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I. Introduction

A model for combustion of a solid fuel in one space dimension:

∂tu1 = ∂xxu1 + u2ρ(u1),

∂tu2 = −βu2ρ(u1),

where

ρ(u1)

{

0 if u1 ≤ 0,

e
− 1
u1 if u1 > 0.

.

u1

1

Graph of ρ(u1)

• u1 = temperature.
• u2 = concentration of unburned fuel.
• ρ = normalized reaction rate.
• β > 0 is the “exothermicity” parameter.
• u1 = 0 is a background temperature at which the reaction does not take place.
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We are interested in combustion fronts H(ξ) = (h1, h2)(ξ), ξ = x− σt.

ξ

u1

ξ

u2
1u1L

h1(ξ) h2(ξ)

• σ is the speed of the front.
• Without loss of generality, we take σ > 0.
• Behind the front: (h1, h2) = (u1L, 0).
• u1L > 0 is the temperature of combustion, which is to be determined.
• Ahead of the front: (h1, h2) = (0, u2R).
• u2R > 0 is the concentration of fuel in the medium.
• We normalize so that u2R = 1.

A combustion front is a traveling wave.

Stability of a traveling wave means that a small perturbation of it
converges to one of its translates.
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What’s in the literature?

(1) u1L = 1
β
.

(2) There is a unique combustion front with positive speed that ap-
proaches both end states exponentially, and a family of combustion
fronts with faster wave speeds that approach the burned end state (u, y) =
(1
β , 0) exponentially and the unburned end state (u1, u2) = (0, 1) more slowly.

(3) Only the combustion front that approaches both end states ex-
ponentially is “physical.”

(4) Numerical simulations indicate that as β increases, the combustion front loses
stability due to a pair of complex eigenvalues crossing the imaginary axis.

(5) For the linearization of the PDE at the combustion front, there is a bound on
the possible size of eigenvalues with Reλ ≥ 0.

(6) Numerical Evans function calculations indicate that the 0 eigen-
value (which traveling waves always have) is simple, and there
are no positive real eigenvalues for any β.

(1)–(3), (5) : Varas, F. and Vega, J., SIAM J. Appl. Math. 62 (2002), 1810–1822.
(4): Bayliss, A. and Matkowsky, B., SIAM J. Appl. Math. 50 (1990), 437–459.
(6): Balasuriya, S., Gottwald, G., Hornibrook, J., and Lafortune, S., SIAM J.

Appl. Math. 67 (2007), 464–486.
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We’ll only discuss the “physical” combustion front.

What kind of stability is it reasonable to expect?

x x

1
u1

x x

11/β

t = 0

t > 0

u2u1

u2

In a coordinate system moving with the speed of an exact traveling combustion
front, our solution is very close to the exact front for −a(t) < ξ < ∞, where
a(t) → ∞ as t→ ∞.
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The mathematical notion that captures this kind of stability is sta-
bility with respect to a norm with weight function eαξ, α > 0.

ξ

eαξ

A perturbation of the combustion front that is small in this norm is exponentially
close to the front at the right but may be far from it at the left.

ξ ξ
eαξv1(ξ)v1(ξ)

For stability in this norm, as time increases, the solution with a perturbed initial
condition must become very close to the combustion front at the right, but may
continue to be far from the combustion front far to the left.
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The linearization ∂tV = AV of the PDE at the
combustion front

The linearization of a PDE at a traveling waveH(ξ) always has 0 has an eigenvalue.
The eigenfunction is H ′(ξ).

Spectral stability of a traveling wave:

(1) 0 is a simple eigenvalue of A, and (2) the rest of the spectrum of A lies in
Re λ < −ν < 0.

In our problem, in the space BUC2 (BUC = bounded uniformly
continuous functions with the sup norm), the essential spectrum
includes the imaginary axis, hence no spectral stability.

Fortunately, introducing a norm with weight function eαξ, α > 0, moves
the essential spectrum to the left of the imaginary axis, hence there
is the possibility of spectral stability.
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Linearized stability of a traveling wave:

eAt has (1) a simple eigenvalue 1, and (2) a codimension-one invariant subspace on
which ‖eAt‖ ≤ Ke−νt for some ν > 0.

