direction V. The center manifolds of (5.47), with (U1, s)=(Ug
1 , sg

4 ), at Ug
3

and Ug
4 perturb to invariant manifolds that meet S at Ū−(U1, s) and

Ū+(U1, s) respectively. Using Ū±(U1, s) we can define a separation function
S(U1, s). We have

“S
“s

(Ug
1 , sg

4 )= −F
.

−.
f(t)(Ũ(t) − Ug

1 ) dt (5.48)

DU1S(Ug
1 , sg

4 )= −1F.
−.
f(t), dt2 {DF(Ug

1 ) − sg
4I} (5.49)

If (5.47) has equilibria near Ug
3 we define

Ũ−(U1, s)=Ū−(U1, s)

If it has no equilibria near Ug
3 , we define Ũ+(U1, s) to be the intersection of

the unstable manifold of the saddle U1 with S. We then define

Ũ−(U1, s) − Ū+(U1, s)=S̃(U1, s) V

See Fig. 3. If the perturbation of the center manifold at Ug
3 is chosen

appropriately, S̃(U1, s) agrees with S(U1, s). Thus the partial derivatives of
S̃(Ug

1 , sg
4 ) are also given by Eqs. (5.48)–(5.49).

In order that (U0, s1, U1, s, U) near (Ug
0 , sg

1 , Ug
1 , sg

4 , Ug
4 ) represent an

admissible wave sequence of type (T1, S · RS), we must have

U1 −g(U0, s1)=0 (5.52)

F(U) − F(U1) − s(U − U1)=0 (5.53)

l1(U) − s=0 (5.54)

S̃(U1, s)=0 (5.55)

c(U1, s) \ 0 (5.56)
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Fig. 3. Geometry of the separation function in Section 5. (a) Phase portrait of U̇=F(U) −
F(Ug

1 ) − sg
4 (U − Ug

1 ). (b) Phase portrait of U̇=F(U) − F(U1) − s(U − U1) for a value of (U1, s)
for which c(U1, s) > 0, i.e., the equilibrium at Ug

2 has disappeared, and for which S is positive.
(c) Phase portrait for a value of (U1, s) for which c(U1, s)=0, i.e., there is a saddle-attractor
near Ug

2 , and for which S is negative. (d) Phase portrait for a value of (U1, s) for which
c(U1, s) < 0, i.e., the equilibrium at Ug

2 has split into a saddle and a repeller, and for which S is
negative.
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We shall see that the linearization of Eqs. (5.52)–(5.55) at (Ug
0 , sg

1 , Ug
1 ,

sg
4 , Ug

4 ), restricted to {(U̇0, ṡ1, U̇1, ṡ, U̇) : U̇0=0}, is an isomorphism. As in
Step 1, it follows that (Q71) holds.
It also follows that Eqs. (5.52)–(5.56) can be solved for (s1, U1, s, U) in

terms of U0 near (Ug
0 , sg

1 , Ug
1 , sg

4 , Ug
4 ). Once U is found, the remainder of

the Riemann solution is obtained by solving for (s5, U5,..., Un−1, sn) in
terms of (U, Un).
We have a Riemann solution of the desired type if and only if the

function H̃(U0) :=c(U1, s) \ 0. To verify (E2), we calculate

DH̃(Ug
0 ) U̇0=Dc(Ug

1 , sg
4 )(U̇1, ṡ) (5.57)

by linearizing Eqs. (5.52)–(5.56) at (Ug
0 , sg

1 , Ug
1 , sg

4 , Ug
4 ), solving the linear-

ized equations for (ṡ1, U̇1, ṡ, U̇) in terms of U̇0, and substituting the for-
mulas for U̇1 and ṡ into Eq. (5.57).
The linearization of Eqs. (5.52)–(5.55) at (Ug

0 , sg
1 , Ug

1 , sg
4 , Ug

4 ) is:

U̇1 − Dg(Ug
0 , sg

1 )(U̇0, ṡ1)=0 (5.58)

(DF(Ug
4 ) − sg

4I) U̇ − (DF(Ug
1 ) − sg

4I) U̇1 − ṡ(Ug
4 − Ug

1 )=0 (5.59)

Dl1(Ug
4 ) U̇ − ṡ=0 (5.60)

DS̃(Ug
1 , sg

4 )(U̇1, ṡ)=0 (5.61)

We make the substitutions (5.26), (5.27) and

U̇=xr1(Ug
4 )+yr2(Ug

4 ) (5.62)

We multiply Eq. (5.58) by a1(Ug
1 ) and a2(Ug

1 ), and we multiply Eq. (5.59)
by a1(Ug

4 ) and a2(Ug
4 ). We get Eqs. (5.29)–(5.30) together with:

− a(l1(Ug
1 ) − sg

4 ) a1(Ug
4 ) r1(Ug

1 ) − b(l2(Ug
1 ) − sg

4 ) a1(Ug
4 ) r2(Ug

1 )

− ṡa1(Ug
4 )(Ug

4 − Ug
1 )=0 (5.63)

(l2(Ug
4 ) − sg

4 ) y − a(l1(Ug
1 ) − sg

4 ) a2(Ug
4 ) r1(Ug

1 )

− b(l2(Ug
1 ) − sg

4 ) a2(Ug
4 ) r2(Ug

1 ) − ṡa2(Ug
4 )(Ug

4 − Ug
1 )=0 (5.64)

Dl1(Ug
4 )(xr1(Ug

4 )+yr2(Ug
4 )) − ṡ=0 (5.65)

DS̃(Ug
1 , sg

4 )(U̇1, ṡ1)=0 (5.66)
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Simplifying the notation, this system becomes Eqs. (5.36)–(5.37) together
with:

− La − Mb − Nṡ=0 (5.67)

Py − Qa − Rb − Sṡ=0 (5.68)

x+Zy − ṡ=0 (5.69)

Ia+Jb+Kṡ=0 (5.70)

where the capital letters have the obvious meanings. From Eqs. (5.46),
(5.57), and (5.27), and the definitions of A, B, and D in Step 1, we have

DH̃(Ug
0 ) U̇0=−Aa − Bb − Dṡ (5.71)

Assumption (3) implies that we can solve Eqs. (5.36)–(5.37) and
(5.67)–(5.70) for (ṡ1, a, b, ṡ, x, y) in terms of (i, j). We do this and and
substitute into Eq. (5.71). Let

D=A(JN − KM)+B(KL− IN)+D(IM − LJ) (5.72)

Then we obtain

DH̃(Ug
0 ) U̇0=

D((g11g23 −g13g21) i+(g12g23 −g13g22) j)
(KL − IN) g13+(KM − JN) g23

(5.73)

We note that D is nonzero by assumption (4), and the second factor in the
numerator is nonzero for certain (i, j) as in Step 1. The denominator is
nonzero by assumption (3).
Thus DH̃(Ug

0 ) is a nonzero vector, so that (E2) holds. Therefore C=
{U0 : H̃(U0)=0} is a smooth curve near Ug

0 , and for (U0, Un) near (Ug
0 , Ug

n ),
a solution of type (T1, S · RS, R1, T6,..., Tn) exists provided U0 is on the side
of C to which this vector points.

