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Classification of Codimension-One Riemann Solutions
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We investigate solutions of Riemann problems for systems of two conservation
laws in one spatial dimension. Our approach is to organize Riemann solutions
into strata of successively higher codimension. The codimension-zero stratum
consists of Riemann solutions that are structurally stable: the number and types
of waves in a solution are preserved under small perturbations of the flux func-
tion and initial data. Codimension-one Riemann solutions, which constitute
most of the boundary of the codimension-zero stratum, violate structural stability
in a minimal way. At the codimension-one stratum, either the qualitative struc-
ture of Riemann solutions changes or solutions fail to be parameterized
smoothly by the flux function and the initial data. In this paper, we give an
overview of the phenomena associated with codimension-one Riemann solu-
tions. We list the different kinds of codimension-one solutions, and we classify
them according to their geometric properties, their roles in solving Riemann
problems, and their relationships to wave curves.

KEY WORDS: Conservation law; Riemann problem; viscous profile.
1991 Mathematics Subject Classifications: 35L65, 35L67, 34D30.

1. INTRODUCTION

1.1. Riemann Solutions

We consider systems of two conservation laws in one space dimension,
partial differential equations of the form

Ut+F(U )x=0 (1.1)
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with t>0, x # R, U(x, t) # R2, and F : R2 � R2 a smooth map. The most
basic initial-value problem for Eq. (1.1) is the Riemann problem, in which
the initial data are piecewise constant with a single jump at x=0:

U(x, 0)={UL

UR

for x<0
for x>0

(1.2)

This paper is the second in a series in which we study the structure of solu-
tions of Riemann problems.

We seek piecewise continuous weak solutions of Riemann problems in
the scale-invariant form U(x, t)=U� (x�t) consisting of a finite number of
constant parts, continuously changing parts (rarefaction waves), and jump
discontinuities (shock waves). Shock waves occur when

lim
! � s&

U� (!)=U&{U+= lim
! � s+

U� (!) (1.3)

They are required to satisfy the following viscous profile admissibility
criterion: a shock wave is admissible provided that the ordinary differential
equation

U4 =F(U )&F(U&)&s(U&U&) (1.4)

has a heteroclinic solution, or a finite sequence of such solutions, leading
from the equilibrium U& to a second equilibrium U+ .

By the term Riemann solution for Eqs. (1.1) and (1.2) we mean a weak
solution U of this kind [or, equivalently, the scale-invariant function U� , or
the sequence of waves in U, or the quadruple (U� , UL , UR , F )]. There are
various types of rarefaction and shock waves (e.g., 1-family rarefaction
waves and transitional shock waves); the type of a Riemann solution is the
sequence of types of its waves.

Riemann solutions have been studied by many authors. For systems
that are strictly hyperbolic and genuinely nonlinear, local solutions were
found by Lax [10], and global solutions were obtained, for a certain class
of systems, by Smoller [20]. This work was extended to allow for loss of
genuine nonlinearity by Wendroff [23] for gas dynamics and by Liu [11]
for a broad class of systems. Many examples of systems that fail to be
strictly hyperbolic have been analyzed over the last two decades; see, e.g.,
Refs. 5, 6, 15, and 18. A common feature of this analysis is the construction of
wave curves, one-parameter families of Riemann solutions. Special assump-
tions about the system of conservation laws lead to wave curves with simple
geometry and permit the formulation of simple, but effective, admissibi-
lity criteria for shock waves. For general systems, however, the wave curve
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geometry can be exceedingly complicated and a more fundamental admissi-
bility criterion, such as the viscous profile admissibility criterion, is needed.

Our approach to understanding Riemann solutions is to investigate
the local structure of the set of Riemann solutions: we consider a particular
solution (U� *, UL*, U R*, F*) and construct nearby ones. More precisely, we
define an open neighborhood X of U� * in a Banach space of scale-invariant
functions U� , open neighborhoods UL and UR of UL* and UR* in R2, respec-
tively, and an open neighborhood B of F* in a Banach space of smooth
flux functions F. Then our goal is to construct a set R of Riemann solu-
tions (U� , UL , UR , F ) # X_UL_UR_B near (U� *, UL* , U R*, F*). To guide
this construction, we view R as organized into strata of successively higher
codimension.

The largest stratum of R, which has codimension zero within R, consists
of structurally stable Riemann solutions. For such solutions, U� changes
continuously, and its type remains unchanged, when (UL , UR , F ) varies in
certain open subsets of UL_UR_B. Moreover, the left and right states and
speeds of each wave in U� depend smoothly on (UL , UR , F ). In contrast, at
a stratum of higher codimension, either Riemann solutions are degenerate
in some way or the parameterization of waves by UL , UR , and F loses
smoothness. For example, solutions can change type upon crossing the
stratum, or the parameterization can have a fold.

Structurally stable Riemann solutions were studied in the first paper
[17] in the present series. In this second paper, we begin the study of
codimension-one Riemann solutions, for which structural stability fails in a
minimal fashion.

1.2. Structurally Stable Riemann Solutions

A quadruple (U� *, UL*, UR*, F*) represents a structurally stable Riemann
solution if for each (UL , UR , F ) near (UL*, UR*, F*), there is a Riemann
solution U� near U� * such that (1) U� has the same type as U� * and (2) the
left and right states and speeds of each wave in U� depend smoothly
on (UL , UR , F ). In particular, we obtain a set R of Riemann solutions,
represented as a graph of a function from an open subset of UL_UR_B

to X.
In Ref. 17, we identified a set of sufficient conditions for structural

stability of strictly hyperbolic Riemann solutions. Briefly, these conditions
have the following character.

(H0) There is a restriction on the sequence of wave types in the
solution.

(H1) Each wave satisfies certain nondegeneracy conditions.
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(H2) The ``wave group interaction condition'' is satisfied. In the
simplest case, the forward wave curve and the backward wave
curve are transverse.

(H3) If a shock wave represented by a connection to a saddle is
followed by another represented by a connection from a saddle,
the shock speeds differ.

The methods by which these conditions were derived strongly suggest that
they are also necessary for structural stability.

1.3. Codimension-One Riemann Solutions

In this paper, we begin an investigation of strictly hyperbolic Riemann
solutions that lie in the boundary of the set of structurally stable Riemann
solutions in that they violate precisely one of the structural stability
conditions (H0)�(H3). Under appropriate nondegeneracy conditions, these
Riemann solutions constitute a graph over a codimension-one submanifold
of UL_UR_B.

A point (U� *, UL*, U R*, F*) represents a codimension-one Riemann
solution if there exists a codimension-one submanifold S of UL_UR_B

with the following properties. For each point (UL , UR , F ) # S near
(UL*, UR*, F*), there is a structurally unstable Riemann solution U� near
U� * such that (1) U� has the same type as U� * and (2) the endpoints and
speeds of each wave in U� depend smoothly on (UL , UR , F ). Further-
more, (3) S bounds a region in UL_UR_B that corresponds to structurally
stable solutions. In particular, we obtain a set R of Riemann solutions as
a graph of a function from a manifold-with-boundary in UL_UR_B to X.
Finally, (4) S is situated with a certain regularity in UL_UR_B: either S

is in general position relative to planes of constant (UL , F ) and planes of
constant (UR , F ), so that (UL , F ) and (UR , F ) both serve as good coor-
dinates for S, or S is a cylinder over a hypersurface in (UL , F )-, (UR , F )-,
or F-space.

In most cases, a codimension-one submanifold S can be regarded as
bounding structurally stable Riemann solutions not only on one side but
also on the other side. Usually the number and types of waves in a struc-
turally stable Riemann solution change at a codimension-one boundary; as
a result, there is a change in the number and form of equations that define
solutions. To accommodate such changes, we use several technical devices;
for instance, we allow shock and rarefaction waves to have zero-strength,
and we sometimes represent a Riemann solution in different, but equivalent,
ways.
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Fig. 1. Riemann solution joins.

1.4. Classification of Codimension-One Riemann Solutions

Codimension-one Riemann solutions can be classified in several ways.

A. They can be classified with respect to the structure of R. The
following possibilities arise.

1. Joins: R is formed from two manifolds-with-boundary joined along
their common boundary. As the boundary is crossed, a struc-
turally stable Riemann solution becomes degenerate and then turns
into a structurally stable solution of a different type. See Figs. 1a
and b for schematic illustrations.

2. Folds: R is a manifold homeomorphic to R4_B, and there is no
change in type of the Riemann solution upon crossing the co-
dimension-one submanifold, but there is a fold in the projection to
UL_UR_B. Thus R fails to be a graph over (UL , UR , F )-space,
as illustrated in Fig. 2a.

Fig. 2. Riemann solution folds and frontiers.
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3. Frontiers: R is a manifold-with-boundary homeomorphic to
R3_R+_B. Riemann solutions exist only on one side of the
codimension-one submanifold; see Fig. 2b.

The reader will notice that, in each case, the Riemann solution set R

arising naturally in our construction is either a manifold or a manifold-
with-boundary. This is in contrast to the situation when one uses the Lax
admissibility criterion for shock waves [10], where branching can occur [2].
We emphasize, however, that it is possible for two such sets, R1 and R2 ,
to intersect within X_UL_UR_B; this happens when the solution U� *
contains a shock wave that has two distinct viscous profiles.

B. The codimension-one Riemann solutions can also be classified
with respect to how S is situated in UL_UR_B. In our experience, either
S has regular projections onto coordinate planes or S is a cylinder; when
the projection of S onto a coordinate plane has a fold, for example, we
believe that U� * should be regarded as having higher codimension. For this
reason, our definition of codimension-one Riemann solution requires S to
be one of the following types of boundaries.

1. Intermediate boundary: The submanifold S is transverse to both of
the two-dimensional planes [(UL , UR , F ) : (UL , F )=(U L*, F*)]
and [(UL , UR , F ) : (UR , F )=(UR*, F*)]. Thus for each (UL , F )
near (UL*, F*), S meets the corresponding copy of the UR -plane
in a curve; and for each (UR , F ) near (UR* , F*), S meets the
corresponding copy of the UL-plane in a curve. In other words,
if UL and F are fixed, codimension-one Riemann solutions
correspond to a curve in the UR-plane; and if UR and F are fixed,
they correspond to a curve in the UL-plane.

2. UL-boundary: There is a codimension-one submanifold S� in (UL , F )-
space, transverse to the two-dimensional plane [(UL , F ): F=F*],
such that (UL , UR , F ) # S if and only if (UL , F ) # S� . Thus for
each F near F* there is a curve C(F ) in the UL-plane such that
(UL , UR , F ) # S if and only if UL # C(F ). That is, for a specific
system of conservation laws, codimension-one Riemann solutions
occur when UL lies on a fixed curve. Another type of boundary is
obtained through duality by reversing the roles of UL and UR in
this definition.

3. F-boundary: There is a codimension-one submanifold S� in B such
that (UL , UR , F ) # S if and only if F # S� .

Remark. What we call an ``intermediate boundary'' is called a ``UR -
boundary'' in Ref. 15. We use a different terminology to avoid confusion
between intermediate boundaries and duals of UL -boundaries.
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These boundaries are useful in describing the solutions of Riemann
problems [2, 4, 5, 14, 19]. In solving Riemann problems for a flux function
that is not on an F-boundary, the first step is to locate the UL -boundaries,
which divide the UL -plane into several open regions. In the second step, for
a representative choice of UL in each region, the intermediate boundaries
are located; these curves divide the UR-plane into open regions. Finally,
Riemann problems are solved for a representative choice of UR in each
UR -region. The qualitative structure of Riemann solutions is the same for
all UL in a UL -region and UR in a UR-region. Examples of UL -boundaries
include the inflection, double sonic, and secondary bifurcation loci (see
Ref. 2 for a comprehensive list in the context of the Lax admissibility
criterion); examples of intermediate boundaries include the rarefaction and
shock curves drawn through UL .

Codimension-one F-boundaries seem to be new. To our knowledge,
they do not occur in the systems of conservation laws that have been
investigated so far.

C. The codimension-one Riemann solutions can be classified with
respect to the number of solutions of nearby Riemann problems. In the
case of a fold, for data (UL , UR , F ) on one side of S, there are two nearby
structurally stable Riemann solutions; for data in S, there is a locally
unique codimension-one solution; and for data on the other side of S,
there is no nearby Riemann solution. This case is depicted schematically in
Fig. 2a. The same situation can occur along some of the Riemann solution
joins. In classical examples, the two manifolds-with-boundary, which meet
along their common boundary, project to different sides of S, so that there
is local existence and uniqueness of Riemann solutions, as in Fig. 1a. It is
possible, however, for the two manifolds-with-boundary to project to the
same side of S, so that for nearby data there are two, one, or zero nearby
Riemann solutions, as in the case of a fold; see Fig. 1b. For a frontier, there
is a locally unique solution on S and on one side of S, but no solution
on the other side, as illustrated in Fig. 2b.

1.5. Overview of the Paper

Several simplifying assumptions are made in the current paper. First,
the differential equation (1.4) used to determine the admissibility of shock
waves has a special form. [More generally, the left-hand side could be
replaced by D(U ) U4 , where D(U ) is called the viscosity matrix.] Second,
we consider only Riemann solutions that are strictly hyperbolic, in that all
states U� (!) in the weak solution lie inside the region where characteristic
speeds are distinct; however, we do not require viscous profiles for shock
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waves to lie entirely within this region. Third, we exclude shock waves with
viscous profiles that form homoclinic orbits. These simplifying assumptions
are adopted to reduce the number of cases to be studied. Notice that cer-
tain waves and wave configurations are excluded by these assumptions;
examples include transitional rarefaction waves and shock waves with
saddle-to-spiral or homoclinic connections.

Given these assumptions, our goal is to list and classify codimension-
one Riemann solutions. Specifically, we do the following.

1. We give a precise definition of codimension-one Riemann solutions.

2. We list the ways in which hypotheses (H0)�(H3) can be violated
on the boundary of the set of structurally stable, strictly hyperbolic
Riemann solutions. Violations of hypothesis (H0) can be identified with
violations of hypothesis (H1). Also, we can amalgamate all violations of
hypothesis (H2) into a single case. In order to reduce the number of viola-
tions of hypotheses (H1) and (H3) that must be considered, we amalgamate
those cases that are analogous under a duality between slow and fast
waves.

3. We note that certain violations of hypothesis (H1) lead to failure
of strict hyperbolicity, and we argue that others have codimension higher
than one. We discard these from further consideration.

4. There are 63 remaining violations of hypotheses (H0)�(H3). It is
expected that each of them gives rise, under appropriate nondegeneracy
conditions, to codimension-one Riemann solutions. Indeed, many occur in
the literature. For some of these degeneracies, we mention one or two of
the more obvious nondegeneracy conditions that are required. However,
precise statements of the required nondegeneracy conditions in each case
are left to later papers.

To prove rigorously that each of the 63 violations of hypotheses
(H0)�(H3) gives rise to codimension-one Riemann solutions, one must
check, in each case, that under the appropriate nondegeneracy conditions,
certain matrices of partial derivatives of an appropriate mapping are inver-
tible. In this paper we give the mappings, but we do not make any of
the checks. The knowledgeable reader will realize that in may cases the
necessary computations are well-known, or are at least present in the litera-
ture. We plan to provide the necessary computations for at least some of
the cases in later papers.

5. We classify the 63 types of codimension-one Riemann solutions
according to how they are situated in R. (Again, proofs are omitted.) Four
are folds; 5 are frontiers; and 54 form 27 pairs of related degeneracies that
give rise to 27 joins.
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The five frontier cases involve overcompressive waves [15]. Except for
these cases, whenever one arrives at a strictly hyperbolic codimension-one
boundary of a set of structurally stable Riemann solutions of a type iden-
tified in Ref. 17, another set of structurally stable Riemann solutions of a
type identified in Ref. 17 lies on the other side. We regard this as further
indication that the list of types of structurally stable, strictly hyperbolic
Riemann solutions in Ref. 17 is complete.

6. We classify the codimension-one manifolds of unstable solutions
with respect to how S is situated in UL_UR_B. In most cases, the type
of violation of (H0)�(H3) does not determine whether it is an intermediate
boundary, a UL-boundary or dual, or an F-boundary; one must also know
where in the wave sequence the violation occurs. Again, we do not give
proofs.

