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Sociological Background

Raleigh-Durham-Chapel Hill, North Carolina, USA

• North Carolina State University
• Duke University
• University of North Carolina at Chapel Hill
• SAMSI (Statistical and Applied Mathematical Sciences Institute)

“Dynamical Systems Working Group”

• People: Chris Jones (UNC-CH), Xiao-Biao Lin (NC State), S. (NC State),
postdocs, graduate students, . . . .

• Topics: Geometric singular perturbation theory, traveling waves, Evans func-
tion, . . . .

Recently colleagues have begun presenting problems involving traveling waves.

This work grew out of a presentation by Michael Shearer (NC State) on work with
Tom Witelski (Duke), Rachel Levy (Duke), Karen Daniels (NC State).
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Scientific Background

Surfactant = SURFace ACTive AgeNT (1950): agent that reduces the surface
tension of water by forming a molecular or atomic layer on the surface (surfactant
is adsorbed rather than absorbed).

Surface tension is caused by attraction of adjacent water molecules. When
it is locally reduced by addition of surfactant, the surfactant spreads (surfactant
concentration gradient → surface tension gradient → Marangoni force). To see this,
put a scrap of paper in a pan of water and add a drop of dishwashing detergent.

Our subject: surfactant added to thin liquid film on an incline.

One motivation: role of surfactants in breathing. Mammalian lungs
contain alveoli, little cavities where gas is exchanged with blood. (Human lungs
contain 300 million alveoli with radius 0.1 mm.)

Inside of alveoli is coated with liquid. During exhalation, air pressure in alveoli falls,
and surface tension would try decrease volume of alveoli, leading to lung collapse.
To avoid this, lungs contain surfactant, which reduces surface tension.

Infant respiratory distress syndrome: lungs don’t produce enough surfac-
tant. Leading cause of death in premature infants. Treatment involves adding
surfactant through a breathing tube.
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Experiment showing expansion of region of thin liquid film treated with surfac-
tant. Appears to be a traveling front with stepped structure that is unstable to
transverse perturbations.

From Physics of Fluids Gallery of Liquid Motion.
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Governing Equations in One Space Dimension

From Edmonstone, Matar, and Craster, J. Engr. Math. 50 (2004):

x
θ

h

−Γx = stress

h = height of free surface
Γ = surfactant concentration

ht +

(

1

3
Ch3hxxx −

1

3
G cos θh3hx −
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2
h2Γx +
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3
G sin θh3

)

x

= 0,

Γt +

(
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2
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1

2
G cos θΓh2hx − hΓΓx +

1

2
G sin θh2Γ − DΓx

)

x

= 0.

Parameters

• C = capillary number (surface tension)
• D−1 = Peclet number (surface diffusion)
• G = gravity coefficient
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Traveling Wave System

ht +

(
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Ch3hxxx −

1

3
G cos θh3hx −
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G sin θh2Γ − DΓx
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= 0.

Let α = G sin θ, β = G cos θ. Fix α > 0 and β > 0 (inclined plane).

There is a traveling wave solution (h, Γ)(x − st) of speed s provided

−sh′ +

(

1

3
Ch3h′′′ − 1

3
βh3h′ − 1

2
h2Γ′ +

1

3
αh3

)′
= 0,

−sΓ′ +

(

1

2
CΓh2h′′′ − 1

2
βΓh2h′ − hΓΓ′ +

1

2
αh2Γ − DΓ′

)′
= 0.

We’ll work in the region h > 0 (wet surface) and Γ ≥ 0.
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−sh′ +
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1

3
Ch3h′′′ − 1

3
βh3h′ − 1

2
h2Γ′ +

1

3
αh3

)′
= 0,

−sΓ′ +

(

1

2
CΓh2h′′′ − 1

2
βΓh2h′ − hΓΓ′ +

1

2
αh2Γ − DΓ′

)′
= 0.

We’ll look for traveling waves with a finite amount of surfactant:

(h, Γ)(−∞) = (hL, 0), (h, Γ)(∞) = (hR, 0), hL > hR > 0.

Integrate:

−sh +
1

3
Ch3h′′′ − 1

3
βh3h′ − 1

2
h2Γ′ +

1

3
αh3 = K1,

−sΓ +
1

2
CΓh2h′′′ − 1

2
βΓh2h′ − hΓΓ′ +

1

2
αh2Γ − DΓ′ = 0.

The numbers s and K1 are chosen so that

−shL +
1

3
αh3

L = −shR +
1

3
αh3

R = K1.

Therefore

s =
1

3
α(h2

L + hLhR + h2

R) > 0, K1 = −1

3
αhLhR(hL + hR) < 0.
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Rewrite the traveling wave ODEs:

Γ′ =
2Γ

h

sh + 3K1

hΓ + 4D
,

βh′ − Ch′′′ =
1

h3

(

αh3 − 3sh − 3K1 − 3hΓ
sh + 3K1

hΓ + 4D

)

.