Spectral stability implies linearized stability for certain classes of operators, such
as sectorial operators. Unfortunately, A is not sectorial, even after weighting the
norm: The essential spectrum includes a vertical line.

This difficulty is typical of systems with no diffusion in some equations.
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For a system with no diffusion in some equations, the linearized system ∂tV = AV
generates a C0-semigroup, not an analytic semigroup. Linearized stability does not
always follow from spectral stability.

For traveling pulses (left and right states are the same) in such systems, Evans
showed that spectral stability does in fact imply linearized stability; his argument
was simplified by Bates and Jones. However, their arguments do not work for
traveling fronts (left and right states different).

How is it possible to have spectral stability without linearized sta-
bility?

||(A-λI)−1|| unbounded

Sp(A) Sp(etA)

1
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Linearized stability of the combustion front

BUC has the norm

‖u‖0 = sup
ξ∈R

|u(ξ)|.

BUCα = {u : R → R : eαξu(ξ) ∈ BUC} has the norm

‖u‖α = ‖eαξu(ξ)‖0 = sup
ξ∈R

eαξ|u(ξ)|.

α > 0 but not too big.

1. The eigenvalues of the linearization are the zeros of the Evans function D(λ).
We prove D′(0) > 0, so the 0 eigenvalue is simple.

2. We prove thatD(λ) is positive for large positive real λ. This is consistent
with stability.

3. We prove that in BUC2
α, if the only eigenvalue in Reλ ≥ 0 is 0, then

the combustion front is both spectrally stable and linearly stable.
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Verification that there are no eigenvalues in Reλ ≥ 0 other than 0 must be done by
a numerical Evans function calculation of a winding number, taking advantage
of the fact that the Evans function is analytic. (Apparently true for small
β, false for large β: combustion front loses stability in a Hopf bifurcation.)

Recall that there is a bound on the size of possible eigenvalues with Reλ ≥ 0 (due
to Varas and Vega).
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Nonlinear stability of the combustion front

Unfortunately, the nonlinear terms in the PDE do not yield a map from BUC2
α to

itself.

Reason: consider

eαξv2(ξ)ρ
′(h1(ξ))v1(ξ).

• ρ′(h1(ξ)) is bounded.
• eαξv2(ξ) is bounded if v2 ∈ BUCα.
• However, v1(ξ) is not necessarily bounded.

Let BUCm = BUC ∩BUCα, with norm

‖u‖m = max(‖u‖0, ‖u‖α).

We prove that if ‖U0 − H‖m is small, then there is a small number q
such that ‖U (t) −H(ξ − q)‖α → 0 as t→ ∞.
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Why is the combustion front that approaches both end
states exponentially the only one that’s “physical”?

Combustion front:

ξ

11/β

ξ

u1 u2

Natural initial condition:

ξ

11/β

ξ

u1 u2

In our exponentially weighted norm, the natural initial condition is
a small perturbation of the combustion front that approaches both
end states exponentially, hence is (presumably) attracted to it.

Other combustion fronts may well attract sufficiently small pertur-
bations of themselves! This happens for the n-degree Fisher-type equation
ut = uxx + un(1− u), n > 1: Wu, Y., Xing, X., and Ye, Q., Discrete Contin. Dyn.
Syst. 16 (2006), 47–66.
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II. Traveling Waves

Notation:

ω(u1, u2) = u2ρ(u1).

In PDE let ξ = x− σt:

∂tu1 = ∂ξξu1 + σ∂ξu1 + ω(u1, u2)),

∂tu2 = σ∂ξu2 − βω(u1, u2).

A stationary solution of the PDE in moving coordinates is a traveling wave solution
of the original PDE with speed σ.

Stationary solutions satisfy:

0 = ∂ξξu1 + σ∂ξu1 + ω(u1, u2)),

0 = σ∂ξu2 − βω(u1, u2).

Boundary conditions:

(u1, u2, ∂ξu1)(−∞) = (u10, 0, 0), (u1, u2, ∂ξu1)(∞) = (0, 1, 0).
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First-order traveling-wave system

u̇1 = u3,

u̇2 =
β

σ
ω(u1, u2),

u̇3 = −σu3 − ω(u1, u2).