7. We explain how the results of this paper are related to wave curves.
Many of the Riemann solution degeneracies we describe can be understood
in terms of ``junction points'' in wave curves. The results of this paper explain
how the complexity of wave curves increases and decreases as they are extended.

The structure of solutions of Riemann problems is very rich, and the
list of codimension-one bifurcations of this structure is long and com-
plicated. The present paper only formulates this list. Supplying proofs
for each case constitutes a rather large program, to which we plan to
contribute in later papers. We hope to have compensated for the lack of
proofs in the current paper by presenting a clear overview of the range of
bifurcation phenomena.

The remainder of the paper is organized as follows. In Section 2 we
review terminology and results about structurally stable Riemann solutions
from Ref. 17. In Section 3 we introduce some new terminology needed for our
treatment of codimension-one Riemann solutions, and provide a definition of
such solutions. In Section 4 we consider the possible violations of hypotheses
(H0)�(H3), discard those that give rise to failure of strict hyperbolicity or to
phenomena of codimension greater than one, and give appropriate mappings
for the remaining codimension-one phenomena. In Sections 5�7 we carry out
steps 5�7 described above. The proof of one lemma is given in Appendix A,
and details of several cases are relegated to Appendix B.

2. STRUCTURALLY STABLE, STRICTLY HYPERBOLIC
RIEMANN SOLUTIONS

In this section we review standard terminology concerning conservation
laws [21] along with results about structurally stable Riemann solutions
from Ref. 17.
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We consider the system (1.1) with t>0, x # R, U(x, t) # R2, and
F : R2 � R2 a C2 map. Let

UF=[U # R2 : DF(U ) has distinct real eigenvalues] (2.1)

be the strictly hyperbolic region in state-space. We call a Riemann solution
U� strictly hyperbolic if U� (!) # UF for all ! # R. In this paper, all Riemann
solutions are assumed to be strictly hyperbolic. (Notice, however, that we
do not require that viscous profiles for shock waves lie entirely within the
strictly hyperbolic region.)

In the following we fix an open set U�R2 and an open set B in a
Banach space of smooth (i.e., C2) flux functions. These sets depend on the
Riemann solution whose stability we are investigating; they are specified in
Section 2.2 below. For the discussion in the next subsection, it suffices to
assume two properties of U and B. First, U�UF for all F # B. Second,
there exists a closed, bounded interval I�R such that the eigenvalues of
DF(U ) belong to I for all U # U and F # B. In this case, if U� is a
scale-invariant solution of the Riemann problem (1.1)�(1.2), then U� (!)=UL

for !�minI and U� (!)=UR for !�maxI. Therefore we can regard scale-
invariant solutions as belonging to the open set

X :=[U� : I � U | U� # L1(I, R2)] (2.2)

in the Banach space L1(I, R2).

2.1. Elementary Waves

Riemann solutions are composed of elementary waves. The definitions
of elementary waves given in this section are not the most general, but they
suffice in the context of strictly hyperbolic structurally stable Riemann
solutions. In Section 3 we adopt more general definitions.

For F # B and U # U, let *1(U )<*2(U ) denote the eigenvalues of
DF(U ). Also let li (U ) and ri (U ), i=1, 2, denote corresponding left and
right eigenvectors, normalized so that li (U ) rj (U )=$ij . For suitable
neighborhoods N�U (described below), we can choose these eigenvectors
to depend smoothly on U # N. More generally, with each eigenvalue
family, i=1, 2, is associated the smooth line field of null directions for
DF(U )&*i (U ) I.

A rarefaction wave of type Ri is a differentiable map U� : [:, ;] � U,
where :<;, such that U� $(!) is an eigenvector of DF(U� (!)) with eigenvalue
!=*i (U� (!)) for each ! # [:, ;]. The states U=U� (!) with ! # [:, ;]
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constitute the rarefaction curve 1� . This definition implies that if U=U� (!)
# 1� , then since D*i (U ) U� $(!)=1,

li (U ) D2F(U )(ri (U ), ri (U ))=D*i (U ) ri (U ){0 (2.3)

Condition (2.3) is genuine nonlinearity of characteristic family i at U. The
definition also implies that U� is actually C1 and that *i (U&)<*i (U+),
where U&=U� (:) and U+=U� (;) are the left and right states of the
rarefaction wave, respectively. We will find it convenient to associate a
specific speed s to a rarefaction wave: for a rarefaction wave of type R1 ,
s=*1(U+); for a rarefaction wave of type R2 , s=*2(U&).

A shock wave consists of a left state U& # U, a right state U+ # U

(with U+{U&), a speed s, and a connecting orbit 1/R2, i.e., an orbit of
the ordinary differential equation (1.4) leading from the equilibrium U& to
the equilibrium U+ . In particular, the speed and the left and right states
of a shock wave are related by the Rankine�Hugoniot condition

F(U+)&F(U&)&s(U+&U&)=0 (2.4)

which states that U+ is an equilibrium for Eq. (1.4). The orbit 1 is the
range of some solution U� of Eq. (1.4) such that lim' � \� U� (')=U\ .
Corresponding to U� are traveling wave solutions U(x, t)=U� ((x&x0&st)�=)
of the parabolic equation

Ut+F(U )x==Uxx (2.5)

each traveling wave tends to the shock wave as = � 0.
For any equilibrium U # U of Eq. (1.4), the eigenvalues of the lineari-

zation of Eq. (1.4) at U are *i (U )&s, i=1, 2. We use the terminology
defined in Table I for such an equilibrium.

Our name for an equilibrium accounts only for the signs of the eigen-
values; it does not necessarily reflect the topological type of the phase

Table I. Types of Equilibria

Name Symbol Eigenvalues

Repeller R + +
Repeller-saddle RS 0 +
Saddle S & +
Saddle-attractor SA & 0
Attractor A & &
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Fig. 3. Possible phase portraits for a repeller-saddle. The differential equation on the center
manifold is _* =b_k+..., where k�2. In case (a), k is even and b{0; in case (b), k is odd and
b<0; in case (c), k is odd and b>0.

portrait if there is a zero eigenvalue. Figures 3 and 4 show the possible
phase portraits for repeller-saddles and saddle-attractors.

If w is a shock wave, its type is determined by the equilibrium types
of its left and right states. (For example, w is of type R } S if its left state
is a repeller and its right state is a saddle.) These types are listed in
Figs. 5�8. (In these figures, the phase portraits are drawn for the case that
repeller-saddles and saddle-attractors are nondegenerate, i.e., k=2 in
Figs. 3 and 4.) Shock types are grouped into four sets of four: slow, fast,
overcompressive, and transitional shock waves. Slow and fast shock waves
are called classical shock waves.

Remark. It is helpful, when thinking about shock waves involving
saddle-nodes, to regard an RS equilibrium as a saddle S on the left and a
repeller R on the right, as in Fig. 3a. Similarly, an SA equilibrium is an

Fig. 4. Possible phase portraits for a saddle-attractor. The differential equation on the center
manifold is _* =b_k+..., where k�2. In case (a), k is even and b{0; in case (b), k is odd and
b<0; in case (c), k is odd and b>0.

534 Schecter, Plohr, and Marchesin



File: 865J 046313 . By:BJ . Date:29:05:01 . Time:13:30 LOP8M. V8.B. Page 01:01
Codes: 864 Signs: 81 . Length: 44 pic 2 pts, 186 mm

Fig. 5. Slow shock waves.

Fig. 6. Fast shock waves.
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Fig. 7. Overcompressive shock waves.

Fig. 8. Transitional shock waves.
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attractor A on the left and a saddle S on the right, as in Fig. 3a. For
instance, for an RS } S shock wave, the orbit leaves the repeller half of the
RS and connects to the saddle; thus the connection is generally stable, and
this is a classical wave. In contrast, for an S } RS wave, the connection leads
from the saddle to the saddle half of the RS, so that the connection is
generally unstable, and this is a transitional wave.

An elementary wave w is either a rarefaction wave or a shock wave.
We write

w: U& w�s U+ (2.6)

if w has left state U& , right state U+ , and speed s. Notice that an elemen-
tary wave also has a type T, as defined above.

Associated with each elementary wave is a speed interval _: for a
rarefaction wave of type Ri , _=[*i (U&), *i (U+)], whereas for a shock
wave of speed s, _=[s, s]. If _1 and _2 are speed intervals, we write
_1�_2 if s1�s2 for every s1 # _1 and s2 # _2 .

Also associated with each elementary wave is a compact set 1� : if w is
a rarefaction wave, 1� denotes its rarefaction curve; if w is a shock wave,
then 1� denotes the closure of its connecting orbit. We shall say that an
open set N�R2 is a neighborhood of the elementary wave w: U& w�s U+

if 1� /N.

2.2. Structurally Stable Riemann Solutions

A wave sequence (w1 , w2 ,..., wn) is said to be allowed if

(W1) for each i=1,..., n&1, the right state of wi coincides with the
left state of wi+1 ;

(W2) the speed intervals _i for wi satisfy

_1�_2� } } } �_n (2.7)

(W3) no two successive waves are rarefaction waves of the same
type.

For such a wave sequence we write

(w1 , w2 ,..., wn) : U0 w�
s1 U1 w�

s2 } } } w�
sn Un (2.8)

If U0=UL and Un=UR , then associated with an allowed wave sequence
(w1 , w2 ,..., wn) is a Riemann solution U of Eqs. (1.1) and (1.2). Therefore
we refer to an allowed wave sequence as a Riemann solution. The type of
a Riemann solution is simply the sequence of types of its waves.
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In the following, we begin with an unperturbed Riemann solution,

(w1*, w2* ,..., wn*): U 0* w�
s*1 U1* w�

s*2 } } } w�
s*n Un* (2.9)

for the system of conservation laws Ut+F*(U )x=0 and initial data
UL*=U0* and U R*=U n*; then we seek Riemann solutions when the data
and the flux are perturbed from UL* , U R*, and F*.

To this end, we first fix a compact set K/R2 such that Int K is a
neighborhood of each wi* for i=1,..., n. Second, we choose an open
neighborhood U�Int K of the states U0*,..., U n* and of all rarefaction
waves appearing in the unperturbed solution. Third, we choose an open
neighborhood B of F* in the Banach space of C2 functions F : K � R2,
equipped with the C 2 norm. The sets U and B are chosen to have two
properties: (i) U�UF for all F # B; and (ii) there exists a closed, bounded
interval I�R such that the eigenvalues of DF(U ) belong to I for all U # U

and F # B. (Notice that we do not require U to be a neighborhood of the
shock waves appearing in the unperturbed solution; thus we allow shock
orbits to leave the region of strict hyperbolicity.)

Let H(Int K ) denote the set of nonempty, closed subsets of Int K,
which we equip with the Hausdorff metric.

Definition 2.1. We shall say that the Riemann solution (2.9) is struc-
turally stable if there are neighborhoods Ui�U of U i* , Ii�I of si*, and
F�B of F* and a C1 map

G: U0_I1_U1_I2_ } } } _In_Un_F � R3n&2 (2.10)

with G(U0* , s1*, U 1* , s2*,..., sn*, U n*, F*)=0 such that

(P1) G(U0 , s1 , U1 , s2 ,..., sn , Un , F )=0 implies that there exists a
Riemann solution

(w1 , w2 ,..., wn): U0 w�
s1 U1 w�

s2 } } } w�
sn Un (2.11)

for Ut+F(U )x=0 with successive waves of the same types as
those of the wave sequence (2.9), with each wi contained in
Int K, and with each rarefaction wave contained in U;

(P2) DG(U0* , s1*, U 1*, s2* ,..., sn* , Un*, F*), restricted to the (3n&2)-
dimensional space of vectors [(U4 0 , s* 1 , U4 1 , s* 2 ,..., s* n , U4 n , F4 ) :
U4 0=0=U4 n , F4 =0], is an isomorphism onto R3n&2.

Condition (P2) implies, by the implicit function theorem, that G&1(0) is a
graph of a function defined on a neighborhood of (U0* , U n*, F*), which we
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may as well take to be U0_Un _F. Therefore for each wave wi we can
define a map 1� i : U0 _Un _F � H(Int K ); namely, 1� i (U0 , Un , F ) is the
rarefaction curve or the closure of the connecting orbit of the wave wi . We
further require that

(P3) (w1 , w2 ,..., wn) can be chosen so that each map 1� i is continuous.

The map G will be said to exhibit the structural stability of the Riemann
solution (2.9).

Associated with (w1* , w2*,..., wn*) is a solution U*(x, t)=U� *(x�t) of the
Riemann problem (1.1) and (1.2) with UL=UL* :=U0 , UR=U R* :=Un ,
and F=F*. Similarly, for each (UL , UR , F ) near (UL* , U R*, F*), there is a
Riemann solution U� near U� * associated with the point in G&1(0) that has
left state UL , right state UR , and flux F.

2.3. Local Defining Maps

To construct maps G that exhibit structural stability, we use local
defining maps for each type of elementary wave. Let w*: U *

& w�s* U*+ be an
elementary wave of type T for Ut+F*(U )x=0. The local defining map GT

has as its domain a set of the form U&_I_U+_F (with U\ being
neighborhoods of U*\ , I being a neighborhood of s*, and F being a
neighborhood of F*). The range is some Re; the number e depends only on
the wave type T. The local defining map is such that GT (U*& , s*, U*+ , F*)=0.
Moreover, if certain wave nondegeneracy conditions are satisfied at
(U*& , s*, U*+ , F*), then there is a neighborhood N of w* such that

(D1) GT (U& , s, U+ , F )=0 if and only if there exists an elementary
wave w: U& w�s U+ of type T for Ut+F(U )x=0 contained
in N;

(D2) DGT (U*& , s*, U*+ , F*), restricted to the space [(U4 & , s* ,
U4 + , F4 ) : F4 =0], is surjective.

Condition (D2) implies, by the implicit function theorem, that G&1
T (0) is a

manifold of codimension e. Therefore we can define a map 1� from this
manifold to H(Int K ) (just as above). We have that

(D3) w can be chosen so that 1� is continuous and reduces to 1� * at
the point in G&1

T (0) corresponding to (U*& , s*, U*+ , F*).

The system of equations GT (U& , s, U+ , F )=0 is called a system of
local defining equations. We now discuss local defining equations and non-
degeneracy conditions for each type of elementary wave.
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2.4. Rarefaction Waves

Suppose that w*: U*& w�s* U*+ is a rarefaction of family 1 for the equa-
tion Ut+F*(U )x=0. Then there exist neighborhoods F of F* and N of
w* such that for all F # F: (a) the eigenvector r1(U ) of DF(U ) correspond-
ing to the eigenvalue *1(U ) can be chosen to depend smoothly on U
throughout N; and (b) D*1(U ) r1(U ){0 for all U # N. We can therefore
normalize r1(U ) so that D*1(U ) r1(U )#1.

For each U& # N, define �1 to be the maximal solution of the initial-
value problem

��1

�s
(U& , s)=r1(�1(U& , s)), (2.12)

�1(U& , *1(U&))=U& (2.13)

Then, for F # F and U& , U+ # N, there exists a rarefaction wave of type
R1 for the equation Ut+F(U )x=0 that leads from U& to U+ , has speed s,
and lies within N if and only if

U+&�1(U& , s)=0 (2.14)

s=*1(U+)>*1(U&) (2.15)

Similarly, we can define �2 to be the solution of

��2

�s
(s, U+)=r2(�2(s, U+)) (2.16)

�2(*2(U+), U+)=U+ (2.17)

Then there is a rarefaction wave of type R2 for Ut+F(U )x=0 from U& to
U+ with speed s if and only if

U&&�2(s, U+)=0 (2.18)

s=*2(U&)<*2(U+) (2.19)

Equations (2.14) and (2.18) are defining equations for rarefaction
waves of types R1 and R2 , respectively. The nondegeneracy conditions for
rarefaction waves of type Ri , which are implicit in our definition of rarefac-
tion wave, are the speed inequality (2.15) or (2.19), and the genuine non-
linearity condition (2.3). To define codimension-one Riemann solutions, we
must allow these nondegeneracy conditions to be violated. Therefore the
definition of rarefaction wave is generalized in Section 3.
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2.5. Shock Waves

If there is to be a shock wave solution of Ut+F(U )x=0 from U& to
U+ with speed s, we must have that:

F(U+)&F(U&)&s(U+&U&)=0 (E0)

U4 =F(U )&F(U&)&s(U&U&) has an orbit from U& to U+ (C0)

The two-component equation (E0) is a defining equation. In the context of
structurally stable Riemann solutions, condition (C0) can be regarded as a
nondegeneracy condition except for transitional shock waves, for which it
is a defining equation. Codimension-one Riemann solutions can violate
condition (C0), necessitating the generalized definition of shock waves
given in Section 3; in this context, the role of condition (C0) is more subtle,
as we discuss in Section 4.