Step 3. It is easy to see that the curves C defined in Steps 1 and 2
coincide. The last conclusion of the theorem follows from comparing
Eqs. (5.44) and (5.73). i

Remark. Assumption (3) says that the generalized shock wave
Ug
k Ł
sgk+3 Ug

k+3 satisfies the appropriate analogue of nondegeneracy condi-
tion (T2) for S · RS shock waves, as well as a wave group interaction con-
dition. This assumption implies that the triples (U1, s, U) that satisfy
Eqs. (5.53)–(5.55) form a smooth curve C through (Ug

1 , sg
4 , Ug

4 ). C projects
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to curves C1 through Ug
1 in U1-space and C2 through (Ug

1 , sg
4 ) in U1s-space.

From Eqs. (5.67)–(5.70) it follows that, using (a, b) as coordinates of U̇1,
the tangent vectors to C1 at Ug

1 and to C2 at (Ug
1 , sg

4 ) are respectively
(KM − JN, IN − KL) and (KM − JN, IN − KL, JL − IM). From the first
of these formulas we see that the fact that the denominator in Eq. (5.73) is
nonzero is equivalent to transversality of the one-wave curve to C1 at Ug

1 .
Now let S be the surface through (Ug

1 , sg
4 ) of points (U1, s) such that the

differential equation (5.47) has a degenerate equilibrium near Ug
2 . From the

second of our tangent vector formulas and Eq. (5.71), we see that the fact
that D is nonzero is equivalent to transversality of C2 and S at (Ug

1 , sg
4 ).

This transversality is a natural assumption to make.

6. MISSING RAREFACTION IN A 1-WAVE GROUP CONSISTING
OF MORE THAN TWO WAVES

Theorem 6.1. Let (2.5) be a Riemann solution of type (T1,..., Tn) for
Ut+F*(U)x=0. Assume there is an integer k such that Tk+1=R2,
Tk+2=SA · RS, Tk+3=R1, Tk+4=RS · RS, Tk+5=R1. Assume:

(1) All hypotheses of Theorem 2.2 are satisfied, except that the
1-rarefaction wg

k+3 has zero strength.

(2) Let Ũ(t) be the connection of

U̇=F*(U) − F*(Ug
k+1) − sg

k+2(U − Ug
k+1)

from Ug
k+1 to Ug

k+2, and let f(t) be a nontrivial bounded solution
of

ḟ+f[DF(Ũ(t)) − sg
k+2I]=0

Then the matrix

R a1(Ug
k+4) r1(Ug

k+1) a1(Ug
k+4)(Ug

k+4 − U*k+1)

1F.
−.
f(t) dt2 r1(Ug

k+1) F
.

−.
f(t)(U(t) − Ug

k+1) dt
S

is invertible.

Then (2.5) is a codimension-one Riemann solution that is an F-boundary. It
has an equivalent codimension-one Riemann solution that lies in the boundary
of structurally stable Riemann solutions of type (T1,..., Tk, R2, SA · RS, R1,
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Tk+6,..., Tn) because an equilibrium appears that breaks the connection of the
SA · RS shock wave. If k=1, the join is regular or folded according to
whether the expression

F(IA − BH)(KN − LO) (6.4)

defined below is positive or negative. If k > 1, an analagous condition holds.

Proof. We shall assume for simplicity that k=1. Then the third
through fifth waves of (2.5) comprise the wave sequence

Ug
2 `
sg3 Ug

3 `
sg4 Ug

4 `
sg5 Ug

5

with T3=SA · RS, T4=R1, T5=RS · RS. We have

sg
3=sg

4=sg
5=l2(Ug

2 )=l1(Ug
3 )=l1(Ug

5 ) and Ug
3=Ug

4

Step 1. Let F(U, e) be a one-parameter perturbation of the flux
function F*, so that F(U, 0)=F*(U). Then (U2, s3,..., s5, U5, e) near (Ug

2 ,
sg
3 ,..., sg

5 , Ug
5 , 0) represents an admissible wave sequence of type (SA · RS,

R1, RS · RS) for the flux function F(U, e) if and only if

F(U3, e) − F(U2, e) − s3(U3 − U2)=0 (6.7)

l2(U2, e) − s3=0 (6.8)

l1(U3, e) − s3=0 (6.9)

S(U2, s3, e)=0 (6.10)

U4 −k1(U3, s4, e)=0 (6.11)

F(U5, e) − F(U4, e) − s5(U5 − U4)=0 (6.12)

l1(U4, e) − s5=0 (6.13)

l1(U5, e) − s5=0 (6.14)

s4 −l1(U3, e) \ 0

By assumption (1), the linearization of Eqs. (6.7)–(6.14) at (Ug
2 , sg

3 ,..., sg
5 ,

Ug
5 , 0), restricted to {(U̇2, ṡ3,..., ṡ5, U̇5, ė) : ė=0}, is an isomorphism. It
follows that (Q71) holds.
It also follows that we can solve Eqs. (6.7)–(6.14) for (U2, s3,..., s5, U5)

in terms of e near (Ug
2 , sg

3 ,..., sg
5 , Ug

5 , 0). Once U2 and U5 are found, we can
then solve for (s1, U1, s2) in terms of (U0, U2) and (s6, U6,..., Un−1, sn) in
terms of (U5, Un). We have a Riemann solution of the desired type if and
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only if s4 −l1(U3, e) \ 0. We therefore study H̃(e) :=s4 −l1(U3, e). To
verify (E4), we calculate