Rewrite as first-order ODEs:

Γ′ =
2Γ

h

sh + 3K1

hΓ + 4D
,

h′ = k,√
Ck′ = l,

√
Cl′ = Ck′′ = Ch′′′ = βk − 1

h3

(

αh3 − 3sh − 3K1 − 3hΓ
sh + 3K1

hΓ + 4D

)

.

Multiply by hΓ + 4D and set ε =
√

C:
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Γ′ =
2Γ

h
(sh + 3K1),

h′ = k(hΓ + 4D),

εk′ = l(hΓ + 4D),

εl′ =

(

βk − 1

h3

(

αh3 − 3sh − 3K1

)

)

(hΓ + 4D) +
3

h2
Γ(sh + 3K1).

Traveling Wave System (rescale time):

Γ̇ = ε
2Γ

h
(sh + 3K1),

ḣ = εk(hΓ + 4D),

k̇ = l(hΓ + 4D),

l̇ =

(

βk − 1

h3

(

αh3 − 3sh − 3K1

)

)

(hΓ + 4D) +
3

h2
Γ(sh + 3K1).

Let

H(h) =
1

h3

(

αh3 − 3sh − 3K1

)

, Q(h) =
2

h
(sh + 3K1),

P (h) =
1

h3

(

αh3 − 6sh − 12K1

)

.
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H(h) =
1

h3

(

αh3 − 3sh − 3K1

)

, Q(h) =
2

h
(sh + 3K1),

P (h) =
1

h3

(

αh3 − 6sh − 12K1

)

.

hLhR

h

H(h)

Q(h)

h*h2 h1

P(h)

(Figure shows signs and roots of H , P , Q for hR
hL

< 1

2
(
√

3 − 1). ) Then we have

Γ̇ = εΓQ(h),(1)

ḣ = εk(hΓ + 4D),(2)

k̇ = l(hΓ + 4D),(3)

l̇ = 4D (βk − H(h)) + hΓ (βk − P (h)) .(4)
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Equilibria and Invariant Spaces

Γ̇ = εΓQ(h),

ḣ = εk(hΓ + 4D),

k̇ = l(hΓ + 4D),

l̇ = 4D (βk − H(h)) + hΓ (βk − P (h)) .

The space Γ = 0 is invariant.

For every (ε,D) there are equilibria at (0, hL, 0, 0) and (0, hR, 0, 0).

For ε > 0 and D > 0:

(1) These are the only equilibria.
(2) At (0, hL, 0, 0) there are three eigenvalues with positive real part

and one with negative real part. For for fixed D, two of the eigenvalues
with positive real part are complex if ε is sufficiently large.

(3) At (0, hR, 0, 0) there are one eigenvalue with positive real part and
three with negative real part. For for fixed D, two of the eigenvalues
with negative real part are complex if ε is sufficiently large.

Thus for ε > 0 and D > 0, W u(0, hL, 0, 0) and W s(0, hR, 0, 0) are 3-
dimensional. If they are transverse, the intersection is 2-dimensional.
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D

ε1

2

3
4
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D

ε1

2

3
4

In the Traveling Wave System, fix ε > 0 and set D = 0 (fast system):

Γ̇ = εΓQ(h),

ḣ = εkhΓ,

k̇ = lhΓ,

l̇ = hΓ (βk − P (h)) .

Γ = 0 is a manifold of equilibria that is normally hyperbolic for h 6= h∗.

Γ = 0 remains invariant for D > 0.

System on Γ = 0 for D > 0 after dividing by 4D (slow system):

h′ = εk,

k′ = l,

l′ = βk − H(h).

Equilibria: (hL, 0, 0) and (hR, 0, 0) with 2-dimensional unstable manifold and 2-
dimensional stable manifold respectively.
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Singular connecting orbit:

(1) Solution of the slow system from (hL, 0, 0) to a point in W u(hL, 0, 0), the
2-dimensional unstable manifold of (hL, 0, 0) for the slow system.

(2) Connecting orbit of the fast system to a point in W s(hR, 0, 0), the 2-dimensional
stable manifold of (hR, 0, 0) for the slow system.

(3) Solution of the slow system to (hR, 0, 0).

h

k

l

hL

hR

π
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To understand fast connecting orbits, divide fast system by hΓ and ignore Γ̇:

ḣ = εk,

k̇ = l,

l̇ = βk − P (h).

Equilibria: (h1, 0, 0) and (h2, 0, 0) with 2-dimension unstable manifold and 2-
dimensional stable manifold respectively.
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D

ε1

2

3
4

In the Traveling Wave System, fix D > 0 and set ε = 0 (fast system):

Γ̇ = 0,

ḣ = 0,

k̇ = l(hΓ + 4D),

l̇ = 4D (βk − H(h)) + hΓ (βk − P (h)) .