In Tables II�IV we list additional defining equations and non-
degeneracy conditions for shock waves of various types. The additional
defining equations are either equality of the shock speed with a charac-
teristic speed or, for transitional shock waves, the vanishing of a separation
function. The wave nondegeneracy conditions are open conditions. The
tables omit several types of nondegeneracy conditions, which we assume
implicitly: (a) U&{U+ ; (b) inequality conditions on the eigenvalues
that are implied by the shock type (e.g., for an R } S shock wave,
*1(U&)<*2(U&)<s and *1 (U+)<s<*2(U+)); and (c) condition (C0)
when it is an open condition (given the defining equations and the listed
nondegeneracy conditions).

Table II. Additional Defining Equations and Nondegeneracy Conditions
for Slow Shock Waves

Type of shock Additional defining equation(s) Nondegeneracy conditions

R } S None None

R } RS *1(U+)&s=0 (E1) D*1(U+) r1(U+){0 (G1)
l1(U+)(U+&U&){0 (B1)

RS } S *1(U&)&s=0 (E2) D*1(U&) r1(U&){0 (G2)
Not distinguished connection (C1)

RS } RS *1(U&)&s=0 (E3) D*1(U&) r1(U&){0 (G3)
*1(U+)&s=0 (E4) D*1(U+) r1(U+){0 (G4)

l1(U+)(U+&U&){0 (B2)
Not distinguished connection (C2)
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Table III. Additional Defining Equations and Nondegeneracy Conditions
for Fast Shock Waves

Type of shock Additional defining equation(s) Nondegeneracy conditions

S } A Nnone None

SA } A *2(U&)&s=0 (E5) D*2(U&) r2(U&){0 (G5)
l2(U&)(U+&U&){0 (B3)

S } SA *2(U+)&s=0 (E6) D*2(U+) r2(U+){0 (G6)
Not distinguished connection (C3)

SA } SA *2(U&)&s=0 (E7) D*2(U&) r2(U&){0 (G7)
*2(U+)&s=0 (E8) D*2(U+) r2(U+){0 (G8)

l2(U&)(U+&U&){0 (B4)
Not distinguished connection (C4)

The additional defining equations and nondegeneracy conditions for
classical shock waves are given in Tables II�III; the reader should also refer
to Figs. 5�7. In these tables, conditions (C1)�(C4) are that the connection
1 is not distinguished ; this means the following. For RS } V shock waves, the
connection 1 should not lie in the unstable manifold of U& (i.e., the unique
invariant curve tangent to an eigenvector with positive eigenvalue). For
V } SA shock waves, the connection 1 should not lie in the stable manifold
of U+ .

Table IV. Additional Defining Equations and Nondegeneracy Conditions
for Transitional Shock Waves

Type of shock Additional defining equation(s) Nondegeneracy conditions

S } S S(U& , s)=0 (S1) DS(U& , s){0 (T1)

S } RS *1(U+)&s=0 (E13) D*1(U+) r1(U+){0 (G13)
S(U& , s)=0 (S2) Transversality (T2)

SA } S *2(U&)&s=0 (E14) D*2(U&) r2(U&){0 (G14)
S� (s, U+)=0 (S3) Transversality (T3)

SA } RS *2(U&)&s=0 (E15) D*2(U&) r2(U&){0 (G15)
*1(U+)&s=0 (E16) D*1(U+) r1(U+){0 (G16)
S(U& , s)=0 (S4) Transversality (T4)
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2.6. Transitional Shock Waves

Referring to Fig. 8, suppose that w*: U*& w�s* U*+ is a shock wave for
Ut+F*(U )x=0 of type S } S, S } RS, or SA } RS. Thus we suppose that, for
the differential equation

U4 =F*(U )&F*(U*&)&s*(U&U*&) (2.20)

U*& is an equilibrium of saddle or saddle-attractor type, U*+ is an equi-
librium of saddle or repeller-saddle type, and there is a solution U� : R � R2

such that lim' � \�U� (')=U*\ and U� (') # 1* for all ' # R.
If U*& is a saddle of Eq. (2.20), let W&(U*& , s*) denote its unstable

manifold; if U*+ is a saddle of Eq. (2.20), let W+(U*& , s*) denote its stable
manifold. Similarly, if U*\ is a repeller-saddle or saddle-attractor, let
W\(U*& , s*) denote one of its center manifolds. The manifolds W\(U*& , s*)
both perturb smoothly to invariant manifolds of Eq. (1.4), denoted
W\(U& , s). When U*& is a saddle, W&(U& , s) is just the unstable
manifold of the saddle U& of Eq. (1.4); when U*+ is a saddle, W+(U& , s)
is the stable manifold of the saddle of Eq. (1.4) near U*+ .

Let 7 be a line segment through U� (0) transverse to U�4 (0) in the
direction V. Then W\(U& , s) meet 7 in points U� \(U& , s), and

U� &(U& , s)&U� +(U& , s)=S(U& , s) V (2.21)

The function S is called the separation function; it is defined on a
neighborhood of (U*& , s*), and, of course, S(U*& , s*)=0. The partial
derivatives of S are given as follows [16]. The linear differential equation

,4 +,[DF(U� ('))&s*I]=0 (2.22)

has, up to constant multiple, a unique bounded solution. For the correct
choice of this constant,

�S
�s

(U*& , s*)=&|
�

&�
,(')(U� (')&U*&) d' (2.23)

DU&
S(U*& , s*)=&\ |

�

&�
,(') d'+ [DF(U*&)&s*I ]. (2.24)

One can treat SA } S shock waves analogously to S } RS waves; one
obtains a separation function S� (s, U+) [17].
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The additional local defining equations and nondegeneracy conditions
(T1)�(T4) for transitional shock waves are given in Table IV. Condition
(T2) is that there is a vector W such that

\ l1(U+)
��

&� ,(') d'+ W and \ l1(U+)(U+&U&)
��

&� ,(')(U(')&U&) d'+
are linearly independent (T2)

Condition (T3) is that there is a vector W such that

\ l2(U&)
��

&� ,(') d'+ W and \ l2(U&)(U&&U+)
��

&� ,(')(U(')&U+) d'+
are linearly independent (T3)

Condition (T4) is that

\ l1(U+)
��

&� ,(') d'+ r1(U&) and \ l1(U+)(U+&U&)
��

&� ,(')(U(')&U&) d'+
are linearly independent (T4)

2.7. Riemann Numbers

For the Riemann solution (2.9), let wi* have type T i and local defining
map GTi

, with range Rei . For appropriate neighborhoods Ui of U i* , Ii of si* ,
F of F*, and Ni of wi*, we can define a map G: U0_I1_ } } } _In_Un_
F � Re1+ } } } +en by G=(G1 ,..., Gn), where

Gi (U0 , s1 ,..., sn , Un , F )=GTi
(Ui&1 , si , Ui , F ) (2.25)

The map G is called the local defining map of the wave sequence (2.9).
Assuming the wave nondegeneracy conditions, if G(U0 , s1 ,..., sn , Un , F )
=0, then for each i=1,..., n, there is an elementary wave wi : Ui&1 w�

si U i

of type Ti for Ut+F(U )x=0 contained in Ni , for which 1� i is continuous.
In view of the requirement in Definition 2.1 that the local defining map

have range R3n&2, a necessary condition for G=(G1 ,..., Gn) to exhibit the
structural stability of the wave sequence (2.9) is that

:
n

i=1

ei=3n&2, i.e., :
n

i=1

(3&ei )=2 (2.26)
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Table V. Riemann Numbers of Shock Waves

U& "U+ RS S SA A

R 0 1 0 1
RS &1 0 &1 0
S &1 0 0 1
SA &2 &1 &1 0

We are therefore led to define the Riemann number of an elementary wave
type T to be

\(T )=3&e(T ) (2.27)

where e(T ) is the number of defining equations for a wave of type T. For
convenience, if w is an elementary wave of type T, we shall sometimes write
\(w) instead of \(T ). Because of Eq. (2.26), a necessary condition for an
allowed sequence of elementary waves (w1 ,..., wn) to be structurally stable
is that �n

i=1 \(wi )=2.
The Riemann number of a rarefaction wave is 1. The Riemann

numbers of shock waves are given in Table V.

2.8. Wave Groups

A 1-wave group is either a single R } S wave or an allowed sequence of
elementary waves of the form

(R } RS)(R1 RS } RS) } } } (R1 RS } RS) R1 (RS } S) (2.28)

where the terms in parentheses are optional. If any of the terms in
parentheses are present, the group is termed composite.

A transitional wave group is either a single S } S wave or an allowed
sequence of elementary waves of the form

S } RS(R1 RS } RS) } } } (R1 RS } RS) R1 (RS } S) (2.29)

or

(S } SA) R2 (SA } SA R2) } } } (SA } SA R2) SA } S (2.30)

the terms in parentheses being optional. In cases (2.29) and (2.30), the
group is termed composite.

545Codimension-One Riemann Solutions



A 2-wave group is either a single S } A wave or an allowed sequence of
elementary waves of the form

(S } SA) R2 (SA } SA R2) } } } (SA } SA R2) (SA } A) (2.31)

where again the terms in parentheses are optional. If any of the terms in
parentheses are present, the group is termed composite.

An SA } RS wave is called a doubly sonic transitional wave.
The reader should note a symmetry between the wave groups (2.28)

and (2.31), as well as between the groups (2.29) and (2.30). The wave
groups R } S, (2.28), and (2.29) are termed slow ; the wave groups S } A,
(2.31), and (2.30) are termed fast. A solution U for the equation Ut+
F(U )x=0 that consists of a fast wave group corresponds to a solution U8
for the equation U8 t&F(U8 )x=0 that consists of a slow wave group; the
correspondence is

U8 (x, t)=U(&x, t) (2.32)

Under this duality, rarefaction waves of type R1 correspond to those of
type R2 . Shock waves of type R } RS, for example, correspond to those of
type SA } A; in general, to find the dual of a shock type, one reverses
its name and interchanges the letters R and A. This symmetry will be
exploited throughout this paper to shorten the treatment.

2.9. Wave Group Interaction Condition

The wave group interaction condition is a transversality condition
appearing as a hypothesis in the structural stability theorem. In order to
state this condition precisely, we recall some results from Ref. 17 concern-
ing wave curves and transitional wave groups.

First, consider a 1-wave group

U0* w�
s*1 } } } w�

s*k Uk* (2.33)

for Ut+F*(U )x=0 with local defining map G (1). Assume that each wave
in the 1-wave group satisfies its nondegeneracy conditions. Then the solu-
tions of G (1)(U0 , s1 ,..., sk , Uk , F )=0 can be parameterized locally by U0 , F,
and one additional parameter _. [This is to be expected because the sum
of the Riemann numbers for the wave sequence (2.33) is 1.] More precisely,
there exist neighborhoods U0�U of U0*, F�B of F*, and J�R of a
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parameter value _*, and smooth mappings s f
i : U0SF_J � R and U f

i :
U0SF_J � U for i=1,..., k, with s f

i (U0*, F*, _*)=si* and U f
i (U0*, F*, _*)

=U i*, such that G (1)(U0 , s f
1(U0 , F, _),..., s f

k (U0 , F, _), U f
k (U0 , F, _), F )

=0 for each (U0 , F, _) # U0 SF_J. In particular, there exists a family

U0 wwww�
s f

1(U0 , F, _)
} } } wwww�

s f
k(U0 , F, _)

U f
k (U0 , F, _) (2.34)

of wave sequences for Ut+F(U )x=0 with successive waves of the same
type as those of the 1-wave group (2.33). The curve U f

k (U 0*, F*, _)
parameterized by _ is called the forward wave curve through Uk* associated
with the wave sequence (2.33).

Similarly, if a 2-wave group

Uk* ww�
s*k+1 } } } w�

s*n Un* (2.35)

for Ut+F*(U )x=0 has local defining map G (2), and each wave satisfies its
nondegeneracy conditions, then solutions of G (2)(Uk , sk+1 ,..., sn , Un , F )
=0 can be parameterized locally by Un , F, and a parameter {, giving a
family

U b
k (Un , F, {) wwwww�

sb
k+1 (Un , F, {)

} } } wwwww�
sb

n(Un , F, {)
Un (2.36)

of wave sequences. The curve U b
k (U n* , F*, {) parameterized by { is called

the backward wave curve through Uk* associated with the wave sequence
(2.35).

For the simplest case of a structurally stable Riemann solution

U0* w�
s*1 } } } w�

s*k Uk* ww�
s*k+1 } } } w�

s*n U n* (2.37)

comprising only a 1-wave group and a 2-wave group (joined at the state Uk*),
the wave group interaction condition is that the forward wave curve
U f

k (U0* , F*, _) and the backward wave curve U b
k (U n*, F*, {) should be

transverse, i.e., the tangent vectors �U f
k ��_ at (U 0* , F*, _*) and �U b

k ��{ at
(Un*, F*, {*) should be linearly independent.

Next consider a transitional wave group

Uk* ww�
s*k+1 } } } w�

sl
*

Ul* (2.38)

for Ut+F*(U )x=0 with local defining map G (t). Assume that each wave
satisfies its nondegeneracy conditions. Then there exists a subspace 2 of
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Uk -space, of dimension 0 or 1, such that the following statements are
equivalent for any V{0 in Uk -space:

(a) V � 2;

(b) the linear map DG (t)(Uk*, s*k+1 ,..., sl*, Ul*, F*), restricted to the
subspace

[(U4 k , s* k+1 ,..., s* l , U4 l , F4 ) : U4 k is a multiple of V , F4 =0]
(2.39)

is surjective onto R3(l&k) and the projection of its one-dimen-
sional kernel onto Ul -space is one-dimensional.

The significance of this result is that, if V is tangent to the forward
wave curve through Uk* for the 1-wave group (2.33), and if V � 2, then
solutions of the pair of equations

G (1)(U0 , s1 ,..., sk , Uk , F )=0 (2.40)

G (t)(Uk , sk+1 ,..., sl , Ul , F )=0 (2.41)

can be parameterized by U0 , F, and an additional parameter _, giving a
family

U0 wwww�
s

f
1(U0 , F, _)

} } } wwww�
s

f
k(U0 , F, _)

U f
k (U0 , F, _) wwwww�

s
f
k+1(U0 , F, _)

} } } wwww�
s

f
l (U0 , F, _)

Ul
f (U0 , F, _) (2.42)

of wave sequences. In this manner, a forward wave curve can be extended
by attaching a transitional wave group, provided either that 2=[0] or
that 2 is transverse to the forward wave curve. The curve U f

l (U 0*, F*, _)
parameterized by _ is likewise called the forward wave curve through Ul*.
Similarly, using a dual version of the result just quoted, a backward wave
curve can be extended by attaching a transitional wave group.

Suppose that a structurally stable Riemann solution consists of a
1-wave group g0 , r�1 transitional wave groups g1 ,..., gr , and a 2-wave
group, gr+1 . Then the wave group interaction condition is that (a) induc-
tively for j=1,..., r, the transitional wave group gj should satisfy the
transversality condition allowing it to be attached to the forward wave
curve associated with groups g0 ,..., g j&1 ; and (b) the forward wave curve
associated with groups g0 ,..., gr should be transverse to the backward wave
curve associated with group gr+1 .