H̃Œ(0) ė=ṡ4 − DUl1(Ug
3 , 0) U̇3 −

“l1

“e
(Ug

3 , 0) ė (6.15)

by linearizing Eqs. (6.7)–(6.14) at (Ug
2 , sg

3 ,..., sg
5 , Ug

5 , 0), solving for
(U̇2, ṡ2,..., ṡ5, U̇5) in terms of ė, and substituting the formulas for U̇3 and ṡ4
into Eq. (6.15).
Linearizing Eqs. (6.7)–(6.14) at (Ug

2 , sg
3 ,..., sg

5 , Ug
5 , 0) yields:

(DUF(Ug
3 , 0) − sg

3I) U̇3 − (DUF(Ug
2 , 0) − sg

3I) U̇2 − ṡ3(Ug
3 − Ug

2 )

= −1“F
“e

(Ug
3 , 0) −

“F
“e

(Ug
2 , 0)2 ė (6.16)

DUl2(Ug
2 , 0) U̇2 − ṡ3=−

“l2

“e
(Ug

2 , 0) ė (6.17)

DUl1(Ug
3 , 0) U̇3 − ṡ3=−

“l1

“e
(Ug

3 , 0) ė (6.18)

DUS(Ug
2 , sg

3 , 0) U̇2+
“S
“s

(Ug
2 , sg

3 , 0) ṡ3=−
“S
“e

(Ug
2 , sg

3 , 0) ė (6.19)

U̇4 − DUk1(Ug
3 , sg

4 , 0) U̇3 −
“k1

“s
(Ug

3 , sg
4 , 0) ṡ4=

“k1

“e
(Ug

3 , sg
4 , 0) ė (6.20)

(DUF(Ug
5 , 0) − sg

5I) U̇5 − (DUF(Ug
4 , 0) − sg

5I) U̇4 − ṡ5(Ug
5 − Ug

4 )

= −1“F
“e

(Ug
5 , 0) −

“F
“e

(Ug
4 , 0)2 ė (6.21)

DUl1(Ug
4 , 0) U̇4 − ṡ5=−

“l1

“e
(Ug

4 , 0) ė (6.22)

DUl1(Ug
5 , 0) U̇5 − ṡ5=−

“l1

“e
(Ug

5 , 0) ė (6.23)

We set

U̇2=ar1(Ug
2 )+br2(Ug

2 ) (6.24)

U̇3=cr1(Ug
3 )+dr2(Ug

3 ) (6.25)

U̇4=er1(Ug
4 )+fr2(Ug

4 ) (6.26)

U̇5=gr1(Ug
5 )+hr2(Ug

5 ) (6.27)
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We multiply Eqs. (6.16), (6.20), and (6.21) by a1(Ug
3 ) and a2(Ug

3 ). We get:

a(l1(Ug
2 ) − sg

3 ) a1(Ug
3 ) r1(Ug

2 )+ṡ3a1(Ug
3 )(Ug

3 − Ug
2 )

=a1(Ug
3 ) 1
“F
“e

(Ug
3 , 0) −

“F
“e

(Ug
2 , 0)2 ė (6.28)

− (l2(Ug
3 ) − sg

3 ) d+a(l1(Ug
2 ) − sg

3 ) a2(Ug
3 ) r1(Ug

2 )+ṡ3a2(Ug
3 )(Ug

3 − Ug
2 )

=a2(Ug
3 ) 1
“F
“e

(Ug
3 , 0) −

“F
“e

(Ug
2 , 0)2 ė (6.29)

aDUl2(Ug
2 , 0) r1(Ug

2 )+b − ṡ3=−
“l2

“e
(Ug

2 , 0) ė (6.30)

c+dDUl1(Ug
3 , 0) r2(Ug

3 ) − ṡ3=−
“l1

“e
(Ug

3 , 0) ė (6.31)

aDUS(Ug
2 , sg

3 , 0) r1(Ug
2 )+
“S
“s

(Ug
2 , sg

3 , 0) ṡ3=−
“S
“e

(Ug
2 , sg

3 , 0) ė (6.32)

e − (ṡ4 − dDUl1(Ug
3 , 0) r2(Ug

3 ))=a1(Ug
3 )
“k1

“e
(Ug

3 , sg
4 , 0) ė (6.33)

f − d=a2(Ug
3 )
“k1

“e
(Ug

3 , sg
4 , 0) ė (6.34)

− h(l2(Ug
5 ) − sg

5 ) a1(Ug
4 ) r2(Ug

5 )+ṡ5a1(Ug
4 )(Ug

5 − Ug
4 )

=a1(Ug
4 ) 1
“F
“e

(Ug
5 , 0) −

“F
“e

(Ug
4 , 0)2 ė (6.35)

− h(l2(Ug
5 ) − sg

5 ) a2(Ug
4 ) r2(Ug

5 )+(l2(Ug
4 ) − sg

5 ) f+ṡ5a2(Ug
4 )(Ug

5 − Ug
4 )

=a2(Ug
4 ) 1
“F
“e

(Ug
5 , 0) −

“F
“e

(Ug
4 , 0)2 ė (6.36)

e+fDUl1(Ug
4 , 0) r2(Ug

4 ) − ṡ5=−
“l1

“e
(Ug

4 , 0) ė (6.37)

g+hDUl1(Ug
5 , 0) r2(Ug

5 ) − ṡ5=−
“l1

“e
(Ug

5 , 0) ė (6.38)

In deriving Eq. (6.32) we used the fact that DUS(Ug
2 , sg

3 , 0) r2(Ug
2 )=0

by Eq. (5.49), and in deriving Eqs. (6.33)–(6.34) we used Lemma 2.2 of [8].
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In Eqs. (6.33)–(6.34) we note that by Lemma 6.2, which we put off to the
end of this section,

a1(Ug
3 )
“k1

“e
(Ug

3 , sg
4 , 0)= −

“l1

“e
(Ug

3 , 0) (6.39)

a2(Ug
3 )
“k1

“e
(Ug

3 , sg
4 , 0)=0 (6.40)

We denote the common value of the left and right sides of Eq. (6.39) by X.
Simplifying the notation, Eqs. (6.28)–(6.38) become

Aa+Bṡ3=Uė (6.41)

− Ed+Ca+Dṡ3=Vė (6.42)