We want a solution that goes from an equilibrium (u10, 0, 0) (each
such point is an equilibrium) to the equilibrium (0, 1, 0).

Change of variables:

y1 = u1,

y2 = u2,

y3 = σu1 +
σ

β
u2 + u3.

New system, equivalent but easier to study:

ẏ1 = −σy1 −
σ

β
y2 + y3,

ẏ2 =
β

σ
h(y1, y2),

ẏ3 = 0.
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Set y3 = σ
β

so there will be an equilibrium (y1, y2) = (0, 1):

ẏ1 = g1(y1, y2, σ) = −σy1 −
σ

β
(y2 − 1),

ẏ2 = g2(y1, y2, σ) =
β

σ
ω(y1, y2),

1/β

1 ?
y1=0.

y2

y1

There is a unique σ = c > 0 for which there is a solution (h1, h2)(ξ)
that approaches (1

β , 0) exponentially as ξ → −∞, and approaches (0, 1)
exponentially as ξ → ∞.

The connection breaks in a regular manner as σ varies.

Melnikov integral:
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Linearization along (h1, h2)(ξ):

(

v̇1

v̇2

)

=

(

−c − c
β

β
c∂u1ω(h1, h2)

β
c∂u1ω(h1, h2)

)(

v1

v2

)

.

Up to scalar multiplication, the unique bounded solution of the adjoint equation is

(

φ∗1(ξ) φ
∗
2(ξ)

)

= exp (−

∫ ξ

0

a(η) dη)
(

−ḣ2(ξ) ḣ1(ξ)
)

,

with a(ξ) = −c + β
c∂u2ω(h1, h2)(ξ).

M =

∫ ∞

−∞

(

φ∗1(ξ) φ
∗
2(ξ)

)

(

∂σg1(h1(ξ), h2(ξ), c)
∂σg2(h1(ξ), h2(ξ), c)

)

dt

=

∫ ∞

−∞

exp (−

∫ ξ

0

a(η) dη)
(

−ḣ2(ξ) ḣ1(ξ)
)

(

−h1(ξ) −
1
β(h2(ξ) − 1)

− β
c2
ω(h1(ξ), h2(ξ))

)

dt

=

∫ ∞

−∞

exp (−

∫ ξ

0

a(η) dη)
(

−ḣ2(ξ) ḣ1(ξ)
)

(

1
c ḣ1(ξ)

−1
cḣ2(ξ)

)

dt

= −
2

c

∫ ∞

−∞

exp (−

∫ ξ

0

a(η) dη)ḣ1(ξ)ḣ2(ξ) dt > 0

because ḣ1(ξ) < 0 and ḣ2(ξ) > 0.
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III. Linearization of the PDE at the Traveling Wave

Linearized PDE in moving coordinates

Notation: U = (u1, u2), ω(U ) = u2ρ(u1).

Linearize at H(ξ):

∂tV = AV, A =

(

∂ξξ + c∂ξ + ∂u1ω(H) ∂u2ω(H)
−β∂u1ω(H) c∂ξ − β∂u2ω(H)

)

Look for eigenvalue-eigenfunction pairs: solutions of the form eλtV (ξ). They satisfy

λV = AV.

As a system:




v̇1

v̇2

v̇3



 =





0 0 1
β
c
∂u1ω(H) β

c
∂u2ω(H) + λ

c
0

λ− ∂u1ω(H) −∂u1ω(H)









v̇1

v̇2

v̇3



 .

λ is an eigenvalue of the linearized PDE provided this Eigenvalue
System has a nontrivial solution with appropriate behavior at ξ =
±∞.
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Eigenvalue System:




v̇1

v̇2

v̇3



 =





0 0 1
β
c
∂u1ω(H) β

c
∂u2ω(H) + λ

c
0

λ− ∂u1ω(H) −∂u1ω(H)









v̇1

v̇2

v̇3



 .

ξ

ξ ξ

ξ

u1 u2
11/β

h1(ξ) h2(ξ)

∂u1ω(H)=h2ρ'(h1) ∂u2ω(H)=ρ(h1)

e−β
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Write λ = γ + iθ.

At ξ = +∞, one eigenvalue has real part 0 if γ = 0 or γ = −θ2

c2
.