Remark. The wave group interaction condition could be formulated
in alternative ways. Under a certain transversality condition, similar to the
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one for attaching a transitional wave group to a forward wave curve,
a transitional wave group can be attached to a backward wave curve. For
each s�r, an equivalent formulation of the wave group interaction condi-
tion consists of (a) the transversality conditions allowing wave groups
g1 ,..., gs to be attached to g0 to form a forward wave curve; (b) the trans-
versality conditions allowing wave groups gr ,..., gs+1 to be attached to gr+1

to form a backward wave curve; and (c) the transversality of these forward
and backward wave curves at the state between gs and gs+1 .

The most general structurally stable Riemann solution consists of
waves of type SA } RS separating wave sequences of the form already dis-
cussed (see Theorem 2.2 below). In this case, the wave group interaction
condition is that each of these wave sequences should satisfy its wave group
interaction condition.

2.10. Wave Structure and Structural Stability

In Ref. 17 the following results are proved.

Theorem "I� oWave StructurepI Consider the allowed wave sequence
(2.9). Then

(A) �n
i=1

\(wi*)�2;

(B) �n
i=1

\(wi*)=2 if and only if the following conditions are
satisfied.

(1) Suppose that the wave sequence (2.9) includes no SA } RS
waves. Then it consists of one 1-wave group, followed by an
arbitrary number of transitional wave groups (in any order),
followed by one 2-wave group.

(2) Suppose that the wave sequence (2.9) includes m�1 waves of
type SA } RS. Then these waves separate m+1 wave sequences
g0 ,..., gm . Each gi is exactly as in (1) with the restrictions that:

(a) if i<m, the last wave in the group has type R2 ;

(b) if i>0, the first wave in the group has type R1 .

Theorem "I< oStructural Stability pI Suppose that the allowed wave
sequence (2.9) has total Riemann number �n

i=1
\(wi*)=2. Assume that:

(H1) each wave satisfies the appropriate wave nondegeneracy
conditions;
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(H2) the wave group interaction condition is satisfied;

(H3) if wi* has type V } S and w*i+1
has type S } *, then si*<s*i+1

.

Then the wave sequence (2.9) is structurally stable.

In fact, more can be concluded: not only can the connecting orbit 1i

of the perturbed shock wave wi be chosen to vary continuously, but also
there is a neighborhood Ni such that if 1i/Ni , then 1i is unique.

3. CODIMENSION-ONE RIEMANN SOLUTIONS

In this section we define codimension-one Riemann solutions. To
describe these solutions conveniently and to relate them to structurally
stable Riemann solutions, we must generalize the definitions of rarefaction
and shock waves in Section 2, for the following reason. When a structurally
stable Riemann solution becomes a codimension-one Riemann solution,
the number and types of waves can change. However, the number and
types of waves determine the dimensions of the domain and range for the
defining map. To keep these dimensions fixed, we broaden the definitions
of rarefaction and shock waves so that a codimension-one solution can be
regarded as having the same number and types of waves as the structurally
stable Riemann solutions bordering it.

3.1. Generalized Elementary Waves

The definition in Section 2 of a rarefaction wave requires the solution
U� to be differentiable as a function of !=x�t, which entails that genuine
nonlinearity holds all along the rarefaction curve 1� . For codimension-one
Riemann solutions, however, we must allow genuine nonlinearity to fail
within rarefaction waves. In this situation, 1� is not parameterized smoothly
by the eigenvalue *i .

To construct a rarefaction wave of family i, we consider a closed
segment 1� of an integral curve of the line field of null directions for
DF(U )&*i (U ) I, and we assume that * i (U ) is strictly monotone along 1� .
Then 1� can be parameterized by a continuous function U� of !=*i (U ), but
this parameterization fails to be smooth at the critical values of *i , viz.,
speeds !=*i (U ) corresponding to states U # 1� at which D*i (U ) ri (U )=0.
Nevertheless, U� is a scale-invariant weak solution of Eq. (1.1), i.e., it
satisfies the equation

d
d!

F(U� (!))&!
d

d!
U� (!)=0 (3.1)
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in the sense of distributions. [To see this, let U=U8 ({) parameterize 1�
smoothly, so that U� (!)=U8 ({) when !=*i (U8 ({).] Then, in the weak for-
mulation of Eq. (3.1), change the variable of integration from ! to {.)

Therefore we define a generalized rarefaction wave of type Ri to be a
continuous map U� : [:, ;] � U, where :�;, such that (i) the rarefaction
curve 1� =[U� (!) : ! # [:, ;]] is an integral curve for the line field
associated to family i and (ii) !=*i (U� (!)) for all ! # [:, ;]. Thus we
generalize the definition in Section 2 in two ways: (1) : may equal ;, giving
a rarefaction wave of zero strength ; and (2) U� may fail to be differentiable.
In other words, we allow the strength of a rarefaction wave to vanish, and
we permit genuine nonlinearity to fail, as a codimension-one boundary is
approached.

A generalized shock wave consists of a left state U& , a right state U+

(possibly equal to U&), a speed s, and a sequence of connecting orbits 1� 1 ,
1� 2 ,..., 1� k of Eq. (1.4), k�1, from U&=U� 0 to U� 1 , U� 1 to U� 2 ,..., U� k&1 to
U� k=U+ . Notice that U� 0 , U� 1 ,..., U� k must be equilibria of Eq. (1.4). We
allow for the possibility that U� j&1=U� j , in which case we assume that 1� j

is the trivial orbit [U� j]. (As explained below, we exclude homoclinic
orbits.) In particular, we generalize the definition in Section 2 to allow (1)
zero-strength shock waves, which we define to have U&=U+ and a single
trivial orbit 1� 1=[U&]; and (2) multiple orbits (k>1). As a codimension-
one boundary is approached, the strength of a shock wave can vanish, just
as for rarefaction waves. Moreover, the orbit 1 connecting U& to U+ can,
in this limit, break into two orbits: 1� 1 from U& to an equilibrium U� 1 and
1� 2 from U� 1 to U+ . (More precisely, the closure 1� tends, in the Hausdorff
metric, to 1� 1 _ 1� 2 .)

Remark. The definition of generalized shock wave allows nontrivial
cycles of orbits, when U� m coincides with U� n for some n�m+2 and the
union of the orbits 1� m+1 ,..., 1� n is not simply [U� m]. For example, a 2-cycle
of shock waves can occur in a codimension-one Riemann solution [1].
However, for simplicity, and in keeping with Ref. 17, we do not consider
shock waves with homoclinic orbits (e.g., joining a saddle point to itself or
a repeller-saddle to itself ). Of course, there is no distinction between trivial
orbits and homoclinic orbits or cycles on the level of the weak solution
U� (!).

Associated with each generalized rarefaction or shock wave is a speed s,
defined as before, and a curve 1� : the rarefaction curve or the shock
profile 1� 1 _ ... _ 1� k . The type of a generalized wave is also defined as
before. In particular, the type of a generalized shock wave is defined by the
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equilibrium types of U& and U+ and is unrelated to the equilibrium types
of any of the intermediate equilibria U� 1 , U� 2 ,..., U� k&1 .

A generalized allowed wave sequence is a sequence of generalized
rarefaction and shock waves that satisfies conditions (W1)�(W3). If
U0=UL and Un=UR , then associated with a generalized allowed wave
sequence (w1 , w2 ,..., wn) is a Riemann solution U of Eqs. (1.1) and (1.2).
Therefore we shall refer to a generalized allowed wave sequence as a
Riemann solution.

In a generalized allowed wave sequence, rarefaction and shock waves
may have zero strength, and adjacent shock waves may have the same
speed. This permits us to represent a Riemann solution by different wave
sequences. Wave sequences representing the same Riemann solution are
viewed as equivalent. More precisely, we make the following definitions.

A generalized allowed wave sequence is minimal if

1. there are no rarefaction or shock waves of zero strength;

2. no two successive shock waves have the same speed.

Among the minimal generalized allowed wave sequences we include
sequences with no waves; such a sequence is given by a single U0 # R2

and represents a constant solution of Eq. (1.1). We shorten a generalized
allowed wave sequence by omitting a rarefaction or shock wave of zero
strength and by amalgamating adjacent shock waves of nonzero strength
with the same speed. Every generalized allowed wave sequence can be
shortened to a unique minimal generalized allowed wave sequence. Two
generalized allowed wave sequences are equivalent if their minimal short-
enings are the same. Equivalent generalized allowed wave sequences repre-
sent the same weak solution U(x, t)=U� (x�t) of Eq. (1.1).

Remark. Equivalence of two generalized allowed wave sequences
does not necessarily follow from equality of the corresponding weak solu-
tions in L1

loc . Indeed, when two shock waves are equivalent, the corre-
sponding orbit sets 1� =1� 1 _ } } } _ 1� k coincide. For example, a shock wave
with U&=U+ and a sequence of orbits forming a homoclinic cycle is not
regarded as equivalent to a zero strength shock wave, which by definition
has a trivial orbit.

3.2. Codimension-One Riemann Solutions

A generalized allowed wave sequence (2.9) is a codimension-one
Riemann solution provided that there is a sequence of wave types
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(T1* ,..., Tn*) with �n
i=1 \(Ti*)=2, neighborhoods Ui�U of U i*, Ii�I

of si* , and F�B of F*, and a C 1 map

(G, H ): U0_I1_ } } } _In_Un_F � R3n&2_R (3.2)

with G(U0* , s1*,..., sn* , Un* , F*)=0 and H(U 0*, s1* ,..., sn* , Un*, F*)=0 such
that the following conditions, (Q1)�(Q7), are satisfied.

(Q1) If G(U0 , s1 ,..., sn , Un , F )=0 and H(U0 , s1 ,..., sn , Un , F )�0,
then there is a generalized allowed wave sequence

(w1 , w2 ,..., wn) : U0 w�
s1 U1 w�

s2 } } } w�
sn Un (3.3)

for Ut+F(U )x=0 with each wi contained in Int K and each
rarefaction wave contained in U;

(Q2) if G(U0 , s1 ,..., sn , Un , F )=0 and H(U0 , s1 ,..., sn , Un , F )>0,
then (w1 , w2 ,..., wn) is a structurally stable Riemann solution of
type (T1*,..., Tn*) and G exhibits its structural stability;

(Q3) if G(U0 , s1 ,..., sn , Un , F )=0 and H(U0 , s1 ,..., sn , Un , F )=0,
then (w1 , w2 ,..., wn) is not equivalent to a structurally stable
Riemann solution;

(Q4) D(G, H )(U0*, s1* ,..., sn* , Un* , F*), restricted to some (3n&1)-
dimensional space of vectors that contains [(U4 0 , s* 1 , U4 1 , s* 2 ,...,
s* n , U4 n , F4 ) : U4 0=0=U4 n , F4 =0], is an isomorphism.

Condition (Q4) implies, by the implicit function theorem, that M :=
(G, H )&1 ([0]_R+) is a manifold-with-boundary of codimension 3n&2
within U0_I1_ } } } _In_Un _F, and that �M=(G, H )&1 (0, 0) is a
graph over a codimension-one manifold S in U0_Un_F. As before, we
can define maps 1� i : M � H (Int K) giving the rarefaction curve or closure
of the union of orbits for the corresponding wave. We require further that

(Q5) (w1 , w2 ,..., wn) can be chosen so that each map 1� i is continuous.

As an additional condition, the surface S is required to be regularly
situated with respect to the foliation of (U0 , Un , F )-space by planes of
constant (U0 , F ) and planes of constant (Un , F ). More precisely, let

70=[(U4 0 , s* 1 ,..., s* n , U4 n , F4 ) : U4 0=0 and F4 =0],

7n=[(U4 0 , s* 1 ,..., s* n , U4 n , F4 ) : U4 n=0 and F4 =0].
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Then we require that one of the following hold:

(Q61) D(G, H )(U0* , s1*,..., sn*, Un*, F*) restricted to 70 and to 7n ,
respectively, are surjective;

(Q62) D(G, H )(U0* , s1*,..., sn*, Un*, F*) restricted to 7n is surjective,
and there is a codimension-one manifold S� through (U 0*, F*)
in (U0 , F )-space such that S=Un_S� ;

(Q63) D(G, H )(U0* , s1*,..., sn*, Un*, F*) restricted to 70 is surjective,
and there is a codimension-one manifold S� through (U n*, F*)
in (Un , F )-space such that S=U0_S� ;

(Q64) there is a codimension-one manifold S� through F* in F-space
such that S=U0_Un_S� .

When (Q61), (Q62) or (Q63), or (Q64) holds, then the codimension-one
Riemann solution is termed an intermediate boundary, a UL -boundary or
dual, or an F-boundary, respectively.

Finally, we require one of the following conditions to hold:

(Q71) the linear map

DG(U0*, s1* ,..., sn* , U n* , F*) restricted to 70 & 7n

(3.6)

is an isomorphism. (In this case, M is a smooth graph over
a manifold-with-boundary in U0_Un_F with boundary S,
consisting of S and an open set on one side of S.)

(Q72) the linear map (3.6) is not surjective, but the projection of
G&1(0) to U0_Un_F has a fold along (G, H)&1 (0, 0).
[In this case, M is again a graph over a manifold-with-
boundary in U0_Un_F with boundary S, but the mapping
(U0 , Un , F ) [ (s1 , U1 ,..., Un&1 , sn) loses smoothness along S.]

More precisely, condition (Q72) means that: (i) the kernel of the linear
map (3.6) is one-dimensional, spanned by a vector V; and (ii) if l is a
nonzero left null vector of the linear map (3.6), then for some a{0,
lG((U0* , s1*,..., sn*, U n*, F*)+tV )=at2+o(t2) as t � 0.

3.3. Folds, Frontiers, and Joins

Let (U0*, s1*, U 1* , s2*,..., sn*, Un*, F*) be a generalized allowed wave
sequence that is a codimension-one Riemann solution of type (T1* ,..., Tn*).
Let M denote the associated manifold-with-boundary, �M being a graph
over the manifold S.
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1. Suppose that (U0*, s>
1 , U >

1 , s>
2 ,..., s>

m , Um* , F*) is an equivalent
generalized allowed wave sequence that is a codimension-one Riemann
solution of type (T >

1 ,..., T >
m), with associated manifold-with-boundary N.

Suppose further that �N is a graph over the same manifold S as is �M,
and that the points in �M and �N above the same point in S are equiv-
alent. Then S is called a Riemann solution join, and the structurally stable
Riemann solutions of types (T1*,..., Tn*) and (T >

1 ,..., T >
m) are said to be

adjacent.

2. Suppose that there is no other generalized allowed wave sequence
that is equivalent to (U0* , s1*, U 1*, s2* ,..., sn* , Un*, F*). Then S is called a
Riemann solution frontier.

3. Suppose that (a) the linear map (3.6) is not surjective; (b) the
generalized wave sequence of condition (Q1) exists whenever G(U0 , s1 ,...,
sn , Un , F )=0 (no matter what the value of H(U0 , s1 ,..., sn , Un , F ) is);
(c) this sequence is a structurally stable Riemann solution of type
(T1* ,..., Tn*) whenever H(U0 , s1 ,..., sn , Un , F ){0, and G exhibits its struc-
tural stability; and (d) each map 1� i : G&1(0) � H (Int K ), giving the
rarefaction curve or closure of the union of orbits, can be chosen to be con-
tinuous. Then S is called a Riemann solution fold.

4. VIOLATION OF THE NONDEGENERACY CONDITIONS OF
THE STRUCTURAL STABILITY THEOREM

We now discuss violations of the hypotheses of the Structural Stability
Theorem: (1) wave nondegeneracy conditions; (2) the wave group inter-
action condition; and (3) the requirement that, when a V } S shock wave is
followed by an S } V shock wave, the shock speeds differ. We identify the
violations of these conditions that lead to loss of strict hyperbolicity or
phenomena of codimension greater that one, which we do not consider
further, and we label the remaining cases, which we expect to give rise to
codimension-one Riemann solutions.