Fa+b − ṡ3=Wė (6.43)

c+Gd − ṡ3=Xė (6.44)

Ha+Iṡ3=Yė (6.45)

e − ṡ4+Gd=Xė (6.46)

f − d=0 (6.47)

− Nh+Oṡ5=Rė (6.48)

− Lh+Ef+Kṡ5=Sė (6.49)

e+Gf − ṡ5=Xė (6.50)

g+Mh − ṡ5=Tė (6.51)

where the capital letters have the obvious meanings. By assumption (1),
this system can be solved for (a, b, ṡ3, c, d, ṡ4, e, f, ṡ5, g, h) in terms of ė. In
fact, the determinant of the left-hand side is E(IA − BH)(KN − LO). E is
clearly nonzero, IA − BH is nonzero by nondegeneracy condition (T4) for
SA · RS shock waves, and KN − LO is nonzero by the nondegeneracy con-
ditions for RS · RS shock waves. (Equations (6.48)–(6.51) for RS · RS shock
waves are not in our usual form since we have multiplied by ai(Ug

4 ) instead
of by ai(Ug

5 ), but the principle that the nondegeneracy conditions imply
that the system is regular still holds.) Let

E=(IA − BH)(NR − LS+NV)

+U(HDN+HKN− HLO − ICN)+Y(ALO+BNC− AKN − ADN)
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Then using Eq. (6.15) we find that

H̃Œ(0) ė=ṡ4 − (c+Gd)+Xė=
E

(IA − BH)(KN − LO)
ė (6.52)

To verify (E4) we must show that the perturbation F(U, e) of F(U, 0)
can be chosen so that E ] 0. We can choose F(U, e) such that (1) F(U, e)=
F(U, 0) except on a small neighborhood U5 of Ug

5 , and (2)
“F
“e (Ug

5 , 0) and
Ug
5 − Ug

4 are linearly independent. Then NR − LS ] 0, and if U5 is suffi-
ciently small, U=V=Y=0. Therefore

E=(IA − BH)(NR − LS) ] 0.

If E ] 0, then for e near 0, a Riemann solution of type (T1, R2, SA · RS,
R1, RS · RS, R1, T7,..., Tn) exists if and only if e has the same sign as

E
(IA−BH)(KN−LO) .

Step 2. Next we consider the point (Ug
0 , sg

1 , Ug
1 , sg

2 , Ug
2 , sg

5 , Ug
5 , sg

6 ,...,
sg
n , Ug

n , 0) in R3n−2. We shall investigate the existence of nearby points
(U0, s1, U1, s2, U2, s, U, s6,..., sn, Un, e) that represent Riemann solutions of
type (T1, R2, SA · RS, R1, T7,..., Tn) for the flux function F(U, e).
Consider the four-parameter family of differential equations

U̇=F(U, e) − F(U2, e) − s(U − U2) (6.54)

There is a function c(U2, s, e), defined near (U2, s, 0)=(Ug
2 , sg

3 , 0), such
that (6.54) undergoes a saddle-node bifurcation near Ug

3 when the surface
c=0 is crossed. For c > 0 (resp. =0, < 0) there are no (resp. 1, 2) equi-
libria of (6.54) near Ug

3 . By Lemma 6.3, which we put off to the end of this
section, we may take

Dc(Ug
2 , sg

3 , 0)(U̇2, ṡ, ė)

= − a1(Ug
3 )(DF(Ug

2 ) − sg
3I) U̇2

− ṡa1(Ug
3 )(Ug

3 − Ug
2 )+a1(Ug

3 ) 1
“F
“e

(Ug
3 , 0) −

“F
“e

(Ug
2 , 0)2 ė (6.55)

Next we construct a separation function S̃(U2, s, e), (U2, s, e) near
(Ug

2 , sg
5 , 0), that can be used to study connections of

U̇=F(U, e) − F(U2, e) − s(U − U2) (6.56)
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from U2 to equilibria near Ug
5 . The construction is similar to that in Sec-

tion 5, except that we use the center manifold at U2. We find that

“S̃
“s

(Ug
2 , sg

5 )= −F
.

−.
f(t)(Ũ(t) − Ug

2 ) dt (6.57)

DU2 (S)(Ug
2 , sg

5 )= −1F.
−.
f(t) dt2 {DF(Ug

2 ) − sg
5I} (6.58)

In order that (U2, s, U, e) near (Ug
2 , sg

5 , Ug
5 , 0) represent a shock wave

of type SA · RS for the flux function F(U, e), we must have

F(U, e) − F(U2, e) − s(U − U2)=0 (6.59)

l2(U2, e) − s=0 (6.60)

l1(U, e) − s=0 (6.61)

S̃(U2, s, e)=0 (6.62)

c(U2, s, e) \ 0 (6.63)

We shall see that the linearization of Eqs. (6.59)–(6.62) at (Ug
2 , sg

5 , Ug
5 , 0),

restricted to {(U̇2, ṡ, U̇, ė) : ė=0}, is an isomorphism. It follows that (Q71)
holds.
It also follows that we can solve Eqs. (6.59)–(6.63) for (U2, s, U) in

terms of e near (Ug
2 , sg

5 , Ug
5 , 0). Once U2 and U are found, we can then

solve for (s1, U1, s2) in terms of (U0, U2) and (s6, U6,..., Un−1, sn) in terms
of (U, Un). We have a Riemann solution of the desired type if and only if
c(U2, s, e) \ 0. We therefore study H̃(e) :=c(U2, s, e). To verify (E4) we
calculate

DH̃(0) ė=Dc(Ug
2 , sg

3 , 0)(U̇2, ṡ, ė) (6.64)

by linearizing Eqs. (6.59)–(6.63) at (Ug
2 , sg

5 , Ug
5 , 0), solving the linearized

equations for (U̇2, ṡ, U̇) in terms of ė, and substituting the formulas for U̇2
and ṡ into Eq. (6.64).
The linearization of Eqs. (6.59)–(6.62) at (Ug

2 , sg
5 , Ug

5 , 0) is:

(DUF(Ug
5 , 0) − sg

5I) U̇5 − (DUF(Ug
2 , 0) − sg

5I) U̇2 − ṡ(Ug
5 − Ug

2 )

= −1“F
“e

(Ug
5 , 0) −

“F
“e

(Ug
2 , 0)2 ė (6.65)