At ξ = −∞, one eigenvalue has real part 0 if γ = −β
ce

−β or γ = −θ2

c2
.

ξ=+∞

+,+,−

ξ=−∞

+,+,−
γγ

θ θ

If we work in BUC2, Ω0 = {λ : Re λ > 0} is the “region of consistent splitting”:
at both ξ = −∞ and ξ = ∞ the Eigenvalue System has two positive eigenvalues
and one negative eigenvalue.
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Eigenvalue System for λ ∈ Ω0:

ξ

no  eigenvalue

eigenvalue

For λ in the region of consistent splitting, A− λI is Fredholm of index 0.

The boundary of the region of consistent splitting is in the essential spectrum.

If we work in BUC2, the imaginary axis is in the essential spectrum:
no spectral stability.
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However:

Let 0 < α < 1
2c. Let Ωα denote the set of λ such that at both ξ = −∞ and ξ = ∞

there are two eigenvalues greater than −α and one less than −α. Ωα is the region
of consistent splitting when we work in BUC2

α.

γ

θγ=−cα

Ωα

α2−cα

The parabola is γ = (α2 − cα) − θ2

(c−2α)2
.

The essential spectrum is to the left of the imaginary axis when we work in BUC2
α.
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Evans function

In the Eigenvalue System, let




z1

z2

z3



 =





1 0 0
0 1 0
σ σ

β 1









v1

v2

v3



 .

We obtain





ż1

ż2

ż3



 =







−c − c
β 1

β
c∂u1ω(h1, h2)

β
c∂u2ω(h1, h2) + λ

c 0
λ λ

β 0











U
Y
W



 .

This system is equivalent to the Eigenvalue System but is easier to
study.

We’ll write it Ż = E(ξ, λ)Z.
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For λ ∈ Ωα, there is a unique eigenvalue of Ż = E(ξ, λ)Z at ξ = ∞ with real part
less than −α, call it −µ(λ) < −α. An eigenvector is

Z+(λ) =





−1
0

−c + µ(λ)



 .

Let Z+(ξ, λ) be the unique solution of Ż = E(ξ, λ)Z such that

lim
ξ→∞

eµ(λ)ξZ+(ξ, λ) = Z+(λ).

Z+(ξ, 0) is a positive multiple of (ḣ1(ξ), ḣ2(ξ), 0).

Note that ḣ1(ξ) < 0; that’s why we chose Z+(λ) to have its first component
negative.
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For λ ∈ Ω, the unique eigenvalue of the adjoint system ψ̇ = −ψE(ξ, λ̄) at ξ = −∞
with real part greater than α is µ(λ). A corresponding left eigenvector is

ψ−(λ̄) =
(

∗ ∗ 1
)

.

Let ψ−(ξ, λ̄) be the unique solution of ψ̇ = −ψE(ξ, λ̄) such that

lim
ξ→−∞

e−µ(λ)ξψ−(ξ, λ̄) = ψ+(λ̄).

Let ψ∗(ξ) = ψ−(ξ, 0).

Recall
(

φ∗1(ξ) φ
∗
2(ξ)

)

defined earlier, and define

φ∗3(ξ) = −

∫ ξ

−∞

φ∗1(η) dη.

Proposition. As ξ → −∞, φ∗3(ξ) → 0 like ecξ; and there is a number d > 0
such that as ξ → ∞, φ∗3(ξ) → d exponentially. ψ∗(ξ) is a positive multiple of
(

φ∗1(ξ) φ
∗
2(ξ) φ

∗
3(ξ)

)

.



27

We define the Evans function

D(λ) = ψ̄−(ξ, λ̄)Z+(ξ, λ).

The product is independent of ξ and analytic in λ.

For λ ∈ Ωα, λ is in the spectrum of the linearized PDE on BUC2
α if

and only if D(λ) = 0.

ξ

no  eigenvalue

eigenvalue

Z+
ψ_

Of course, D(0) = 0.
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Calculation of D′(0)

Sandstede gives the formula: up to multiplication by a positive number,

D′(0) = −

∫ ∞

−∞

ψ∗(ξ)
∂E

∂λ
(ξ, 0)ż∗(ξ) dξ.