Except in three cases, which involve failure of genuine nonlinearity at
a point of a rarefaction wave, the map G in definition (3.2) is the defining
map that would be used if the nondegeneracy condition held and the
Riemann solution were structurally stable. [This would be true as well of
the three exceptions if Eqs. (4.2) and (4.3) below were used instead of
Eq. (2.12) as the defining equation for a rarefaction wave.] We refer to the
equation H=0 as the ``extra equation.'' We give the equation H=0 for
each situation, but we do not attempt in this paper to verify conditions
(Q4)�(Q7) for each situation. In seven cases, the description of the extra
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equation is a little more involved than in the others; these cases are treated
in Appendix B.

Throughout this section we consider the generalized allowed wave
sequence

(w1 , w2 ,..., wn) : U0 w�
s1 U1 w�

s2 } } } w�
sn Un (4.1)

4.1. Wave Nondegeneracy Conditions

We omit fast wave groups from the discussion, since they correspond
to slow wave groups under the duality (2.32). Therefore we discuss the
nondegeneracy conditions only for the elementary waves appearing in
1-wave groups and slow transitional wave groups, and for doubly sonic
transitional waves: R1 , R } S, R } RS, RS } S, RS } RS, S } S, S } RS, and
SA } RS.

4.1.1. R1 Rarefaction Waves

The nondegeneracy conditions are that (1) the interval of definition of
the rarefaction wave has positive length and (2) genuine nonlinearity of the
first characteristic field holds at each point of the rarefaction curve. The
violations of these conditions therefore divide into two groups.

4.1.1.1. Rarefaction Waves of Zero Strength. The nature of a rarefac-
tion wave of zero strength depends on the types of the waves that precede
and follow it. A rarefaction wave of type R1 in a structurally stable
Riemann solution either is the initial wave in its wave group or has a
predecessor of type R } RS, RS } RS, S } RS, or SA } RS. Similarly, it either
is the last wave in its wave group or has a successor of type RS } RS or
RS } S. There are thus 5_3=15 cases in which an R1 rarefaction wave in
a structurally stable Riemann solution can shrink to zero strength. Each is
a codimension-one phenomenon. If the rarefaction wave that shrinks to
zero strength is wi : Ui&1 w�

si Ui , then for the extra equation H=0 we may
use si&*1(Ui&1)=0.

In Table VI we indicate how we label four of the cases in which there
is a rarefaction wave of zero strength. The other 11 cases are labeled
analogously.

4.1.1.2. Failure of Genuine Nonlinearity. Near a Riemann solution
that contains a rarefaction wave for which genuine nonlinearity fails, the
defining Eq. (2.14) cannot be used. Instead we proceed as follows. If there
is a rarefaction wave of type R1 from U*& to U*+ , these points are joined
by an integral curve for the line field associated with family 1, i.e., the line
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Table VI. Labeling of Four Cases in Which There is a Rarefaction Wave of Zero Strength

Predecessor Successor Label

None None 0
None RS } S 0 RS } S
R } RS None R } RS 0
R } RS RS } S R } RS 0 RS } S

field of null directions for DF(U )&*1(U ) I. For a suitable neighborhood
N of this integral curve, we may choose a smooth map '1 : N � R such
that D'1{0 and the level sets of '1 are the integral curves of the 1-family
line field. (The map '1 is known as a Riemann invariant.) Then there is a
rarefaction wave of type R1 with speed s from a point U& near U*& to a
point U+ near U*+ if and only if

'1(U+)&'1(U&)=0 (4.2)

*1(U+)&s=0 (4.3)

*1(U ) is strictly increasing along the level curve

'1(U )='1(U&) from U& to U+ (4.4)

Equations (4.2) and (4.3) serve in place of Eq. (2.14) as defining equations
for rarefaction waves of type R1 .

We may assume that the left and right eigenvectors l1(U ) and r1(U )
of DF(U ) depend smoothly on U for U # N. An integral curve of the
1-family line field may then be parameterized by U=U8 ({), where
U8 $({)=r1(U8 ({)). Let *8 1({)=*1(U8 ({)), so that *8 $1({)=D*1(U8 ({)) U8 $({)=
D*1(U ) r1(U ).

Genuine nonlinearity of the 1-family characteristic line field fails at
points U where

D*1(U ) r1(U )=0 (4.5)

This equation typically defines a curve I in U (called the inflection locus).
When an integral curve of the 1-family line field meets I, say at U*=
U8 ({*), we have

*8 $1({*)=0 (4.6)
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Fig. 9. Rarefaction waves of type R1 near the inflection locus. The inflection locus I is
dashed; curves on which '1 is constant are solid. Arrows indicate the directions of increasing *1 .
There is one curve, '1=c, that has a quadratic tangency with I.

The integral curve is transverse to I provided that

*8 "1({*)=D2*1(U*)(r1(U*), r1(U*))+D*1(U*) Dr1(U*) r1(U*){0 (4.7)

Typically, integral curves are transverse to I except at isolated points of I,
where I has a quadratic tangency with an integral curve, as in Fig. 9. At
such a point, we have Eq. (4.6) and the conditions

*8 "1({*)=0 (4.8)

*8 1$$$({*){0 (4.9)

Notice that if a rarefaction wave begins at a point on I, then *8 "1({*)�0
at this point; and if a rarefaction wave ends at a point on I, then
*8 "1({*)�0 at this point.

Genuine nonlinearity can fail at either the initial point, the terminal
point, or an interior point of a rarefaction wave wi : Ui&1 w�

si Ui . Each
possibility gives rise to a codimension-one phenomenon for R1 rarefaction
waves.

1. Initial point: As the extra equation H=0, we may use the equation
expressing that Ui&1 lies in I: D*1(Ui&1) r1(Ui&1)=0. A necessary
nondegeneracy condition is the inequality D2*1(Ui&1)(r1(Ui&1),
r1(Ui&1))+D*1(Ui&1) Dr1(Ui&1) r1(Ui&1)>0.

2. Terminal point: As the extra equation H=0, we may use
D*1(Ui ) r1(Ui )=0. The inequality D2*1(Ui )(r1(Ui ), r1(Ui ))+
D*1(Ui ) Dr1(Ui ) r1(Ui )<0 is needed as a nondegeneracy condition.
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3. Interior point: To have a codimension-one Riemann solution, the
rarefaction curve '1(U )=c must have a quadratic tangency
with I, as in Fig. 9. For the extra equation H=0 we can use
'1(Ui&1)&c=0. At the point of quadratic tangency, we have
Eqs. (4.6) and (4.8) together with the necessary nondegeneracy
condition (4.9).

Remark. Rarefaction waves of zero strength and of types R1(1),
R1(2), and R1(3) above satisfy the definition of generalized rarefaction
wave in Section 3, but not the definition of rarefaction wave in Section 2.

4.1.2. Shock Waves: Generalities

The nondegeneracy conditions for a shock wave w: U& w�
s U+ are

that (1) U&{U+ ; (2) the inequalities on the eigenvalues of DF(U\) and
s implicit in the definition of the shock type; (3) the existence of a connec-
tion for Eq. (1.4) from U& to U+ ; and (4) the nondegeneracy conditions
listed in Tables II�IV.

The sense in which condition (3) is a nondegeneracy condition is as
follows. We regard the existence of an orbit from U& to U+ as comprising
two parts:

U& is joined to U+ by a closed invariant curve 1� of Eq. (1.4) (C0a)

the vector field (1.4) is nonzero on 1� except at U& and U+ (C0b)

For classical shock waves, condition (C0a) is an open condition.
Nevertheless, we do not consider it to be a nondegeneracy condition
because, if it were violated, then w would not be a generalized shock wave.
For transitional shock waves, condition (C0a) is a defining equation; again,
it is not a nondegeneracy condition. Condition (C0b), in contrast, is a non-
degeneracy condition for both classical and transitional shock waves.
Therefore, by the nondegeneracy condition (3), we mean condition (C0b).

Violation of condition (1) gives rise, by definition, to a zero-strength
shock wave. Violation of condition (2) or (4) does not require the intro-
duction of a generalized shock wave, but usually leads to a change of shock
type. Violation of condition (3) [i.e., condition (C0b)] entails that the
shock wave becomes a generalized shock wave represented by a sequence
of connecting orbits. To have a codimension-one Riemann solution, there
must be two orbits, one joining the left state to an intermediate state and
the other joining the intermediate state to the right state. We describe this
situation by saying that the connection is broken by the intermediate equi-
librium. If a shock wave of type E& } E+ is broken by an equilibrium of
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type E, then the resulting generalized shock wave is represented by a E& } E
connection followed by a E } E+ connection. Notice that the intermediate
equilibrium must be of type RS, SA, or S, since types R and A are
obviously excluded.

Remark. A shock profile from U& to U+ can, of course, be broken
by other mechanisms: the orbit can escape to infinity (giving rise to a delta
shock wave [9, 12, 22] or a singular shock wave [7, 13]), or it can be
broken by a nonhyperbolic limit cycle. In these cases, the states U& and
U+ are not joined by a sequence of orbits and, hence, do not define a
generalized shock wave. Therefore, these mechanisms do not lead to
codimension-one Riemann solutions as we have defined them.

Certain violations of nondegeneracy conditions are expected to cause
phenomena of codimension higher than one, which we shall exclude from
consideration. In deciding which violations to exclude, we make use of the
following observations.

Lemma �I}I If the connection for a slow shock wave is broken by a
saddle-attractor, then the total Riemann number for the wave sequence is
reduced from 2 to 0.

Proof. If the connection for an R } S shock wave, which has Riemann
number 1, is broken by a saddle-attractor, then it is replaced in the wave
sequence by R } SA and SA } S shock waves, which have Riemann numbers
0 and &1, respectively. Therefore the total Riemann number is reduced
by 2. Similarly reductions occur when the connections for R } RS, RS } S,
and RS } RS shock waves are broken by saddle-attractors. g

Wave sequences with total Riemann number zero are expected to give
rise to phenomena of codimension at least two.

Next we relate the differential equation on the center manifold for a
repeller-saddle to the behavior of the 1-family eigenvalue along the rare-
faction curve. For this purpose, we introduce the following notation.

(a) Let U* be an equilibrium of the differential equation

U4 =F(U )&F(U&)&s*(U&U&) (4.10)

with

s*=*1(U*) (4.11)
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The eigenvalues of the linearization of Eq. (4.10) at U* are 0 and
*2(U*)&*1(U*)>0. Each local center manifold of Eq. (4.10) at
U* can be parameterized by a curve Uc(_), where we may
assume that

Uc(0)=U* (4.12)

l1(U*)[Uc(_)&U*]=_ (4.13)

Equation (4.13) fixes the parameterization locally and implies
that

U$c(0)=r1(U*) (4.14)

since r1(U*) is tangent to the center manifold at U*. Let the
differential equation (4.10) on the local center manifold at U* be
denoted

_* = g(_) (4.15)

(b) Let U8 ({) be an integral curve of the 1-family line field with
U8 (0)=U*. We may assume that

l1(U*)[U8 ({)&U*]={ (4.16)

near {=0. Equation (4.16) fixes the parameterization locally and
implies that

U8 $(0)=r1(U*) (4.17)

Define *8 i ({)=*i (U8 ({)), i=1, 2.

Lemma �I"I Suppose that k�1 is such that Di*8 1(0)=0 for i=
1,..., k&1 and Dk*8 1(0){0. Then Dig(0)=0 for i=0,..., k and Dk+1g(0){0;
in fact, Dk+1g(0)=Dk*8 1(0).

The proof of this lemma is given in Appendix A.

Lemma �I/I Let wi : Ui&1 w�
si Ui be a shock wave of type V } RS

followed by a 1-family rarefaction wave wi+1 . Suppose that D*1(U i ) r1(Ui )
=0 but D2*1(Ui ) (r1(Ui ), r1(Ui ))+D*1(Ui ) Dr1(Ui ) r1(Ui ){0. Then either
wi or wi+1 has zero strength.

The analogous statement holds for a shock wave of type RS } V preceded
by a 1-family rarefaction wave.
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Proof. Consider the differential equation

U4 =F(U )&F(Ui&1)&si (U&Ui&1) (4.18)

near the equilibrium U=Ui . According to Eqs. (4.6) and (4.7), the
hypotheses of Lemma 4.2 hold for this differential equation with k=2.
Therefore, the corresponding differential equation on the center manifold of
Ui is _* =b_3+ } } } , where b{0 has the same sign as does the quantity
D2*1(Ui ) (r1(U i ), r1(Ui ))+D*1(U i ) Dr1(Ui ) r1(Ui ). If Ui&1{Ui , then
because the shock wave has a connection, we must have b<0 (see Figs. 3b
and c). Therefore no 1-family rarefaction wave can begin at U i . g

For example, if condition (G1) is violated for an R } RS wave, then
another nondegeneracy condition must be violated simultaneously: either
this shock wave has zero strength, the rarefaction wave following it has
zero strength, or Ui is a degenerate point on the inflection locus. Therefore
we expect this phenomenon to have codimension at least two.

We now discuss the nondegeneracy conditions for the various shock
types.

4.1.3. R } S Shock Waves

The R } S shock wave must be the first wave, w1 : U0 w�
s1 U1 . The non-

degeneracy conditions are U0{U1 , *1(U0)>s1 , *2(U1)>s1>*1(U1), and
(C0b). Breaking of the connection from U0 to U1 by a saddle-attractor is
expected to have codimension at least two, according to Lemma 4.1. There-
fore the codimension-one phenomena are as follows.

(1) U0=U1 : the repeller and saddle point coalesce, forming a
repeller-saddle.

(2) *1(U0)=s1 : the shock type of w1 becomes RS } S.

(3) *2(U1)=s1 : the shock type becomes R } SA with the connection
being distinguished.

(4) *1(U1)=s1 : the shock type becomes R } RS.

(5) The connection from U0 to U1 is broken by a repeller-saddle.

(6) The connection is broken by a saddle.

In cases (1)�(4), the extra equations H=0 are (1) *1(U0)&s1=0, (2)
*1(U0)&s1=0, (3) *2(U1)&s1=0, and (4) s1&*1(U1)=0, respectively. In
case (3), the connection is distinguished because it arises as the limit of
R } S connections. In case (6), the extra equation is that a separation func-
tion for two saddles vanishes. To find the extra equation in case (5), let
(U0 , s1 , U1 , s2 ,..., sn , Un , F ) lie in the boundary of the set of structurally
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stable Riemann solutions of type (R } S, T2 ,..., Tn), with the connection
from U0 to U1 broken by an equilibrium U� of type RS for the equation

U4 =F(U )&F(U0)&s1(U&U0) (4.19)

Once such an equilibrium exists, the condition that there be a connection
from U0 to U� , and another from U� to U1 , is an open condition. Such
repeller-saddle equilibria exist along a codimension-one surface in (U0 , s1)-
space, across which Eq. (4.19) undergoes a saddle-node bifurcation. The
extra function H, which depends only on (U0 , s1), is defined to have this
saddle-node bifurcation surface as its zero set.

4.1.4. R } RS Shock Waves

The R } RS shock wave must be the first wave, w1 : U0 w�
s1 U1 . The

nondegeneracy conditions are U0{U1 , *1(U0)>s1 , *2(U1)>s1 , (C0b),
(G1), and (B1). Since *1(U1)=s1 , violation of *2(U1)>s1 would entail
that *2(U1)=*1(U1), i.e., U1 would not belong to the strictly hyperbolic
region; we therefore exclude this possibility. Breaking of the connection
from U0 to U1 by a saddle-attractor is expected to have codimension at
least two, according to Lemma 4.1. Violation of condition (G1) when
U0{U1 is also expected to have codimension at least two, according to
Lemma 4.3. Therefore the codimension-one phenomena are as follows.

(1) U0=U1 : the repeller and repeller-saddle coalesce, forming a
repeller-saddle with equation _* =b_3+ } } } , where b>0, on its
center manifold (see Fig. 3c). Thus violation of U0{U1 entails
violation of condition (G1).

(2) *1(U0)=s1 : the shock type of w1 becomes RS } RS.

(3) The connection from U0 to U1 is broken by a repeller-saddle.

(4) The connection is broken by a saddle.