DUl2(Ug
2 , 0) U̇2 − ṡ=−

“l2

“e
(Ug

2 , 0) ė (6.66)
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DUl1(Ug
5 , 0) U̇ − ṡ=−

“l1

“e
(Ug

5 , 0) ė (6.67)

DUS̃(Ug
2 , 0) U̇2+

“S̃
“s

(Ug
2 , 0) ṡ=−

“S̃
“e

(Ug
2 , 0) ė (6.68)

We make the substitutions (6.24) and

U̇=xr1(Ug
5 )+yr2(Ug

5 ) (6.69)

We multiply Eq. (6.65) by a1(Ug
3 ) and a2(Ug

3 ), which yields

− y(l2(Ug
5 ) − sg

5 ) a1(Ug
3 ) r2(Ug

5 )+a(l1(Ug
2 ) − sg

5 ) a1(Ug
3 ) r1(Ug

2 )

+ṡa1(Ug
3 )(Ug

5 − Ug
2 )

=a1(Ug
3 ) 1
“F
“e

(Ug
5 , 0) −

“F
“e

(Ug
2 , 0)2 ė (6.70)

− y(l2(Ug
5 ) − sg

5 ) a2(Ug
3 ) r2(Ug

5 )+a(l1(Ug
2 ) − sg

5 ) a2(Ug
3 ) r1(Ug

2 )

+ṡa2(Ug
3 )(Ug

5 − Ug
2 )

=a2(Ug
3 ) 1
“F
“e

(Ug
5 , 0) −

“F
“e

(Ug
2 , 0)2 ė (6.71)

Simplifying the notation, the system Eqs. (6.70)–(6.71), (6.66)–(6.68)
becomes

− Ny+Aa+(O+B) ṡ=(R+U) ė (6.72)

− Ly+Ca+(K+D) ṡ=(S+V) ė (6.73)

Fa+b − ṡ=Wė (6.74)

− ṡ+x+My=Pė (6.75)

Ha+Iṡ=Yė (6.76)

From Eqs. (6.55), (6.64), and (6.24), and the definitions of A, B, and U in
Step 1, we have

DH̃(0) ė=−Aa − Bṡ+Uė (6.77)

Let

F=ICN − KHN − NDH − LIA+LHO+BHL
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the determinant of the left-hand side of Eqs. (6.72)–(6.76). Assumption (2)
implies that the left-hand sides of Eqs. (6.65)–(6.68) constitute an invertible
system; in fact, assumption (2) says that the generalized SA · RS shock wave
Ug
k+1 Ł

sgk+4 Ug
k+4 satisfies the appropriate analogue of nondegeneracy

condition (T4). Therefore F ] 0. Thus we can solve Eqs. (6.72)–(6.76) for
(a, b, ṡ, x, y) in terms of ė. We do this and and substitute into Eq. (6.77).
We obtain

DH̃(0) ė=−
E

F
ė (6.79)

If E ] 0, then for e near 0, a Riemann solution of type (T1, R2,
SA · RS, R1, T7,..., Tn) exists if and only if e has the same sign as − E

F.

Step 3. The last conclusion of the theorem follows from comparing
Eqs. (6.52) and (6.79). i

Lemma 6.2. Let k1(U− , s, e) be the 1-rarefaction mapping of U̇=
F(u, e), so that k1 satisfies

“k1

“s
(U− , s, e)=r1(k1(U− , s, e))

k1(U− , l1(U− , e), e)=U−

Then

a1(U−)
“k1

“e
(U− , l1(U− , 0), 0)=−

“l1

“e
(U− , 0)

and

a2(U−)
“k1

“e
(U− , l1(U− , 0), 0)=0

Proof. Let q(U− , t, e) be the flow of U̇=r1(U, e), so that

“q

“t
(U− , t, e)=r1(q(U− , t, e), e)

q(U− , 0, e)=U−
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Then

k1(U− , s, e)=q(U− , s −l1(U− , e), e)

Therefore

“k1

“e
(U− , l1(U− , e), e)=−

“q

“t
(U− , 0, e)

“l1

“e
(U− , e)+

“q

“e
(U− , 0, e)

=−r1(U− , e)
“l1

“e
(U− , e)

The result follows. i

Lemma 6.3. Formula (6.55) for Dc(Ug
2 , sg

3 , 0) holds.

Proof. According to center manifold reduction, the differential
equation (6.54), restricted to its center manifold at (U, U2, s, e)=(Ug

3 ,
Ug
2 , sg

3 , 0), is

u̇=au2+W(U2 − Ug
2 )+b(s − sg

3 )+ce+ · · · (6.84)

where

a=
1
2
a1(Ug

2 ) D2F(Ug
2 , 0)(r1(Ug

2 ), r1(Ug
2 ))=

1
2

W= − a1(Ug
3 ) DUF(Ug

2 ) − sg
3I

b= − a1(Ug
3 )(Ug

3 − Ug
2 )

c= − a1(Ug
3 ) 1
“F
“e

(Ug
3 , 0) −

“F
“e

(Ug
2 , 0)2

The result follows. i

7. EXAMPLES

7.1. A Class of Examples

Consider the system of conservation laws

ut=f(u)x (7.1)

vt=g(u, v)x (7.2)
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with f(u) to be specified and

g(u, v)=6v(2u+v) (7.3)

Let F(u, v)=(f(u), g(u, v)), so that

DF(u, v)=RfŒ(u) 0
12v 12(u+v)

S (7.4)

Strict hyperbolicity fails if fŒ(u)=12(u+v), or

v= 1
12 fŒ(u) − u (7.5)

Off the curve (7.5), eigenvalues and eigenvectors of (7.4) are

m1(u, v)=fŒ(u), r̃1(u, v)=(fŒ(u) − 12(u+v), 12v)

and

m2(u, v)=12(u+v), r̃2(u, v)=(0, 1)

Notice that

Dm1(u, v) r̃1(u, v)=fœ(u)(fŒ(u) − 12(u+v))

Dm2(u, v) r̃2(u, v)=12

Thus genuine nonlinearity for m1(u, v) fails along the curve (7.5) and the
lines u=a, where fœ(a)=0.