Up to multiplication by a positive number, we calculate:

D′(0) = −

∫ ∞

−∞

ψ∗(ξ)
∂E

∂λ
(ξ, 0)Ḣ(ξ) dξ

= −

∫ ∞

−∞

(

ψ∗
1(ξ) ψ

∗
2(ξ) ψ

∗
3(ξ)

)





0 0 0
0 1

c
0

1 1
β 0









ḣ1(ξ)

ḣ2(ξ)
0



 dξ

= −
1

c

∫ ∞

−∞

ψ∗
2(ξ)ḣ2(ξ) dξ +

∫ ∞

−∞

ψ∗
3(ξ)(ḣ1(ξ) +

1

β
ḣ2(ξ)) dξ.

= −
1

c

∫ ∞

−∞

ψ∗
2(ξ)ḣ2(ξ) dξ −

1

c

∫ ∞

−∞

ψ∗
3(ξ)ḧ1(ξ) dξ.

We integrate the second integral by parts:
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∫ ∞

−∞

ψ∗
3(ξ)ḧ1(ξ) dξ = ψ∗

3(∞)ḣ1(∞) − ψ∗
3(−∞)ḣ1(−∞) −

∫ ∞

−∞

ψ̇∗
3(ξ)ḣ1(ξ) dξ.

We have ψ∗
3(∞) finite, ḣ1(∞) = 0, ψ∗

3(−∞) = 0, and ḣ1(−∞) = 0. Therefore
the boundary terms vanish. We conclude that, up to multiplication by a positive
number,

D′(0) =
1

c

∫ ∞

−∞

−ψ∗
2(ξ)ḣ2(ξ)+ψ̇

∗
3(ξ)ḣ1(ξ) dξ =

1

c

∫ ∞

−∞

−ψ∗
2(ξ)ḣ2(ξ)+ψ

∗
1(ξ)ḣ1(ξ) dξ

=
2

c

∫ ∞

−∞

− exp (−

∫ ξ

0

a(η) dη)ḣ1(ξ)ḣ2(ξ) dξ > 0.
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IV. On BUCα, spectral stability implies linearized
stability

∂tV = AV, A =

(

∂ξξ + c∂ξ + ∂u1ω(H) ∂u2ω(H)
−β∂u1ω(H) c∂ξ − β∂u2ω(H)

)

Let A, Aα, and Am be the linear operators on BUC2, BUC2
α, and BUC2

m respec-
tively given by V → AV .

Each operator is closed and densely defined. If V ∈ BUC2
m, then AV = AαV =

AmV . Each operator generates a C0 semigroup. If V ∈ BUC2
m, then etAV =

etAαV = etAmV .

A0 and Am both have 0 in the essential spectrum.

Aα is Fredholm with index zero (because 0 is in Ωα), and that 0 is a simple eigen-
value. Therefore R(Aα) is a codimension-one closed subspace of BUC2

α.

Let Ps
α denote projection onto R(Aα) with kernel N(Aα). Let Pc

α = I − Ps
α.

Theorem. Suppose the only eigenvalue of Aα with nonnegative real part is 0.
Then :

(1) The traveling wave is spectrally stable.
(2) The traveling wave is linearly stable. In particular, there are numbers K > 0

and ν > 0 such that ‖etAαP
s
α‖ ≤ Ke−νt.
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The proof of the theorem uses some notions from semigroup theory.

Let

W (ξ) = eαξV (ξ)

V (t, ξ) is a solution of ∂tV = AV in BUC2
α if and only if W (t, ξ) = eαξV (t, ξ) is

a solution of

Wt = ÃW, Ã =

(

∂ξξ + (c− 2α)∂ξ + α2 − cα + ∂u1ω(H) ∂u2ω(H)
−β∂u1ω(H) c∂ξ − cα− β∂u2ω(H)

)

in BUC2.

Let Ã be the linear operator on BUC2 given by W → ÃW .

Instead of considering Aα on BUC2
α we may consider Ã on BUC2.
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Spectral bounds

The essential spectral bound sess(L) is the infimum of all real ω such that the
intersection Sp(L)∩{λ : Reλ ≥ ω} is contained in the discrete spectrum of L and
has only finitely many points.

γ=sess(L)

γ

θ

...
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For a bounded linear operator T : Y → Y , define the seminorm

‖T‖C = inf
K

‖T +K‖,

where the infimum is over the set of all compact operators K : Y → Y .