The set

k =
4DH(h) + hΓP (h)

β(4D + hΓ)
, l = 0

is a normally hyperbolic manifold of equilibria of dimension 2: one positive eigen-
value, one negative eigenvalue. Note:

(

∂k̇

∂k̇

∂k̇

∂l̇
∂l̇

∂k̇

∂l̇

∂l̇

)

=

(

0 hΓ + 4D
(4D + hΓ)β 0

)
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Flow on perturbed normally hyperbolic invariant manifold:

Γ̇ = εΓQ(h),

ḣ =
ε

β
(4DH(h) + hΓP (h)) + O(ε2).

In slow time:

Γ′ = ΓQ(h),

h′ =
1

β
(4DH(h) + hΓP (h)) + O(ε),

Γ

h
h* hLhR

. .
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Blow-up

Γ = r̄Γ̄, ε = r̄ε̄, D = r̄D̄.

Blow-up space: {((Γ̄, ε̄, D̄), r̄, h, k, l) : Γ̄2 + ε̄2 + D̄2 = 1 and r̄ ≥ 0}.
Vector field: Original rewritten in these coordinates and divided by r̄.

Three coordinate systems:

ε

Γ

D

r2

r3

r1

D1

D3

Γ2

Γ3

ε2

ε1
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D

ε1

2

3
4

ε

Γ

D
r2

r1

D1

Γ2
ε2

ε1

The region Γ̄ > 0:

Γ = r1, ε = r1ε1, D = r1D1.

ṙ1 = r1ε1Q(h),

ḣ = r1ε1k(h + 4D1),

k̇ = l(h + 4D1),

l̇ = 4D1 (βk − H(h)) + h (βk − P (h)) ,

ε̇1 = −ε2

1
Q(h),

Ḋ1 = −ε1D1Q(h).

Three-dimensional manifold of equilibria:

k =
4D1H(h) + hP (h)

β(4D1 + h)
, l = 0, ε1 = 0.
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Normal to this manifold, each equilibrium has one positive eigenvalue, one negative
eigenvalue, and one zero eigenvalue.

Part of four-dimensional normally hyperbolic invariant manifold M :

k = K(r1, h, ε1,D1), l = L(r1, h, ε1, D1).

K and L are initially only defined for ε1 small.

D

ε1

2

3
4

ε

Γ

D
r2

r1

D1

Γ2
ε2

ε1

System on M :

ṙ1 = r1ε1Q(h),

ḣ = r1ε1K(r1, h, ε1, D1)(h + 4D1),

ε̇1 = −ε2

1
Q(h),

Ḋ1 = −ε1D1Q(h).
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Divide by ε1:

ṙ1 = r1Q(h),

ḣ = r1K(r1, h, ε1,D1)(h + 4D1),

ε̇1 = −ε1Q(h),

Ḋ1 = −D1Q(h).

Equilibria: h-axis. Normally hyperbolic for h 6= h∗: one eigenvalue Q(h), with
eigenvector in the r1-direction; two eigenvalues −Q(h), eigenspace is ε1D1-space.

Spaces r1 = 0, ε1 = 0, and D1 = 0 are invariant. In r1h-space:

ṙ1 = r1Q(h),

ḣ =
r1

β
hP (h).

h

(ε1,D1)

r1
h*

h2

h1
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The region D̄ > 0:

Γ = r2Γ2, ε = r2ε2, D = r2.

Γ̇2 = ε2Γ2Q(h),

ḣ = r2ε2k(hΓ2 + 4),

k̇ = l(hΓ2 + 4),

l̇ = 4 (βk − H(h)) + hΓ2 (βk − P (h)) ,

ε̇2 = 0,

ṙ2 = 0.

Three-dimensional manifold of equilibria:

k =
4H(h) + hΓ2P (h)

β(4 + hΓ2)
, l = 0, ε2 = 0.

Normal to this manifold, each equilibrium has one positive eigenvalue, one negative
eigenvalue, and one zero eigenvalue.

Part of four-dimensional normally hyperbolic invariant manifold M :

k = K(Γ2, h, ε2, r2), l = L(Γ2, h, ε2, r2),

K and L are only defined for ε2 small.
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System on M :

Γ̇2 = ε2Γ2Q(h),

ḣ = r2ε2K(Γ2, h, ε2, r2)(hΓ2 + 4),

ε̇2 = 0,

ṙ2 = 0.

Divide by ε2:

Γ̇2 = Γ2Q(h),

ḣ = r2K(Γ2, h, ε2, r2)(hΓ2 + 4),

ε̇2 = 0,

ṙ2 = 0.