7.2. A Structurally Stable Riemann Solution with a Doubly Sonic
Transitional Wave

Consider the system of conservation laws (7.1)–(7.2) with

f(u)=(u+1)2 (u − 1)2 (7.8)

and g(u, v) given by Eq. (7.3). Then fœ(u)=0 if and only if u= ± 1
`3
. The

curves (7.5) and u= ± 1
`3
are shown in Fig. 4.

Let

U−=3(u, v) : u < −
1

`3
, v <

1
3

u(u2− 4)4

U+=3(u, v) : u >
1

`3
, v >

1
3

u(u2− 4)4
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Fig. 4. Regions U− and U+ and left and right states for a structurally stable Riemann solu-
tion containing a shock of type SA · RS.

See Fig. 4. Strict hyperbolicity and genuine nonlinearity hold in U− and U+.
In U− ,

12(u+v)=l1(u, v) < l2(u, v)=4u(u2− 1)

r1(u, v)=10,
1
12
2 , r2(u, v)=

(u3− 4u − 3v, 3v)
4(3u2− 1)(u3− 4u − 3v)

In U+,

4u(u2− 1)=l1(u, v) < l2(u, v)=12(u+v)

r1(u, v)=
(u3− 4u − 3v, 3v)

4(3u2− 1)(u3− 4u − 3v)
, r2(u, v)=10,

1
12
2

Thus in U− , 1-rarefactions are vertical lines, with l1 increasing in the
upward direction; 2-rarefactions are horizontal curves (but note that the
u-axis is a 2-rarefaction), with l2 increasing to the right. In U+, 1-rarefac-
tions are horizontal curves (but note that the u-axis is a 1-rarefaction), with
l1 increasing to the right; 2-rarefactions are vertical lines, with l2 increasing
in the upward direction. In U− , 1-shock curves are vertical lines. There is a
1-shock from (u− , v−) to (u− , v+) if v− > v+; the speed is s=6(2u−+v−+v+).
InU+ the same holds for 2-shock curves.
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Let us consider shocks with left state (−1, 0) and speed 0. Since
F(−1, 0)=(0, 0), the differential equation for connecting orbits is

u̇=(u+1)2 (u − 1)2

v̇=6v(2u+v)

The phase portrait near the u-axis is shown in Fig. 1, with the equilibria at
(−1, 0) and (1, 0). There is thus an SA · RS shock wave from (−1, 0) to (1, 0)
with speed 0. The nondegeneracy conditions are satisfied. To check (T4)
let U*(t)=(u(t), 0) be the connection from (−1, 0) to (1, 0). A bounded
solution to the adjoint equation is

f(t)=exp 1 −F
t

0
div F(u(s), 0) ds2 (0, u̇(t))T=(0, a(t))T, a(t) > 0

(7.9)

Therefore

F
.

−.
f(t) dt=(0, a)T, a > 0 (7.10)

Now r1(−1, 0)=(0, 112), r2(−1, 0)=(18 , 0), r1(1, 0)=(18 , 0), r2(1, 0)=(0, 112).
Therefore

a1(1, 0) r1(−1, 0)=(8, 0)T 10,
1
12
2=0

a1(1, 0)((1, 0) − (−1, 0))=(8, 0)T (2, 0)=16

1F.
−.
f(t) dt2 r1(−1, 0)=(0, a)T 10,

1
12
2= a

12

F
.

−.
f(t)(U(t) − U−) dt=F

.

−.
(0, a(t))T (u̇(t)+1, 0) dt=0

Thus (T4) is satisfied.
Consider the Riemann problem with

UL=(uL, vL), − 2 < uL < − 1, 0 < vL < 1
3 uL(u2L − 4) (7.11)

UR=(uR, vR), 1 < uR < 2, 0 < vR (7.12)

One can construct a Riemann solution consisting of a 1-shock from
(uL, vL) to (uL, 0), a 2-rarefaction from (uL, 0) to (−1, 0), an SA · RS shock
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wave from (−1, 0) to (1, 0), a 1-rarefaction from (1, 0) to (uR, 0), and a
2-rarefaction from (uR, 0) to (uR, vR). Figure 5 shows a solution to this
Riemann problem computed numerically by the upwind method. Its struc-
ture agrees exactly with that predicted by the theory.

7.3. A Codimension-One Riemann Solution Illustrating Theorem 4.1

We consider the Riemann problem for Eqs. (7.1)–(7.2), (7.8), and
(7.3), with

UL=(−1, vL), 0 < vL < 1 (7.13)

and UR given by (7.12). The Riemann solution consists of a 1-shock from
(−1, vL) to (−1, 0), an SA · RS shock wave from (−1, 0) to (1, 0), and two
rarefactions as above. This is a ‘‘missing rarefaction’’ solution; the line of
UL that satisfy (7.13) is a UL-boundary. The previous subsection illustrates
Riemann solutions with UL to the left of this line. Theorem 4.1 predicts
that for UL to the right of this line and the same UR, there should be a
Riemann solution consisting of a 1-shock from UL to a state near (−1, 0),
an S · RS shock wave from this state to one near (1, 0), and two rarefac-
tions. In fact, let UL be a point in U− with − 1 < uL and 0 < vL. There is a
1-shock from (uL, vL), to (uL, 0) with speed s=6(2u−+v−+v+). Now a
shock with left state (uL, 0) and speed s has a connection that satisfies the
differential equation

u̇=(u+1)2 (u − 1)2− (uL+1)2 (uL − 1)2− s(u − uL) (7.14)

v̇=6v(2u+v) − sv (7.15)

There is a connection along the u-axis from (uL, 0) to a second equilibrium
(u+, 0) provided u+ is an equilibrium of (7.14) and there is a solution of
(7.14) that goes from uL to u+. To understand the phase portrait of (7.14),
we graph the quartic function (u+1)2 (u − 1)2 and the linear function
(uL+1)2 (uL − 1)2+s(u − uL) on the same axes. For appropriate s the graph
is shown in Fig. 6; the line is tangent to the curve at u=u+ near u=1. This
implies that there is an S · RS shock wave from (uL, 0) to (u+, 0) with speed s.
The Riemann solution concludes with two rarefactions.