If L generates a C0-semigroup etL, the essential growth bound ωess(L) =
limt→∞ t

−1 log ‖etL‖C.

In general:

sess(L) ≤ ωess(L)

One kind of problem:

||(A-λI)−1|| unbounded

Sp(A) Sp(etA)

1
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Facts about the essential growth bound

1. etωess(L) is the radius of the essential spectrum of etL for any t > 0.

2. Let ω > ωess(L) be a number such that no isolated eigenvalue of L has real part
ω. Then there is a finite set {λ1, . . . , λk} ⊂ C such that

Sp(L) ∩ {λ : Reλ ≥ ω} = Spd(L) ∩ {λ : Reλ ≥ ω} = {λ1, . . . , λk}.

Let E1, . . . , Ek be the generalized eigenspaces of λ1, . . . , λk respectively; they are
finite-dimensional. Then there is a closed subspace E0 of Y such that Y = E0 ⊕
E1 ⊕ · · · ⊕ Ek and E0 is invariant under L. Moreover, there is a number M > 0
such that ‖etL|E0‖ ≤Meωt.
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Outline of proof: Consider Wt = ÃW on BUC2.

1. Ã generates a C0-semigroup etÃ.

2. The only eigenvalue of Ã with nonnegative real part is 0.

3. The eigenvalue 0 is simple.

4. ωess(Ã) < 0. (The key point. sess(Ã) = ωess(Ã) = α2 − cα < 0.)

5. Therefore we can choose −ν < 0 such that the only element of Sp(Ã) with real
part greater than or equal to −ν is 0.

γ=−ν

γ

θ

Sp(A
~

)

6. BUC2 = R(Ã) + N(Ã) and ‖etÃ|R(Ã)‖ ≤ Ke−νt.
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Outline of proof that ωess(Ã) < 0:

Recall

Ã =

(

∂ξξ + (c− 2α)∂ξ + α2 − cα + ∂u1ω(H) ∂u2ω(H)
−β∂u1ω(H) c∂ξ − cα− β∂u2ω(H)

)

=

(

C ∂u2ω(H)
−β∂u1ω(H) G

)

.

Let

J1 =

(

C ∂u2ω(H)
0 G

)

.

1. C is a “localized” perturbation of the sectorial operator ∂ξξ+(c−2α)∂ξ+α
2−cα.

Hence its essential spectrum has for its right boundary the parabola

{λ = γ + iθ : γ = (α2 − cα) −
θ2

(c− 2α)2
}.

Also, sess(A) = ωess(A) = α2 − cα < 0.
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2. Associated with G are the two constant-coefficient operators c∂ξ− cα+βe−
1
β at

ξ = −∞ and c∂ξ− cα at ξ = ∞. Each has spectrum consisting of a single vertical

line: Reλ = −cα− βe−
1
β and Reλ = −cα respectively. Sp(G) = Spess(G) = {λ :

−cα− βe−
1
β ≤ Reλ ≤ −cα}. sess(G) = −cα.

3. It is known that G has the spectral mapping property, so sess(G) =
ωess(G).

4. From triangularity of J1 and our understanding of the spectra of
C and G, ωess(J1) ≤ max{ωess(C), ωess(G)} = α2 − cα < 0.

5. Since limξ→±∞ ∂u1ω(H) = 0, multiplication by −β∂u1ω(H) is a com-
pact operator.

6. From the variation of constants formula, etÃ is a compact pertur-
bation of etJ1, so ωess(Ã) = ωess(J1) by definition.
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V. Nonlinear stability

The PDE in moving coordinates:

∂ξu1 = ∂ξξu1 + c∂ξu1 + ω(U )),

∂ξu2 = c∂ξu2 − βω(U ).

Notation:

L =

(

∂ξξ + c∂ξ 0
0 c∂ξ

)

, B =

(

1
−β

)

.

The PDE becomes

Ut = LU +Bω(U ).
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Ut = LU +Bω(U ).

Let U = H + V .

ω(U ) = u2ρ(u1),

ω(H + V ) = ω(H) +Dω(H)V + remainder,

remainder = h2ρ2(h1, v1)v
2
1 + ρ1(h1, v1)v1v2 = n(H,V ).