(5) Condition (B1) is violated: the appropriate nondegeneracy condi-
tion here is that as s varies in the equation U4 =F(U )&F(U0)&
s(U&U0), a transcritical bifurcation [3] (instead of a saddle-
node bifurcation) occurs at s=s1 , U=U1 .

In cases (1)�(3), the extra equation H=0 is similar to ones already
discussed. In case (4), the extra equation says that the separation between
the unstable manifold of the intermediate saddle U� and the center manifold
of U1 vanishes. In case (5), it is l1(U1)(U1&U0)=0.

4.1.5. RS } S Shock Waves

Let the RS } S shock wave be wi : Ui&1 w�
si Ui . The nondegeneracy

conditions are Ui&1{Ui , *2(U i&1)>si , *2(Ui )>si>*1(Ui ), (C0b), (G2),
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and (C1). Violation of *2(Ui&1)>si leads to loss of strict hyperbolicity.
Breaking of the connection from Ui&1 to Ui by a saddle-attractor is expected
to have codimension at least two, according to Lemma 4.1. Violation of
condition (G2) when Ui&1{Ui is also expected to have codimension at least
two, according to Lemma 4.3. Therefore the codimension-one phenomena
are as follows.

(1) Ui&1=Ui : the equilibria coalesce, forming an equilibrium with
equation _* =b_3+ } } } , where b<0, on its center manifold (see
Fig. 3b). Thus violation of Ui&1{Ui entails violation of condi-
tion (G2).

(2) *1(Ui )=si : the shock type of wi becomes RS } RS.

(3) *2(Ui )=si : the shock type becomes RS } SA with the connection
being distinguished.

(4) The connection from Ui&1 to Ui is distinguished.

(5) The connection is broken by a repeller-saddle.

(6) The connection is broken by a saddle.

In cases (1)�(3), (5), and (6), the extra equations are similar to ones
already discussed. In case (4), the extra equation says that the separation
between the unstable manifold of Ui&1 and the stable manifold of Ui

vanishes.

4.1.6. RS } RS Shock Waves

Let the RS } RS shock wave be wi : Ui&1 w�
si Ui . The nondegeneracy

conditions are Ui&1{Ui , *2(U i&1)>si , *2(Ui )>si , (C0b), (G3), (G4),
(B2), and (C2). Violation of *2(Ui&1)>si or *2(Ui )>si leads to loss
of strict hyperbolicity. Breaking of the connection from Ui&1 to Ui by a
saddle-attractor is expected to have codimension at least two, according to
Lemma 4.1. Violation of either condition (G3) or condition (G4) when
Ui&1{Ui is also expected to have codimension at least two, according to
Lemma 4.3. Therefore the codimension-one phenomena are as follows.

(1) Ui&1=Ui : the equilibria coalesce, forming an equilibrium with
equation _* =b_4+ } } } , where b{0, on its center manifold (see
Fig. 3a). Thus violation of Ui&1{Ui entails violation of condi-
tions (G3) and (G4).

(2) Condition (B2) is violated: as in Section 4.1.4, the appropriate
nondegeneracy condition here is that as s varies in U4 =F(U )&
F(Ui&1)&s(U&Ui&1), a transcritical bifurcation (instead of a
saddle-node bifurcation) occurs at s=si , U=Ui .
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(3) The connection from Ui&1 to Ui is distinguished.

(4) The connection is broken by a repeller-saddle.

(5) The connection from by a saddle.

In case (1), the extra equation is D*1(Ui&1) r1(Ui&1)=0. In cases
(2)�(5), the extra equations are similar to ones already discussed.

4.1.7. S } S Shock Waves

Let the S } S shock wave be wi : Ui&1 w�
si Ui . The nondegeneracy

conditions are Ui&1{Ui , *2(U i&1)>si>*1(Ui&1), *2(Ui )>si>*1(Ui ),
(C0b), and (T1). Violation of Ui&1{Ui would entail violation of strict
hyperbolicity. Since violation of condition (T1) requires that all entries of
a 3-component row vector vanish, it is expected to have codimension at
least three. Therefore the codimension-one phenomena are as follows.

(1) *1(Ui&1)=si : wi becomes an RS } S shock wave, which
necessarily has a distinguished connection. The degeneracy
*2(Ui )=si , which gives rise to an S } SA shock with distinguished
connection, is dual to this case.

(2) *1(Ui )=si : the shock type of wi becomes S } RS. The degeneracy
*2(Ui&1)=s i , which gives rise to an SA } S shock wave, is dual to
this case.

(3) The connection from Ui&1 to U i is broken by a repeller-saddle.
Breaking the connection by a saddle-attractor is dual to this case.

(4) The connection is broken by a saddle.

In cases (1) and (2), the extra equations are similar to ones already
discussed. Cases (3) and (4) are discussed in Appendix B.

4.1.8. S } RS Shock Waves

Let the S } RS shock wave be wi : Ui&1 w�
si Ui . The nondegeneracy

conditions are Ui&1{Ui , *2(U i&1)>si>*1(U i&1), *2(U i )>si , (C0b),
(G13), and (T2). Violation of Ui&1{Ui would entail violation of strict
hyperbolicity. Violation of condition (G13) when Ui&1{Ui is expected
to have codimension at least two, according to Lemma 4.3. Violation of
condition (T2) requires a 2_3 matrix to have rank 1, which should be
a phenomenon of codimension at least two. Therefore the codimension-one
phenomena are as follows.

(1) *1(Ui&1)=si : wi becomes an RS } RS shock wave, which
necessarily has a distinguished connection.

(2) *2(Ui&1)=si : the shock type of wi becomes SA } RS.
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(3) The connection from Ui&1 to Ui is broken by a repeller-saddle.

(4) The connection is broken by a saddle-attractor.

(5) The connection is broken by a saddle.

In cases (1) and (2), the extra equations are similar to ones already
discussed. Cases (3)�(5) are discussed in Appendix B.

4.1.9. SA } RS Shock Waves

Let the SA } RS shock wave be wi : Ui&1 w�
si Ui . The nondegeneracy

conditions are Ui&1{Ui , si>*1(Ui&1), *2(Ui )>si , (C0b), (G15), (G16),
and (T4). Violation of one of the first three conditions leads to loss of strict
hyperbolicity. Violation of either condition (G15) or condition (G16) when
Ui&1{Ui is expected to have codimension at least two, according to
Lemma 4.3. Therefore the codimension-one phenomena are as follows.

(1) Violation of condition (T4).

(2) The connection from Ui&1 to U i is broken by a repeller-saddle.
Breaking the connection by a saddle-attractor is dual to this case.

(3) The connection is broken by a saddle.

In case (1), the extra equation is similar to one already discussed.
Cases (2) and (3) are discussed in Appendix B.

4.2. Wave Group Interaction Condition

The wave group interaction condition (H2), as stated in Section 2.9,
consists of several requirements, each being that a forward wave curve
U f

l(U0*, F*, _) through U*l should be transverse to a certain line L (either
the line 2{[0] associated with a transitional wave group, or the line
tangent to the backward wave curve associated to a 2-wave group). For a
codimension-one Riemann solution, it is possible for one of these transver-
sality conditions to be violated. The extra equation specifies that the
tangent �U f

l��_ at (U0*, F*, _*) lies in L. The nondegeneracy condition is
that the wave curve U f

l(U0*, F*, _) has a quadratic tangency to L.

Remark. If L is the line 2{[0] associated with a transitional wave
group, then L is tangent to the backward wave curve U b

l(U0* , F*, {)
through U*l . Indeed, if tangency of �U f

l��_ and L is the only degeneracy,
then the backward wave curve U b

l(U0* , F*, {) that includes all transitional
wave groups beyond U*l is well-defined, and, moreover, its tangent line
is 2. (This result is established for a special case in the proof Prop. 6.3 in
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Table VII. V } S S } V Wave Sequences

wi&1"wi S } RS S } S S } SA S } A

R } S 1 2 3 4
RS } S 5 6 7 3d

S } S 8 9 6d 2d

SA } S 10 8d 5d 1d

Ref. 17; the general case is proved the same way.) Therefore the failure of
the wave group interaction condition can always be interpreted as tangency
of a forward and a backward wave curve.

4.3. Different Shock Speeds

If a V } S wave wi&1 is followed by an S } V wave wi in a structurally
stable Riemann solution, 1 of the 16 situations listed and numbered in
Table VII occurs. For k=1, 2, 3, 5, 6, and 8, the wave sequence labeled kd

is dual to the wave sequence labeled k. There are thus 10 essentially distinct
cases. In each case, violation of condition (H3) occurs when si&si&1=0;
this is the extra equation. We label these degeneracies using the notation,
such as

R } S W S } RS (4.20)

4.4. Codimension-One Riemann Solutions

Sixty-three candidates for codimension-one Riemann solutions have
been listed in this section: 52 in Section 4.1, 1 in Section 4.2, and 10 in
Section 4.3. Many of these cases have already been analyzed (see, e.g.,
Refs. 23 and 11). We are led to the following conjecture.

Conjecture �I�I The 63 degeneracies of structurally stable Riemann
solutions listed above give rise, under suitable nondegeneracy hypotheses, to
codimension-one Riemann solutions.

5. FOLDS, FRONTIERS, AND JOINS

In this section, we classify the 63 codimension-one cases listed in
Section 4 as folds, frontiers, or joins.
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5.1. Folds

Four cases��the transcritical bifurcation cases R } RS(5) and
RS } RS(2), the doubly sonic transitional case SA } RS(1), and violation of
the wave group interaction condition��are expected to be folds. The
reasons are as follows.

(A) For the transcritical bifurcation case R } RS(5), the nondegeneracy
condition (B1) is violated. Let (U0* , s1* , U1* , s2* ,..., sn*, Un* , F*) lie in the
boundary of the set of structurally stable Riemann solutions of type
(R } RS, R1 , T3 ,..., Tn); assume that the bifurcation diagram of the differen-
tial equation

U4 =F*(U )&F*(U0*)&s1(U&U0*) (5.1)

has a transcritical bifurcation at s1=s1* , U=U 1* , as in Fig. 10. We are
interested in U0 near U0* for which we can find a nondegenerate R } RS
shock wave, with speed s1 near s1* , from U0 to a state near U 1*. For such
U0 we will have a Riemann solution of type (R } RS, R1 , T3 ,..., Tn) to any
right state near Un*.

In other words, the bifurcation diagram of the equation

U4 =F*(U )&F*(U0)&s1(U&U0) (5.2)

should have a saddle-node bifurcation near s1=s1* , U=U1* . However, we
expect that in U0-space there is a curve for which we have the bifurcation
diagram shown in Fig. 10b; on one side of this curve we have the bifurcation
diagram shown in Fig. 10a, and on the other side we have the bifurcation

Fig. 10. Perturbation of a transcritical bifurcation.
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diagram shown in Fig. 10c. Thus for U0 on one side of the curve, and for
Un near Un*, there should be two nearby Riemann solutions; on the other
side, there should be none. This indicates that there is a fold in the Riemann
solution manifold R.

Similarly, the transcritical bifurcation case RS } RS(2) also gives rise to
a fold in the Riemann solution manifold R. In this case, however, it may
be necessary to change F (not just U0) in order to change the bifurcation
diagram of Fig. 10b. Indeed, this degeneracy can give rise to an F-boundary
as well as a UL -boundary; see Section 6.

(B) The case SA } RS(1), in which condition (T4) is violated for a
doubly sonic transitional wave w*: U*& w�s* U*+ , is a fold for the following
reason. Consider the family of differential equations

U4 =F*(U )&F*(U&)&s(U&U&) (5.3)

parameterized by (U& , s). We assume that there is a curve (U&({), s({))
through (U*& , s*) such that Eq. (5.3) has an equilibrium of type SA at
U&({) and one of type RS at some corresponding equilibrium U+({). The
separation function SF*({) between the center manifolds of U&({) and
U+({) vanishes at any {* for which there is a connection from U&({) to
U+({). Condition (T4) means that S$F*({*){0; if it is violated, then we
have that S$F* ({*)=0, and typically that S"F* ({*){0. For F near F* we
have an analogous function SF ({). On one side of a codimension-one sur-
face in F-space, there are two solutions of SF=0; on the other side there
are none. Again, there is a fold in the Riemann solution manifold R.

(C) Violation of the wave group interaction condition is similarly easy
to understand. If the forward wave curve U f

l(U 0*, F*, _) and the line L
defined in Section 4.2 have a quadratic tangency, perturbation of U0 , Un ,
or F should produce two, one, or zero intersections. Again, there is a fold
in the Riemann solution manifold.

5.2. Frontiers

The cases R } S W S } A, R } S W S } SA, R } S(3), RS } S W S } SA, and
RS } S(3) are frontiers, as we now explain.

Consider a codimension-one Riemann solution of type R } S W S } A,
defined by the wave sequence U0* w�

s*1 U 1* w�
s*2 U2* of type (R } S, S } A) with

s2*=s1*. The phase portrait of the corresponding equation

U4 =F(U )&F(U0*)&s1*(U&U0*) (5.4)
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Fig. 11. Possible phase portraits for Riemann solutions of type R } S W S } A.

is shown in Fig. 11a. Such a solution lies in a frontier of R. Indeed, the
connections for the shock waves U0* w�

s*1 U1* and U 1* w�
s*2 U2* are each stable

under perturbation; therefore, nearby shock waves U0 w�
s1 U1 and

U1 w�
s2 U2 have types R } S and S } A, respectively. To combine these shock

waves into a Riemann solution U0 w�
s1 U1 w�

s2 U2 , we need s1�s2 . Thus R

is a manifold-with-boundary.
However, a frontier does not necessarily lead to nonexistence of solu-

tions of Riemann problems. Suppose that the phase portrait of Eq. (5.4)
contains a second saddle point U� 1* that is connected to both U0* and U 2* ,
as in Fig. 11b. Then U0* w�

s� *1 U� 1* w�
s� *2 U 2* is also a Riemann solution of type

(R } S, S } A) with s� 2*=s� 1*(=s2*=s1*). This solution belongs to the
codimension-one surface bounding a second region of structurally stable
Riemann solutions U0 w�

s� 1 U� 1 w�
s� 2 U2 of type (R } S, S } A). Moreover, the

weak solutions U� (!) corresponding to U0* w�
s*1 U 1* w�

s*2 U 2* and to
U0* w�

s� *1 U� 1* w�
s� *2 U2* are identical, despite that these Riemann solutions are

not equivalent (in the sense of Section 3.1). Thus solutions of type
(R } S, S } A) are continued by other solutions of the same type, although
the shock waves involved have profiles that change abruptly at the
codimension-one boundary. Depending on how the second region of
structurally stable solutions projects onto UL_UR_B, it might be that
solutions of Riemann problems exist throughout a neighborhood of
(U0* , U2* , F*).

Similarly, the case R } S W S } SA is a frontier. In this case, the phase
portrait for Eq. (5.4) is shown in Fig. 12a. Just as before, R is a manifold-
with-boundary. However, the phase portrait might contain a distinguished
connection from the repeller U0* to the saddle-attractor U2* , as in Fig. 12b.
Such a connection corresponds to a codimension-one Riemann solution of
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Fig. 12. Possible phase portraits for Riemann solutions of type R } S W S } SA.

type R } S(3), which is also a frontier. Moreover, the weak solutions corre-
sponding to the R } S W S } SA and R } S(3) solutions are the same. Thus
structurally stable Riemann solutions containing the types (R } S, S } SA, R2)
can sometimes be continued by ones containing the types (R } S, R2), and
vice versa, although the profiles for the shock waves change discontinuously
at the codimension-one boundary.

Analogously, cases RS } S W S } SA and RS } S(3) are frontiers. Structur-
ally stable Riemann solutions containing the types (R1 , RS } S, S } SA, R2)
and (R1 , RS } S, R2) can be continuations of each other, with a discontinuous
change in the shock profiles at the boundary.

The reader should notice that in the five frontier cases, overcom-
pressive shock waves, of types R } A, R } SA, and RS } A, are present. No
overcompressive waves appear in other codimension-one Riemann solutions.