7.4. A Codimension-One Riemann Solution Illustrating Theorem 5.1

Consider the system of conservation laws (7.1)–(7.2) with

f(u)=(u+3)(u+1)2 (u − 1)2 (7.16)
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Fig. 5. Riemann solution computed by the upwind method. The system of conservation laws
is Eqs. (7.1)–(7.3), (7.8); the Riemann data are UL=(−1.5, 0.75), UR=(1.5, 1.0). The first
graph shows the solution on − 4 [ x [ 4 at t=4/35. A shift x Q x − 35t has been used in the
course of the computation to permit use of the upwind method. The solid curve is u(x), the
dashed curve is v(x). The SA · RS shock wave is the abrupt change in u near x=0. The
smooth changes in u that precede and follow it are 1- and 2-rarefactions respectively. The
abrupt change in v at the left is a 1-shock; the smooth change in v at the right is a 2-shock.
The second graph shows the eigenvalues of DF(U(x)) for this solution. The eigenvalue
4u(u2− 1) is the solid curve, and the eigenvalue 12(u+v) is the dashed curve. Along the rare-
factions, the corresponding eigenvalues change linearly.
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Fig. 6. Graphs of the quartic function (u+1)2 (u − 1)2 and the linear function
(uL+1)2 (uL − 1)2+s(u − uL), with uL=−0.6 and s=−0.2587.

and g(u, v) given by Eq. (7.3). Then fœ(u)=0 if and only if u=ai, i=1–3,
where a1 4 − 1.95, a2 4 − 0.485, a3 4 0.635. The curve (7.5) and the lines
u=ai are shown in Fig. 7.
Let

U1={(u, v) : u < a1, v < 1
12 fŒ(u) − u}

U2={(u, v) : a1 < u < a2, v < 1
12 fŒ(u) − u}

U3={(u, v) : a3 < u, 112 fŒ(u) − u < v}

Strict hyperbolicity and genuine nonlinearity hold in each Ui. In U1 and U2,

12(u+v)=l1(u, v) < l2(u, v)=fŒ(u)

r1(u, v)=10,
1
12
2 , r2(u, v)=

(fŒ(u) − 12(u+v), 12v)
fœ(u)(fŒ(u) − 12(u+v))
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Fig. 7. Graph of v= 1
12 fŒ(u) − u, with f(u)=(u+3)(u+1)2 (u − 1)2, and the lines u=ai,

i=1–3.

In U3,

fŒ(u)=l1(u, v) < l2(u, v)=12(u+v)

r1(u, v)=
(fŒ(u) − 12(u+v), 12v)
fœ(u)(fŒ(u) − 12(u+v))

, r2(u, v)=10,
1
12
2

The vector (fŒ(u)−12(u+v), 12v)fœ(u)(fŒ(u)−12(u+v)) points to the right if fœ(u) is positive, which
occurs in U2 and U3, and to the left if fœ(u) is negative, which occurs in U1.
Let us consider shocks with left state (−3, 0) or (−1, 0) and speed 0.

Since F(−3, 0)=F(−1, 0)=(0, 0), the differential equation for connecting
orbits is

u̇=f(u)

v̇=g(u, v)

340 Schecter



Fig. 8. Phase portrait of u̇=(u+3)(u+1)2 (u − 1)2, v̇=12(u+v).

The phase portrait near the u-axis is shown in Fig. 8. There is thus an
S · SA shock wave from (−3, 0) to (−1, 0) and an SA · RS shock wave from
(−1, 0) to (1, 0), both with speed 0.
Let b be the largest solution of 112 fŒ(u) − u=0, b 4 1.295. We consider

the Riemann problem with

UL=(−3, vL), vL < 0 (7.17)

UR=(uR, vR), 1 < uR < b, 0 < vR (7.18)

both in the strictly hyperbolic region. There is a Riemann solution consist-
ing of a 1-rarefaction from (−3, vL) to (−3, 0), an S · SA shock wave from
(−3, 0) to (−1, 0), an SA · RS shock wave from (−1, 0) to (1, 0), and two
rarefactions. This is a ‘‘missing rarefaction’’ solution; the line of UL that
satisfy (7.17) is a UL-boundary.
One can check that the SA · RS shock wave satisfies nondegeneracy

condition (T4) as in Section 7.2. To check that assumption (3) of
Theorem 5.1 is satisfied, let Ũ(t)=(u(t), 0) be the connection from
(−1, 0) to (1, 0). A bounded solution to the adjoint equation is given by
(7.9), so that (7.10) holds. Now the 1-wave curve at (−3, 0) has tangent
vector r1(−3, 0)=(0, 112). Thus

R a1(1, 0)

F
.

−.
f(t) dt
S (DF(−3, 0) − 0I) r1(−3, 0)

=R32 0
0 a
S RfŒ(−3) 0

0 − 36
S R 01

12

S=R 0
− 3a
S
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and

R a1(1, 0)((1, 0) − (−3, 0))

F
.

−.
f(t)(U(t) − (−3, 0) dt

S=R (32, 0)T (4, 0)

F
.

−.
(0, a(t))T (u̇(t)+3, 0) dt

S=R128
0
S

are linearly independent.
To check that assumption (4) of Theorem 5.1 is satisfied, we recall that

D is defined by Eq. (5.72), where the meanings of the letters are deduced
from Eqs. (5.31), (5.38), (5.63), (5.66), (5.67), and (5.70). It is easy to see
that M=B=D=0, so D=AJN. It is also easy to see that A, J, and N
are nonzero. Therefore D is nonzero.
The expression (5.4), which we shall not compute, is positive.

However, one can see that the join is regular as follows. A shock with left
state (uL, 0) and speed s has a connection that satisfies the differential
equation

u̇=f(u) − f(uL) − s(u − uL) (7.21)

v̇=6v(2u+v) − sv (7.22)

For uL a little less than − 3 and appropriate s, the graphs of f(u) and
f(uL)+s(u − uL) are tangent at a point near (1, 0) with no intermediate
crossings; see Fig. 9. For − 3 a little less than uL and appropriate s, the
graphs of f(u) and f(uL)+s(u − uL) are tangent at a point near and to the
left of (−1, 0) with no intermediate crossings; see Fig. 9. Thus for UL=
(uL, vL) with uL a little less than − 3 and vL < 0, and UR given by (7.18),
there is a Riemann solution consisting of a 1-rarefaction from (uL, vL) to
(uL, 0), an S · RS shock wave from (uL, 0) to a point on the u-axis to the
right of (1, 0), a 1-rarefaction from there to (uR, 0), and a 2-rarefaction
from there to (uR, vR). For UL=(uL, vL) with uL a little bigger than − 3,
and UR given by (7.18), there is a Riemann solution consisting of a 1-rarefac-
tion from (uL, vL) to (uL, 0), an S · SA shock wave from (uL, 0) to a point on
the u-axis to the left of (−1, 0), a 2-rarefaction from there to (−1, 0), an
SA · RS shock wave from (−1, 0) to (1, 0), and twomore rarefactions.