More notation:

R(ξ) = Dω(H(ξ)) =
(

h2(ξ)ρ
′(h1(ξ)) ρ(h1(ξ))

)

,

A = L +BR(ξ).

The PDE becomes

Vt = AV +Bn(H,V ).
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We’ll need a slightly different substitution:

U (ξ) = H(ξ − q) + V (ξ),

where q can change with time. The PDE becomes

−H ′(ξ − q)q̇ + ∂tV = (L +BR(ξ − q))V +Bn(H(ξ − q), V ).

Let

S(ξ, q) = R(ξ − q) −R(ξ),

The PDE becomes

−H ′(ξ − q)q̇ + ∂tV = AV +BS(ξ, q)V + Bn(H(ξ − q), V ).
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U (ξ) = H(ξ − q) + V (ξ). Assume V ∈ R(Aα).

H(ξ-q)

R(Aα)

Apply Ps
α and Pc

α.

∂tV = AV + Ps
α

(

BS(ξ, q)V + Bn(H(ξ − q), V ) +H ′(ξ − q)q̇
)

,

−Pc
αH

′(ξ − q)q̇ = Pc
α

(

BS(ξ, q)V +Bn(H(ξ − q), V )
)

This step is formal: the nonlinear terms do not define a map from E2
α to itself.

Let

G(V, q) = BS(ξ, q)V +Bn(H(ξ − q), V ),

κ(V, q) =
(

Pc
αH

′(ξ − q)
)−1

Pc
αG(V, q).

(Abuse of notation warning.) For q small, ‖Pc
αH

′(ξ − q)‖ is close to 1.
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So formally we can rewrite our PDE as a system on R(Aα) × R:

∂tV = AV +G(V, q) + κ(V, q)H ′(ξ − q),

q̇ = κ(V, q)

Proposition. The formulas forG(V, q) and κ(V, q) define mappings fromBUC2
m×

R to BUCm and to R respectively. On any bounded neighborhood of (0, 0) in
BUC2

m × R, the mappings are Lipschitz, and there is a constant C such that:

(1) ‖G(V, q)‖α ≤ C(|q| + ‖V ‖0)‖V ‖α.

(2) ‖G(V, q)‖m ≤ C(|q| + ‖V ‖m)‖V ‖m.

(3) |κ(V, q)| ≤ C(|q| + ‖V ‖0)‖V ‖α.

Reason: consider a term like ρ1(h1, v1)v1v2

eαξ|ρ1(h1(ξ), v1(ξ))v1(ξ)v2(ξ)| ≤ C‖v1‖0‖v2‖α.

Therefore

‖ρ1(h1, v1)v1v2‖α ≤ C‖v1‖0‖v2‖α.
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Study of the system on the space BUC2
m × R

1. Existence of solutions on BUC2
m × R and a priori bound

We shall study solutions of the system

∂tV = AV +G(V, q) + κ(V, q)H ′(ξ − q),

q̇ = κ(V, q)

Proposition 1. For each δ > 0, if ρ > 0 is sufficiently small, then there exists
Tmax, with 0 < Tmax ≤ ∞, such that the following is true: if (V 0, q0) ∈ BUC2

m×R

satisfies

(1) ‖(V 0, q0)‖BUC2
m×R = ‖V 0‖m + |q0| ≤ ρ

and 0 ≤ t < Tmax, then (V, q)(t, V 0, q0) is defined and satisfies

(2) ‖V (t, V 0, q0)‖m + |q(t, V 0, q0)| ≤ δ.

Let Tmax(δ, ρ) denote the supremum of all T such that (2) holds for all 0 ≤ t < T
whenever (1) is satisfied.
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2. Decay of ‖V (t)‖α

Proposition 2. Consider the solution given by Proposition 1. There is a number
C > 0 such that if (1) δ is sufficiently small and (2) V 0 ∈ R(Ps

α) ∩BUC
2
m, then

(3) ‖V (t)‖α ≤ Ke−νt/2‖V 0‖α and |q(t)− q0| ≤ C‖V 0‖α for 0 ≤ t < Tmax(δ, ρ).