5.3. Joins

Other than the 4 fold cases and the 5 frontier cases, there are 54
conjectured codimension-one cases. These cases are listed as 27 pairs in
Tables VIII�XI. As can be verified easily, the members of each pair lead to
equivalent generalized allowed wave sequences, in the sense of Section 3.
(For the joins in Table IX, the verification uses Lemma 4.2.) Therefore
these pairs form 27 Riemann solution joins.

6. F-, UL -, AND INTERMEDIATE BOUNDARIES

Codimension-one Riemann solutions can be parameterized (in a suit-
able neighborhood) by the points of a codimension-one submanifold S of
(UL , UR , F )-space, R2_R2_B. In this section, we classify such solutions,
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Table VIII. Joins Caused by a Zero-Strength Rarefaction Wave

Zero-strength rarefaction Matching degeneracy

0 R } S(1)
0 RS } RS R } RS(2)
0 RS } S R } S(2)
R } RS 0 R } S(4)

R } RS 0 RS } RS R } RS(3)
R } RS 0 RS } S R } S(5)

RS } RS 0 RS } S(2)
RS } RS 0 RS } RS RS } RS(4)
RS } RS 0 RS } S RS } S(5)

S } RS 0 S } S(2)
S } RS 0 RS } RS S } RS(3)
S } RS 0 RS } S S } S(3)

SA } RS 0 Dual of S } RS(2)
SA } RS 0 RS } RS SA } RS(2)
SA } RS 0 RS } S Dual of S } RS(4)

Table IX. Joins in Which Genuine Nonlinearity Fails Within a Rarefaction Wave

Rarefaction wave degeneracy Matching degeneracy

R1(1) R } RS(1)
R1(2) RS } S(1)
R1(3) RS } RS(1)

Table X. Joins Occurring When Shock Speeds Coincide

Wave sequence with coinciding shock speeds Matching degeneracy

R } S W S } RS R } RS(4)
R } S W S } S R } S(6)

RS } S W S } RS RS } RS(5)
RS } S W S } S RS } S(6)
S } S W S } RS S } RS(5)
S } S W S } S S } S(4)

SA } S W S } RS SA } RS(3)
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Table XI. Joins Caused by a Distinguished Connection

Distinguished connection degeneracy Matching degeneracy

RS } RS(3) S } RS(1)
RS } S(4) S } S(1)

as identified in Section 4, in terms of how S is situated in R2_R2_B, i.e.,
whether they are F-boundaries, UL -boundaries or duals, or intermediate
boundaries.

Consider a codimension-one Riemann solution (2.9) of type
(T1* ,..., Tn*) with defining map G and extra equation H=0. According to
condition (Q7), the solution set M of the equation G(U0 , s1 ,..., sn , Un , F )
=0, subject to H(U0 , s1 ,..., sn , Un , F )�0, is a graph over a manifold-with-
boundary in U0_Un_F with boundary S. Thus (s1 , U1 ,..., Un&1 , sn) can
be expressed locally as a continuous function of (U0 , Un , F ). [If condition
(Q72) holds, this function is not smooth, but smoothness is not needed for
our purpose here.] Using this function we can write H(U0 , s1 ,..., sn , Un , F )
as H� (U0 , Un , F ). The equation H� (U0 , Un , F )=0 defines the codimension-
one manifold S within (U0 , Un , F )-space. The classification of the
Riemann solution (2.9) is determined by how H� depends on U0 , Un , and
F : if H� is independent of U0 and Un , the Riemann solution is an F-bound-
ary; otherwise, if H� is independent of Un (respectively, of U0), the Riemann
solution is a UL-boundary (resp., dual); and if H� depends on both U0

and Un , the Riemann solution is an intermediate boundary. As we will see,
the classification is determined by the position of the degeneracy with
respect to rarefaction waves.

Each of the conjectured codimension-one Riemann solutions listed in
Section 4 involves one of the following phenomena:

(a) degeneracy in a shock or rarefaction wave w*l (Section 4.1);

(b) tangency of a forward wave curve U f
l(U 0*, F*, _) with a certain

line L (Section 4.2);

(c) equality of speeds for shock waves w*l&1 and w*l (Section 4.3).

In case (a), the function H depends solely on (Ul&1 , sl , Ul , F ).
Suppose that w*l occurs in a sequence (w1* ,..., wp*) such that
� p

i=1 \(Ti*)=0. Then the defining equation can be split into two equations
of the form

G (1)(U0 , s1 ,..., sp , Up , F )=0 (6.1)

G (2)(Up , sp+1 ,..., sn , Un , F )=0 (6.2)
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Since the sum of the Riemann numbers is 0, the first of these equations can
be solved for (s1 , U1 ,..., sp , Up) in terms of (U0 , F ). In particular, H� depends
only on U0 and F, so that the Riemann solution is a UL -boundary.

In case (b), the forward wave curve depends solely on U0 , F, and the
parameter _, which is determined by Ul ; thus the function H depends
solely on (U0 , Ul , F ). By the same reasoning as in case (a), the Riemann
solution is a UL-boundary if w*l occurs in a sequence (w1*,..., wp*) such that
� p

i=1 \(Ti*)=0.
In case (c), the function H depends solely on (sl&1 , sl , F ). Again the

Riemann solution is a UL-boundary if w*l occurs in a sequence (w1* ,..., wp*)
such that � p

i=1 \(Ti*)=0.

Definition 6.1. Consider one of the conjectured codimension-one
Riemann solutions.

(a) Suppose that the degeneracy occurs in a shock or rarefaction
wave w*l . Then this degeneracy is said to precede each wave w*m
for which m>l, and it is said to follow each wave w*m for which
m<l.

(b) Suppose that the forward wave curve U f
l(U0* , F*, _) is tangent

to the line L. Then this degeneracy is said to precede each wave
w*m for which m�l+1, and it is said to follow each wave w*m for
which m�l. (We regard the degeneracy as occurring at U*l .)

(c) Suppose that the shock waves w*l&1 and w*l have equal speeds.
Then this degeneracy is said to precede each wave w*m for which
m�l, and it is said to follow each wave w*m for which m�l&1.
(We regard the degeneracy as occurring at U*l&1 , the state com-
mon to w*l&1 and w*l .)

Lemma >I"I For the conjectured codimension-one Riemann solutions,
described as above, w*l occurs in a sequence (w1* ,..., wp*) such that
� p

i=1 \(Ti*)=0 if the degeneracy precedes a 1-family rarefaction wave.

Proof. Suppose that the degeneracy precedes a wave of type R1 . This
wave occurs in a composite 1-wave group (2.28) or a slow composite tran-
sitional wave group (2.29). Let w*m denote the last wave of type R1 (the one
that is not optional) in this wave sequence. Then Theorem 2.2 implies that
�m&1

i=1 \(Ti*)=0. Since the degeneracy precedes the 1-family rarefaction
wave, l<m. [In case (c), notice that w*l is a shock wave, so that m{l.]
Therefore we can take p=m&1. g
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This lemma inspires the following conjecture. Under appropriate non-
degeneracy conditions,

(1) if the degeneracy follows all waves of type R1 and precedes all
waves of type R2 , it is an intermediate boundary;

(2) if the degeneracy precedes at least one wave of type R1 and
precedes all waves of type R2 , it is a UL -boundary, and the case
where the degeneracy follows all waves of type R1 and follows at
least one wave of type R2 is dual;

(3) if the degeneracy precedes at least one wave of type R1 and
follows at least one wave of type R2 , it is an F-boundary.

If this conjecture is true, then it is location in the wave sequence,
not wave type, that determines whether a degeneracy is an intermediate
boundary, a UL -boundary or dual, or an F-boundary. For example, any
degeneracy that occurs between two SA } RS waves is an F-boundary.
However, in most cases, the type of degeneracy limits its possible locations
in the wave sequence. For example, a degeneracy of type R } S W S } A is an
intermediate boundary, one in an SA } RS wave is an F-boundary, and if
there are no doubly sonic transitional waves, then a degeneracy of type
R } S wave is a UL- or intermediate boundary, one in an R } RS wave is a
UL -boundary, and one in an RS } RS or S } RS wave is an F- or UL-bound-
ary. On the other hand, a degeneracy in an RS } S or S } S wave can be any
of the four kinds of boundaries.

7. WAVE CURVES

In this section, we discuss codimension-one Riemann solutions from
the perspective of wave curves. Consider the structurally stable Riemann
solution (2.9) for Ut+F*(U )x=0. As in Section 2.9, we can choose a wave
w*l that is the last wave in a 1-wave or transitional wave group and define
associated maps s f

i and U f
i , i=1,..., l. If U0=U 0* and F=F* are held fixed

and _ is varied, the state U f
l(U0* , F*, _) traces a portion of the forward

wave curve associated with U0* (and the choice w*l ). Dually, we can define
the backward wave curves. A smooth portion of a wave curve can be
extended until the associated Riemann solution becomes structurally
unstable. If such a point of degeneracy represents a codimension-one
Riemann solution that is a join, then in some circumstances the point can
be regarded as a junction point at which two smooth parts of a wave curve,
corresponding to different types of Riemann solutions, join to form a con-
tinuous curve. For some types of degeneracies, the wave curve is even C1

at the junction points.
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For definiteness we consider a forward wave curve. Let

(w1* ,..., w*l ): U0* w�
s*1 } } } w�

s*l U*l (7.1)

be a wave sequence of type (T1* ,..., T*l ) for Ut+F*(U )x=0 consisting of
a 1-wave group and zero or more transitional wave groups, with G*
denoting its defining map. Suppose that this sequence is part of a codimen-
sion-one Riemann solution, with extra equation H*=0. Assume that the
degeneracy occurs within the sequence (7.1) and that it follows all R1

waves, so that, according to Section 6, it does not lead to a UL-boundary
or to an F-boundary. Suppose, further, that the degeneracy is one of the
27 joins in Tables VIII�XI. Thus the Riemann solution in which the wave
sequence (7.1) appears is equivalent to another codimension-one Riemann
solution, and the sequence (7.1) corresponds to a wave sequence

(w*
1 ,..., w*

k ): U *
0 w�

s1
*

} } } w�
sk

*

U *
k (7.2)

of type (T >
1 ,..., T >

k). Let G* be the defining map for the sequence (7.2), and
let H*=0 be the extra equation defining its degeneracy. Then we expect
the following statements to hold under appropriate nondegeneracy conditions:

For suitable open neighborhoods U0 of U 0* and F of F*, and an =>0:

v There exist smooth mappings _̂(U0), defined on U0 , and s f
i (U0 , F, _)

and U f
i (U0 , F, _), defined for U0 # U0 , F # F, _ # [_̂(U0), _*+=),

and i=1,..., l, with _̂(U0*)=_*, s f
i (U0*, F*, _*)=si* , and U f

i (U0* ,
F*, _*)=U i*, such that G*=0 and H*�0 when si=s f

i (U0 , F, _)
and Ui=U f

i (U0 , F, _) for i=1,..., l. Furthermore, H*=0 if and
only if _=_̂(U0). In particular, there exists a family

U0 wwww�
s1

f(U0 , F, _)
} } } wwww�

s f
l (U0 , F, _)

U f
l(U0 , F, _) (7.3)

of wave sequence for Ut+F(U )x=0 of type (T1* ,..., T*l ).

v There exist smooth mappings s*
i (U0 , F, _) and U *

i (U0 , F, _),
defined for U0 # U0 , F # F, _ # (_*&=, _̂(U0)], and i=1,..., k, with
s*

i (U0*, F*, _*)=si* and U *
i (U 0*, F*, _*)=U i*, such that G*=0

and H*�0 when si=s*
i (U0 , F, _) and Ui=U *

i (U0 , F, _) for
i=1,..., k. Furthermore, H*=0 if and only if _=_̂(U0). In par-
ticular, there exists a family

U0 wwww�
s1

*(U0 , F, _)
} } } wwww�

sk
*(U0 , F, _)

U *
k (U0 , F, _) (7.4)

of wave sequence for Ut+F(U )x=0 of type (T *
1 ,..., T *

k ).
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Table XII. Changes from an R } S Shock Wave to a Composite 1-Wave Group

Ti Degeneracy Matching degeneracy Replacement for Ti in (T >
1 ,..., T >

k)

R } S R } S(1) 0 R1

R } S R } S(2) 0 RS } S R1 RS } S
R } S R } S(4) R } RS 0 R } RS R1

R } S R } S(5) R } RS 0 RS } S R } RS R1 RS } S

v For _=_̂(U0), the wave sequences (7.3) and (7.4) are equivalent.

Thus the curves U f
l(U0 , F, _) for _�_̂(U0) and U >

k (U0 , F, _) for _�_̂(U0)
fit together to form a continuous curve. In this situation, we consider the
forward wave curve associated with U0 to comprise not only the states
U f

l(U0 , F, _) but also U >
k (U0 , F, _) as _ is varied; in addition, the point

U f
l (U0 , F, _̂(U0))=U >

k (U0 , F, _̂(U0)) is called a junction point.
From Tables VIII�XI we find 15 codimension-one degeneracies that

cause junction points in forward wave curves. Indeed, the assumption that
the degeneracy should follow all R1 waves (and thus is not a UL - or
F-boundary) rules out 12 of the joins in these tables, namely, those that
occur in V } RS shock waves. Two more degeneracies, R } S(3) and RS } S(3),
are overcompressive cases discussed in Section 5; at these degeneracies, the
forward wave curve terminates.

Tables XII�XVIII indicate the changes in wave structure that occur at
these 15 codimension-one junction points. In these tables, Ti denotes the
type of the wave in the forward wave curve sequence (7.3) that degenerates
at the junction point. In all cases, the sequence of types (T >

1 ,..., T >
k) is iden-

tical to (T1 ,..., Tl) except that Ti has been replaced by a sequence of one,
two, or three different wave types. Notice also that none of the wave types
after Ti in (T1 ,..., Tl) (or after the replacement for Ti in (T >

1 ,..., T >
k)) can be

of type R1 .

Table XIII. Changes in the 1-Wave Group or in a Slow Transitional Wave Group

Ti Degeneracy Matching degeneracy Replacement for Ti in (T >
1 ,..., T >

k)

RS } S RS } S(2) RS } RS 0 RS } RS R1

RS } S RS } S(5) RS } RS 0 RS } S RS } RS R1 RS } S
R1 R1(2) RS } S(1) R1 RS } S
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Table XIV. Change from an S } S Transitional Wave to a Composite Slow Transitional
Wave Group

Ti Degeneracy Matching degeneracy Replacement for Ti in (T >
1 ,..., T >

k)

S } S S } S(2) S } RS 0 S } RS R1

S } S S } S(3) S } RS 0 RS } S S } RS R1 RS } S

Table XV. Formation of an S } S Transitional Wave from an R } S Shock Wave

Ti Degeneracy Matching degeneracy Replacement for Ti in (T1 ,>..., T >
k)

R } S R } S(6) R } S W S } S R } S S } S

Table XVI. Formation of an S } S Transitional Wave from a Composite 1-Wave Group or
Composite Slow Transitional Wave Group

Ti Degeneracy Matching degeneracy Replacement for Ti in (T >
1 ,..., T >

k)

RS } S RS } S(4) S } S(1) S } S
RS } S RS } S(6) RS } S W S } S RS } S S } S

Table XVII. Formation of an S } S Transitional Wave from Another Such Wave

Ti Degeneracy Matching degenracy Replacement for Ti in (T >
1 ,..., T >

k)

S } S S } S(4) S } S W S } S S } S S } S

Table XVIII. Formation of an SA } RS Wave from a Composite Fast Transitional Wave
Group

Ti Degeneracy Matching degeneracy Replacement for Ti in (T >
1 ,..., T >

k)

SA } S Dual of S } RS(2) SA } RS 0 SA } RS R1

SA } S Dual of S } RS(4) SA } RS 0 RS } S SA } RS R1 RS } S
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Table XIX. Changes in a Composite Fast Transitional Wave Group

Ti Degeneracy Matching degeneracy Replacement for Ti in (T >
1 ,..., T >

k)

R2 Dual of R1(3) Dual of RS } RS(1) SA } SA
SA } SA Dual of RS } RS(4) SA } SA 0 SA } SA SA } SA R2 SA } SA
SA } S Dual of S } RS(1) Dual of RS } RS(3) SA } SA
SA } S Dual of S } RS(3) SA } SA 0 SA } S SA } SA R2 SA } S

We must also consider which of the duals of the 27 joins can give rise
to junction points in forward wave curves. Of the 27 joins, 9 are of type
R } V. Their duals are of type V } A and hence cannot occur in forward wave
curves. Four other joins are of type SA } V. Their duals are of type V } RS;
hence they precede a wave of type R1 , and so cannot give rise to junction
points in forward wave curves. One more join, S } S(4), is its own dual.