7.5. A Codimension-One Riemann Solution Illustrating Theorem 6.1

Consider the system of conservation laws (7.1)–(7.2) with

f(u)=(u+1)2 (u − 1)2 (u − 3)2 (7.23)
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Fig. 9. Graphs of the quintic function (u+3)(u+1)2 (u − 1)2 and the linear function
(uL+1)2 (uL − 1)2+s(u − uL), with (1) uL=−3.2 and s=4.0130, and (2) uL=−2.8 and
s=−5.6986.

and g(u, v) given by Eq. (7.3). Then fœ(u)=0 if and only if u=ai, i=1–4,
where a1 4 − 0.680, a2 4 0.385, a3 4 1.61, a4 4 2.680. The curve (7.5) and
the lines u=ai are shown in Fig. 10.
Let

U1={(u, v) : u < a1, v < 1
12 fŒ(u) − u}

U2={(u, v) : a2 < u < a3,
1
12 fŒ(u) − u < v}

U3={(u, v) : a4 < u, 112 fŒ(u) − u < v}

Strict hyperbolicity and genuine nonlinearity hold in each Ui. In U1,

12(u+v)=l1(u, v) < l2(u, v)=fŒ(u)

r1(u, v)=10,
1
12
2 , r2(u, v)=

(fŒ(u) − 12(u+v), 12v)
fœ(u)(fŒ(u) − 12(u+v))
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In U2 and U3,

fŒ(u)=l1(u, v) < l2(u, v)=12(u+v)

r1(u, v)=
(fŒ(u) − 12(u+v), 12v)
fœ(u)(fŒ(u) − 12(u+v))

, r2(u, v)=10,
1
12
2

The vector (fŒ(u)−12(u+v), 12v)fœ(u)(fŒ(u)−12(u+v)) points to the right if fœ(u) is positive, which
occurs in all three Ui.
Let us consider shocks with left state (−1, 0) or (1, 0) and speed 0.

Since F(−1, 0)=F(1, 0)=(0, 0), the differential equation for connecting
orbits is

u̇=f(u)

v̇=g(u, v)

The phase portrait near the u-axis is shown in Fig. 11. There is thus an
SA · RS shock wave from (−1, 0) to (1, 0) and an RS · RS shock wave from
(1, 0) to (3, 0), both with speed 0.

Fig. 10. Graph of v= 1
12 fŒ(u) − u, with f(u)=(u+1)2 (u − 1)2 (u − 3)2, and the lines u=ai,

i=1–4.
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Fig. 11. Phase portrait of u̇=(u+1)2 (u − 1)2 (u − 3)2, v̇=12(u+v).

Let b1 and b3 be the smallest and largest solutions of
1
12 fŒ(u) − u=0,

b1 4 − 1.085, b3 4 3.198. We consider the Riemann problem with

UL=(uL, vL), b1 < uL < − 1, vL < 0 (7.24)

UR=(uR, vR), 3 < uR < b3, 0 < vR (7.25)

both in the strictly hyperbolic region. There is a Riemann solution consist-
ing of a 1-rarefaction from (uL, vL) to (uL, 0), a 2-rarefaction from there to
(−1, 0), an SA · RS shock wave from (−1, 0) to (1, 0), an RS · RS shock
wave from (1, 0) to (3, 0), and two more rarefactions. This is a ‘‘missing
rarefaction’’ solution. From its description we see that it is stable to per-
turbation of UL and UR. To create a structurally stable Riemann solution,
we must change F.
As in Section 7.2 we can check that the SA·RS shock wave satisfies non-

degeneracy condition (T4). The check that assumption (2) of Theorem 6.1
holds is a computation similar to one in the previous section.
The expression (6.4), which we shall not compute, is positive. Thus we

have an F-boundary that is a regular join. Let us give a concrete perturba-
tion of the flux function that exhibits this fact. Consider the family of
conservation laws

ut=f(u, e)x

vt=g(u, v)x

with

f(u.e)=(u+1)2 (u − 1)2 (u − 3)2+e(u − 1)2

and g(u, v) given by Eq. (7.3). Graphs of f(u, −1), f(u, 0) (previously
called f), and f(u, 1) are shown in Fig. 12.
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a

b

Fig. 12. Graphs of (a) (u+1)2 (u − 1)2 (u − 3)2− (u − 1)2 and a linear function (b)
(u+1)2 (u − 1)2 (u − 3)2, and (c) (u+1)2 (u − 1)2 (u − 3)2+(u − 1)2 and a linear function.
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c

Fig. 12. (Continued ).

For small e < 0 and Riemann data as before, the Riemann solution is
of type (R1, R2, SA · RS, R1, R2). To see this for e=−1, consider Fig. 12a.
As shown in the figure, for uL 4 − 1.030 and s=0, the graphs of f(u, −1)
and f(uL, −1)+s(u − uL) are tangent at u=uL and again at u 4 3.030, and
the graph of f(u, −1) lies above the graph of the line. The existence of the
desired Riemann solution follows easily.
On the other hand, for small e > 0 and Riemann data as before, the

Riemann solution is of type (R1, R2, SA · RS, R2, RS · RS, R1, R2). To see
this for e=1, consider Fig. 12c. As shown in the figure, for uL 4 − 0.984
and s 4 − 2.022, the graphs of f(u, 1) and f(uL, 1)+s(u − uL) are tangent
at u=uL and again at u 4 .940, and the graph of f(u, 1), lies above the
graph of the line. The symmetric line about u=1 has the symmetric prop-
erty: for uL 4 1.060 and s 4 2.022, the graphs of f(u, 1) and f(uL, 1)+
s(u − uL) are tangent at u=uL and again at u 4 2.984, and the graph of
f(u, 1), lies above the graph of the line. Again the existence of the desired
Riemann solution follows easily.
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1. Čanić, S., and Plohr, B. J. (1995). Shock wave admissibility for quadratic conservation
laws. J. Differential Equations 118, 293–335.
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