Moreover, if Tmax(δ, ρ) = ∞, then there is q∗ ∈ R such that

(4) |q(t) − q∗| ≤ Ce−νt/2‖V 0‖α for all t ≥ 0.

3. Bounds for ‖V (t)‖0

Proposition 3. Consider the solution given by Proposition 1. There is a number
C > 0 such that if (1) δ is sufficiently small and (2) V 0 ∈ R(Ps

α) ∩ BUC
2
m, then

for 0 ≤ t < Tmax(δ, ρ)):

‖v1(t)‖0 ≤ C(|q0| + ‖V 0‖m),(5)

‖v2(t)‖0 ≤ C(|q0| + ‖V 0‖m)e−νt/2.(6)
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This is the key step: the solution stays bounded in BUC2, with a
good bound.

∂tv1 = (∂ξξ + c∂ξ)v1 + . . . , ∂tv2 = (c∂ξ + a(t, ξ))v2 + . . . ,

• a(t, ξ) < −ν.
• Ignoring omitted terms, solutions of the second equation satisfy

‖v2(t, ξ)‖0 ≤ e−νt‖v2(0, ξ)‖0.

• Ignoring omitted terms, the first equation generates a bounded semigroup in
BUC(R).

• When the omitted terms are included, the second equation can be solved first
and the solution estimated, and the result can be used to estimate the solution
of the first equation. Proposition 2 is also used.

• Idea–bound the solution in a uniform norm in order to prove
convergence in a weighted norm–comes from R. Pego and M. Weinstein,
Asymptotic stability of solitary waves, Comm. Math. Phys. 164 (1994),
305–349.

• In Pego and Weinstein, boundedness in the uniform norm follows from a Hamil-
tonian structure.

• In other papers, it is related to the stability of the bifurcating patterns that
are connected by the front.
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Why does

• the equation for v1, the temperature perturbation, have solutions that are only
bounded, but

• the equation for v2, the fuel perturbation has solutions that decay?

Answer:

• At the left, the combustion front has temperature 1
β and 0 fuel.

• Increase the temperature at the left to 1
β + v1: it basically stays there.

• Increase the fuel at the left to v2: it all burns!
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4. Nonlinear stability

Lemma 1. Define F : (R(Ps
α)∩BUC

2
m)×R → BUC2

m by F(V, q) = V +H(ξ−
q). Then DF(0, 0) is an isomorphism, so F maps a neighborhood V of (0, 0) in
(R(Ps

α) ∩BUC
2
m) × R diffeomorphically onto a neighborhood U of H in BUC2

m.

Choose ρU > 0 so that the ball of radius ρU about H in BUCα is contained in U .

Given U 0 ∈ BUC2
m, let U (t) = U (t, U 0) be the solution of our PDE in BUC2

m

with U (0) = U 0. If ‖U 0 −H‖m ≤ ρU , we can use Lemma 1 to write

(7) U 0 = V 0 +H(ξ − q0) with (V 0, q0) ∈ (R(P s
α) ∩ BUC2

m) × R.

If ‖U (t) −H‖m ≤ ρU , we can use Lemma 1 to write

(8) U (t) = V (t) +H(ξ − q(t)) with (V (t), q(t)) ∈ (R(Ps
α) ∩BUC

2
m) × R.



48

Nonlinear Stability Theorem There is a constant C > 0 such that for each
sufficiently small δ > 0, there exists ρ with 0 < ρ ≤ ρU such that the following is
true. Let U 0 ∈ BUC2

m with ‖U 0 − H‖m < ρ, and let (V 0, q0) = F−1(U 0). Let
U (t) be the solution of our PDE in E2 with U (0) = U 0. Then:

(1) U (t) is defined for all t ≥ 0.

(2) For all t ≥ 0, U (t) ∈ U , so we can define (V (t), q(t)) = F−1(U (t)).

(3) ‖V (t)‖m + |q(t)| < δ.

(4) ‖V (t)‖α ≤ Ke−νt/2‖V 0‖α.

(5) There exists q∗ such that |q(t) − q∗| ≤ Ce−νt/2‖V 0‖α.

(6) ‖v1(t)‖0 ≤ C(|q0| + ‖V 0‖m).

(7) ‖v2(t)‖0 ≤ C(|q0| + ‖V 0‖m)e−νt/2.