Of the remaining 13 joins, 7 are cases that appear in Tables XII�XVIII
and have distinct duals that can give rise to junction points in forward
wave curves. In fact, each entry in Table XIII has a dual that represents a
change in a fast transitional wave group, each entry in Table XIV has a
dual that represents a change from an S } S transitional wave to a com-
posite fast transitional wave group, and each entry in Table XVI has a dual
that represents the formation of an S } S transitional wave from a com-
posite fast transitional wave group.

The remaining six joins are listed in Tables XIX�XXI.
The wave curve tables indicate how the structure of a Riemann solu-

tion can become complicated. Consider beginning with the left state UL

and following the forward wave curve. As in the Lax theory [10], the local
wave curve consists of two branches, one corresponding to R1 rarefaction
waves and the other to R } S shock waves. These branches can be continued
until a junction point is encountered, at which point the structure of the
1-wave group changes. For instance, along the shock branch there can be
an R } RS 0 degeneracy, after which the 1-wave group has the composite
type R } RS R1 , as seen from Table XII. Similarly, the rarefaction branch
can intersect the inflection locus, leading to the composite wave group
R1 RS } S, as in Table XIII. In continuing the wave curve further, the

Table XX. Splitting of a Composite Fast Transitional Wave Group

Ti Degeneracy Matching degeneracy Replacement for Ti in (T >
1 ,..., T >

k)

SA } SA Dual of RS } RS(5) SA } S W S } SA SA } S S } SA
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Table XXI. Formation of an S } S Wave from a Composite Fast Transitional Wave Group

Ti Degeneracy Matching degeneracy Replacement for Ti in (T >
1 ,..., T >

k)

SA } S Dual of S } RS(5) SA } S W S } S SA } S S } S

junction points listed in Tables XII and XIII lead to arbitrarily complicated
1-wave groups. These junction points all occur in the analysis of Liu [11].

More generally, the forward wave curve can comprise branches that
are disconnected from the branch through UL , and other junction points
listed in the wave curve tables can occur. For instance, the shock branch
(or a disconnected branch of the Hugoniot locus of UL) can encounter the
degeneracy R } S W S } S listed in Table XV, after which an S } S transitional
wave is part of the Riemann solution. This phenomenon is observed in
models with quadratic flux functions [19]. Thereafter, the slow transitional
wave group can become arbitrarily complicated, and other such groups can
be formed. Furthermore, the duals of the entries in Table XIV lead to the
formation of fast transitional wave groups. Finally, Table XVIII indicates
two mechanisms by which doubly sonic transitional waves can develop in
the forward wave curve.

8. SUMMARY

In Ref. 17, we constructed sets of structurally stable Riemann solutions
parameterized by manifolds. In the present paper, we have investigated
codimension-one Riemann solutions, in which structural stability fails in
a minimal way. We have formulated a definition for codimension-one
Riemann solutions, which entails that structurally stable and codimension-
one Riemann solutions together are parameterized by manifolds or mani-
folds-with-boundaries. Either a set of structurally stable solutions ends at
certain codimension-one boundaries (frontiers) or it is continued past the
boundary by another set (joins and folds). A comprehensive list of codimen-
sion-one Riemann solutions has been developed, and these solutions have
been classified according to their geometric properties (frontiers, joins, and
folds), their roles in solving Riemann problems (UL-, F-, and intermediate
boundaries), and their relationship to wave curves ( junction points).

APPENDIX A. RAREFACTION WAVES AND CENTER
MANIFOLDS

In this appendix, we prove Lemma 4.2. The proof is inspired by
Ref. 23.
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Proof. To simplify notation, let li*=li (U*) and ri*=ri (U*). Let
F8 ({) denote any function such that F8 $({)=DF(U8 ({)). It is easily verified
that for i�1, DiF8 (0) depends only on the derivatives of F at U* through
order i and on U8 $(0),..., Di&1U8 (0).

Since U8 ({) is an integral curve of the 1-family line field,

F8 $U8 $=*8 1U8 $ (A.1)

Differentiating this relation, we obtain

F8 "U8 $+F8 $U8 "=*8 $1U8 $+*8 1U8 " (A.2)

Setting {=0 and multiplying by l1* and l2* yields

l1*F8 "(0) U8 $(0)=*8 $1(0) (A.3)

l2*F8 "(0) U8 $(0)+[*8 2(0)&*8 1(0)] l2*U8 "(0)=0 (A.4)

From Eq. (4.16) we conclude that

l1*D iU8 =0 for all i�2 (A.5)

The function g(_) defining the differential equation (4.15) on the center
manifold of U* can be characterized as follows:

F(Uc(_))&F(U&)&s*[Uc(_)&U&]= g(_) U$c(_) (A.6)

Indeed, a solution _̂(!) of Eq. (4.15) is such that Uc(_̂(!)) solves Eq. (4.10),
so that

g(_̂) U$c(_̂)=
d

d!
Uc(_̂(!))=F(Uc(_̂))&F(U&)&s*[Uc(_̂)&U&] (A.7)

Since the left-hand side of Eq. (A.6) vanishes when _=0, whereas
U$c(0)=r1*{0, we must have

g(0)=0 (A.8)

Let Fc(_) denote any function such that F $c(_)=DF(Uc(_)). Just as
for F8 ({), one verifies that if i�1, then DiFc(0) depends only on the
derivatives of F at U* through order i and on U$c(0),..., Di&1Uc(0). In fact,
if U8 $(0)=U$c(0),..., D i&1U8 (0)=D i&1Uc(0), then DiF8 (0)=DiFc(0).
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Differentiating Eq. (A.6) yields

F $cU$c&s*U$c= g$U$c+ gU"c (A.9)

Setting _=0 and multiplying by l1* yields

g$(0)=0 (A.10)

Differentiating Eq. (A.9) yields

F"cU$c+F $cU"c&s*U"c= g"U$c+2g$U"c+ gU c$$$ (A.11)

Setting _=0 and multiplying by l1* and l2* yields

l1*F"c(0) U$c(0)= g"(0) (A.12)

l2*F"c(0) U$c(0)+[*8 2(0)&*8 1(0)] l2*U"c(0)=0 (A.13)

From Eq. (4.13) we find that

l1*D iUc=0 for all i�2 (A.14)

Since U8 $(0)=U$c(0)=r1* , we have F8 "(0)=F"c(0).
Comparison of Eqs. (A.3)�(A.5) with Eqs. (A.12)�(A.14) shows that

*8 $1(0)= g"(0) (A.15)

U8 "(0)=U"c(0) (A.16)

This completes the proof in the case k=1, which is the first step in an
inductive proof for general k.

Suppose that k�2, and assume that D j*8 1(0)=0 for j=1,..., k&1. As
has just been proved, the equations

D j*8 1(0)=D j+1g(0) for j=1,..., i&1 (A.17)

D j+1U8 (0)=D j+1Uc(0) for j=1,..., i&1 (A.18)

hold if i=2; proceeding by induction, suppose that they hold for an integer
i such that 2�i�k. Differentiating Eq. (A.1) i times, we obtain

:
i

j=1
\ i

j+ (D j+1F8 )(D i& j+1U8 )+F8 $Di+1U8

=(Di*8 1) U8 $+ :
i&1

j=1 \
i
j+ (D j*8 1)(Di& j+1U8 )+*8 1D i+1U8 (A.19)
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Setting {=0 and multiplying by l1* and l2* yields

l1* :
i

j=1 \
i
j + D j+1F8 (0) D i& j+1U8 (0)=Di*8 1(0) (A.20)

l2* :
i

j=1
\ i

j+ D j+1F8 (0) Di& j+1U8 (0)+[*8 2(0)&*8 1(0)] l2*Di+1U8 (0)=0

(A.21)

Differentiating Eq. (A.6) i+1 times, we obtain

:
i

j=1
\ i

j+ (D j+1Fc)(Di& j+1Uc)+F $cD i+1Uc&s*Di+1Uc

=(Di+1g) U$c+ :
i

j=1 \
i+1

j + (D jg)(D i& j+2Uc)+ gDi+2Uc (A.22)

Setting _=0 and multiplying by l1* and l2* yields

l1* :
i

j=1
\ i

j + D j+1Fc(0) Di& j+1Uc(0)=Di+1g(0) (A.23)

l2* :
i

j=1
\ i

j + D j+1Fc(0) Di& j+1Uc(0)

+[*8 2(0)&*8 1(0)] l2*D i+1Uc(0)=0 (A.24)

Equation (A.18) implies that

D j+1F8 (0)=D j+1Fc(0) for j=1,..., i (A.25)

Therefore comparison of Eqs. (A.20), (A.21), and (A.5) with Eqs. (A.23),
(A.24), and (A.14) yields the relations

Di*8 1(0)=Di+1g(0) (A.26)

Di+1U8 (0)=Di+1Uc(0) (A.27)

Continuing the induction to i=k yields the result.
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APPENDIX B. THE EXTRA EQUATION IN SEVEN CASES

B.1. The Case S } S(4)

Consider a Riemann solution Eq. (2.9) of type (T1 ,..., Tn), with

Tj=S } S and �n
i=1 \(Ti )=2, in which the j th wave wj*: U*j&1 w�

s*j U j* is a
generalized shock wave. Assume that the phase portrait of the equation

U4 =F(U )&F(U*j&1)&sj*(U&U*j&1) (B.1)

has an S } S connection U� 1(!) from U*j&1 to an equilibrium U� * and a
second S } S connection U� 2(!) from U� * to U j*. As in Ref. 17, we can use
line segments 7k through U� k (0), transverse to U� k (!), to define separation
functions Sk (Uj&1 , sj ) for k=1, 2. Then S1(Uj&1 , sj )=0 if and only if the
equation

U4 =F(U )&F(Uj&1)&sj (U&Uj&1) (B.2)

has a connection from U j&1 to a saddle point near U� *; similarly,
S2(Uj&1 , sj )=0 if and only if Eq. (B.2) has a connection from a saddle
point near U� * to one near Uj .

We assume the nondegeneracy conditions that the vectors
DSk (U*j&1 , sj*), k=1, 2, are linearly independent, and that the hyper-
bolicity ratio

r(U� *)= } *1(U� *)&sj*
*2(U� *)&sj* } (B.3)

differs from 1. Then in (Uj&1 , sj )-space, which is the parameter space for
Eq. (B.2), there are three smooth bifurcation surfaces M1 , M2 , and M
through (U*j&1 , sj*). The surfaces M1 and M2 are the zero sets of
S1(Uj&1 , sj ) and S2(Uj&1 , s j ), respectively. Therefore, along M1 (respec-
tively, M2), there are S } S connections from U j&1 to a saddle near U� *
(resp., from a saddle near U� * to one near U j*). The surfaces M1 and M2

meet transversally along a curve C. The surface M corresponds to connec-
tions from Uj&1 to a saddle near U j*. This surface has C as its boundary,
and it is tangent to M1 (respectively, M2) along C if r(U� *) is less than 1
(resp., greater than 1) [8].

Let us consider the case in which M is tangent to M2 (see Fig. B1); the
other case is analogous. The transversal 72 can be used to define a separa-
tion function S(Uj&1 , sj ) between the unstable manifold of U j&1 and the
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Fig. B1. The S } S(4) degeneracy: (a) phase portrait; (b) bifurcation diagram.

stable manifold of the saddle near Uj*; S is defined on one side of M1 , say
on S1>0. We can extend S to M1 by continuity; then the functions S and
S2 coincide along M1 . In fact, we can extend S to the region S1<0 by
setting it equal to S2 there; the extended S will be C1. The function S serves
as one coordinate function of G, and for the extra equation H=0 we can
use S1=0.

B.2. The Case S } S(3)

Consider a Riemann solution Eq. (2.9) of type (T1 ,..., Tn), with

Tj=S } S and �n
i=1 \(Ti )=2, in which the j th wave wj*: U*j&1 w�

s*j U j* is a
generalized shock wave. Assume that the phase portrait of Eq. (B.1) has an
S } RS connection U� 1(!) from U*j&1 to an equilibrium U� * and an RS } S
connection U� 2(!) from U� * to Uj*. There is a codimension-one surface N in
(Uj&1, sj )-space along which Eq. (B.2) has equilibria of type RS near U� *;
this equation undergoes a saddle-node bifurcation as N is crossed. There is
a function H(Uj&1 , sj ) that has N as its zero set, has nonzero derivative,
and is positive (respectively, negative) when Eq. (B.2) has two (resp., no)
equilibria near U� *.

The center manifold of U� * for Eq. (B.2) extends to a smooth family of
invariant manifolds W(Uj&1 , sj ). Let 71 be a line segment through U� 1(0),
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transverse to U� 1(!). Using 71 we can define (1) a separation function
S1(Uj&1 , sj ) for the unstable manifold of U j&1 and the extended center
manifold of U� * and (2) a separation function S(Uj&1 , sj ) for the unstable
manifold of Uj&1 and the stable manifold of the saddle near U j*. The func-
tion S is defined only when H(Uj&1 , sj )<0.

Along the surface N, the functions S1 and S coincide. In fact, we can
extend S to the region H>0 by setting it equal to S1 there; the extended
S will be as smooth as F. The function S serves as one coordinate function
of G, and we can use H=0 as the extra equation.

B.3. The Case S } RS (3)

Consider a Riemann solution Eq. (2.9) of type (T1 ,..., Tn), with

Tj=S } RS and �n
i=1 \(Ti )=2, in which the jth wave wj*: U*j&1 w�

s*j U j* is
a generalized shock wave. Assume that the phase portrait of Eq. (B.1) has
an S } RS connection U� 1(!) from U*j&1 to an equilibrium U� * and an
RS } RS connection U� 2(!) from U� * to U j*. This case is similar to the case
S } S(3), except that S(Uj&1 , sj ) is taken to be the separation function for
the unstable manifold of Uj&1 and the extended center manifold of U j*.

B.4. The Case S } RS (4)

Dually, we may consider the following degeneracy. Consider a
Riemann solution Eq. (2.9) of type (T1 ,..., Tn), with Tj=SA } S and

�n
i=1 \(Ti )=2, in which the j th wave wj*: U*j&1 w�

s*j U j* is a generalized
shock wave. Assume that the phase portrait of Eq. (B.1) has an SA } RS
connection U� 1(!) from U*j&1 to an equilibrium U� * and an RS } S connec-
tion U� 2(!) from U� * to U j*. This case is also similar to S } S(3), except that
S1(Uj&1 , sj ) (respectively, S(U j&1 , sj )) is taken to be the separation func-
tion for the extended center manifold of U*j&1 and the extended center
manifold of U� * (resp., the stable manifolds of saddles near U j*).

B.5. The Case S } RS (5)

Consider a Riemann solution Eq. (2.9) of type (T1 ,..., Tn), with

Ti=S } RS and �n
i=1 \(Ti )=2, in which the jth wave wj*: U*j&1 w�

s*j U j* is
a generalized shock wave. Assume that the phase portrait of Eq. (B.1) has
an S } S connection U� 1(!) from U*j&1 to an equilibrium U� *, and an S } RS
connection U� 2(!) from U� * to U j*. This case is similar to S } S(4), except
that S2(Uj&1 , sj ) (respectively, S(Uj&1 , sj )) is taken to be the separation

586 Schecter, Plohr, and Marchesin



function for the unstable manifolds of saddles near U� * (resp., the unstable
manifold of Uj&1) and the extended center manifold of U j*.

B.6. The Cases SA } RS (4) and SA } RS (3)

These cases are similar to S } RS(5) and S } RS(3) respectively, except
that the unstable manifold of the saddle Uj&1 is replaced by the extended
center manifold of U*j&1 .
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