Γ2

h
h*

ε2 fixed, r2=0

Γ2

h
h*

ε2 fixed, r2>0

hLhR
. .
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Combine the coordinate patches and use “Corner Lemma”:

h

"D1"

r1
h*

h2

h1

hL

hR

hR

hL

D=r1D1>0

We get traveling waves with three steps.

(To see all this in one coordinate patch, replace Γ with σ = 4D + hΓ.)
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D

ε1

2

3
4

ε

Γ

D

r3

r1

D1

D3

Γ3ε1

The region Γ̄ > 0 Revisited:

Γ = r1, ε = r1ε1, D = r1D1.

ṙ1 = r1ε1Q(h),

ḣ = r1ε1k(h + 4D1),

k̇ = l(h + 4D1),

l̇ = 4D1 (βk − H(h)) + h (βk − P (h)) ,

ε̇1 = −ε2

1
Q(h),

Ḋ1 = −ε1D1Q(h).

Four-dimensional normally hyperbolic invariant manifold M :

k = K(r1, h, ε1,D1), l = L(r1, h, ε1, D1).
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K and L are initially only defined for ε1 small. However, M and its
stable and unstable manifolds can be extended by the flow.

D

ε1

2

3
4

ε

Γ

D

r3

r1

D1

D3

Γ3ε1

In particular, within the invariant space r1 = D1 = 0, the system divided by h

reduces to

ḣ = 0,

k̇ = l,

l̇ = (βk − P (h)) ,

ε̇1 = −ε2

1

Q(h)

h
.

Therefore, within the space r1 = D1 = 0, M extends in the ε1 direction to

k =
1

β
P (h), l = 0, h and ε1 arbitrary.
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Within the space r1 = D1 = 0, W u(M) and W s(M) are given by

l =
√

β(k − 1

β
P (h)), h, k, and ε1 arbitrary,

l = −
√

β(k − 1

β
P (h)), h, k, and ε1 arbitrary.

Flow in M :

h

ε1

r1
h*

h2

h1
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D

ε1

2

3
4

ε

Γ

D

r3

r1

D1

D3

Γ3ε1

The region ε̄ > 0:

Γ = r3Γ3, ε = r3, D = r3D3.

Γ̇3 = Γ3Q(h),

ḣ = r3k(hΓ3 + 4D3),

k̇ = l(hΓ3 + 4D3),

l̇ = 4D3 (βk − H(h)) + hΓ3 (βk − P (h)) ,

ṙ3 = 0,

Ḋ3 = 0.
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Four-dimensional invariant manifold M (previous one in new coor-
dinates):

k = K(Γ3, h, r3, D3), l = L(Γ3, h, r3, D3), Γ3 > 0, D3 near 0.

Normal hyperbolicity is lost for (Γ3, D3) = (0, 0), which is the crucial
set.

Within the invariant space D3 = r3 = 0, M is given by

k =
1

β
P (h), l = 0, Γ3 > 0 and h > 0,

W u(M) by

l =
√

β(k − 1

β
P (h)), Γ3 > 0, h > 0, and k arbitrary,

and W s(M) by

l = −
√

β(k − 1

β
P (h)), Γ3 > 0, h > 0, and k arbitrary.

These manifolds extend smoothly to Γ3 = 0, but normal hyperbolic-
ity is lost there.
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For r3 > 0 and D3 > 0, (0, hL, 0, 0) and (0, hR, 0, 0) have 3-dimensional
unstable and stable manifolds respectively that extend smoothly to
the boundary of {(r3, D3) : r3 ≥ 0 and D3 ≥ 0}.
Consider the 2-dimensional manifolds of equilibria

A = {(0, hL, 0, 0, r3,D3) : r3, D3 small},
B = {(0, hR, 0, 0, r3, D3) : r3, D3 small}.

W u(A) (extended to r3 ≥ 0 and D3 ≥ 0) is given by

l = Lu(Γ3, h, k, r3, D3), Lu(0, h, k, 0, D3) =
√

β(k − 1

β
H(h)).

W s(B) (extended to r3 ≥ 0 and D3 ≥ 0) is given by

l = Ls(Γ3, h, k, r3, D3), Ls(0, h, k, 0,D3) = −
√

β(k − 1

β
H(h)).

These explicit formulas show that for r3 near 0 and D3 near 0,

• W u(A) is transverse to W s(M).
• W u(M) is transverse to W s(B).
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A = {(0, hL, 0, 0, r3,D3) : r3, D3 small},
B = {(0, hR, 0, 0, r3, D3) : r3, D3 small}.

• W u(A) is transverse to W s(M).
• W u(M) is transverse to W s(B).

Using the Corner Lemma, we can show that the 5-dimensional man-
ifolds W u(A) and W s(B) meet transversally.

The solutions in their intersection trace solutions in M .


