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Overview

Subject: Propagation of a combustion front through a porous medium with two
parallel layers having different properties.

• Each layer admits a traveling combustion wave.
• The layers are coupled by heat transfer.

Question: Does the two-layer system admit a traveling combustion wave?

Answer, for a very simplified model:

• Small heat transfer: Yes, if the combustion waves in individual layers have
approximately equal speed.

• Large heat transfer: Yes.

Motivations:

• Relevant to “thermally enhanced oil recovery.”
• Little work on traveling waves in coupled systems. Exception: Amitabha

Bose, Symmetric and antisymmetric pulses in parallel coupled nerve fibres,
SIAM J. Appl. Math., vol. 55 (1995), pp. 1650–1674.

Thanks to: Dan Marchesin (IMPA, Rio de Janeiro).



Model

Porous medium with two layers:

layer 1

layer 2

In each layer:

• porous rock
• coke (fuel)
• gas = oxygen + other

We ignore heat loss to surrounding rock.

Reaction: [coke] + [oxygen] → [other gas] + [heat]



Balance of energy in each layer:

∂
∂t

[rock energy + gas energy + coke energy] =

− ∂
∂x

[flux of gas energy] + [heat produced by reaction]

− [heat transported to other layer] + [diffusion of heat]

rock     coke    gas     
heat

gas

heat

gas

heat to other layer

Balance of coke mass in each layer:
∂
∂t

[coke mass] = − [rate of consumption of coke in reaction]

• Assume the gas is incompressible, with specific volume and pressure indepen-
dent of its composition.

• Then “seepage velocity” of gas is constant, and we can ignore balance of mass
of gas and oxygen.



Dimensionless variables:

• u(x, t) temperature of layer 1
• y(x, t) remaining coke in layer 1
• v(x, t) temperature of layer 2
• z(x, t) remaining coke in layer 2

Normalizations:

• “Reservoir temperature” is u = v = 0: no reaction.
• 0 ≤ y, z ≤ 1

Arrhenius reaction-rate function:

f(u, y) =

{

ye−
E
u if u > 0,

0 if u ≤ 0.

u

y

Graph of f for fixed y



PDEs for two-layer model:

∂

∂t

(

(a1 + b1y)u
)

+
∂

∂x

(

c1u
)

= d1f(u, y) − q(u− v) + λ1

∂2u

∂x2
,(0.1)

∂y

∂t
= −A1f(u, y) ,(0.2)

∂

∂t

(

(a2 + b2z)v
)

+
∂

∂x

(

c2v
)

= d2f(v, z) − q(v − u) + λ2

∂2v

∂x2
,(0.3)

∂z

∂t
= −A2f(v, z) .(0.4)



Finite-interval simulations

Simulation with q = 0:

0 5 10 15 20 25 30 35 40
−1

−0.5

0

0.5

1

1.5

2

Temperature 

q = 0.0 

In each layer a traveling wave forms, but the waves have different left states (com-
bustion temperature) and different speeds.



Simulation with q = 0.47:
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Moving from right to left:

• Ahead of the combustion front the temperature is 0 (the initial temperature).
• In the combustion zones, which differ in the two layers, the temperature rises

rapidly to the layer combustion temperature, which is higher in layer 1 than
layer 2.

• Behind the combustion zones the temperatures equilibrate at an intermediate
value. The part of the solution from here to the right propagates as a traveling
wave.

• Behind this point the solution in each layer approaches the boundary condition.



Simulation with q = 117.61:
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Temperature profiles in the two layers are extremely close.



Simulations with different left boundary and initial conditions:
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The traveling combustion wave that forms is independent of the injection temper-
ature. It depends only on the system parameters and q.



For all simulations we use typical parameter values from the engineering literature:

a1 = 19.4840,
a2 = 16.7032,
b1 = 1.0,
b2 = 1.0,
c1 = 1.8054,
c2 = 2.1063,
d1 = 62.5415,
d2 = 50.9796,
A1 = 5.4093,
A2 = 4.4093,
λ1 = 0.0815,
λ2 = 0.0815.

We shift and rescale the temperature so that 0 corresponds to the initial tempera-
ture of the porous medium T0, and 1 corresponds to T0 + 773.15.



Traveling wave system

Look for traveling wave solution
(

u(ξ), y(ξ), v(ξ), z(ξ)
)

, ξ = x− σt, satisfying the
boundary conditions

ξ

u

ξ

y
1uL

• At the left, temperature is high, all coke is burned.
• At the right, “reservoir temperature,” all coke is present.
• uL, vL, and σ are unknown.

(u, y, v, z)(−∞) = (uL, 0, vL, 0) (burned),

(u, y, v, z)(∞) = (0, 1, 0, 1) (unburned),

(u̇, ẏ, v̇, ż)(−∞) = (u̇, ẏ, v̇, ż)(∞) = (0, 0, 0, 0).



Second-order traveling wave system:

−σ
d

dξ

(

(a1 + b1y)u
)

+
d

dξ
(c1u) = d1f(u, y) − q(u− v) + λ1

d2u

dξ2
,(0.5)

σ
dy

dξ
= A1f(u, y) ,(0.6)

−σ
d

dξ

(

(a2 + b2z)v
)

+
d

dξ
(d2v) = d2f(v, z) + q(u− v) + λ2

d2v

dξ2
,(0.7)

σ
dz

dξ
= A2f(v, z) .(0.8)

To convert to a first-order system:

Integrate (0.5)–(0.8) from ξ to +∞, and use (u, y, v, z)(∞) = (0, 1, 0, 1) and
u̇(∞) = v̇(∞) = 0:



λ1u̇ = −σ(a1 + b1y)u + c1u + d1

∫ ∞

ξ

f(u, y) dξ̃ −

∫ ∞

ξ

q(u− v) dξ̃ ,

σ(1 − y) = A1

∫ ∞

ξ

f(u, y) dξ̃ ,

λ2v̇ = −σ(a2 + b2z)v + c2v + d2

∫ ∞

ξ

f(v, z) dξ̃ −

∫ ∞

ξ

q(v − u) dξ̃ ,

σ(1 − z) = A2

∫ ∞

ξ

f(v, z) dξ̃ .

Let

w(ξ) =

∫ ∞

ξ

q(u− v) dξ̃,

the total heat difference between the layers from ξ to the right.



Two-layer traveling-wave system:

u̇ =
1

λ1

(

−σ
(

b1uy + a1u +
d1

A1

(y − 1)
)

+ c1u− w

)

,(0.9)

ẏ =
1

σ
A1f(u, y),(0.10)

v̇ =
1

λ2

(

−σ
(

b2vz + a2v +
d2

A2

(z − 1)
)

+ c2v + w

)

,(0.11)

ż =
1

σ
A2f(v, z),(0.12)

ẇ = q(v − u).(0.13)

Boundary conditions:

(u, y, v, z, w)(−∞) = (uL, 0, vL, 0, wL) (burned),

(u, y, v, z, w)(∞) = (0, 1, 0, 1, 0) (unburned).

One-layer traveling wave system: Set w = 0 in (0.9)–(0.10), with boundary condi-
tions

(u, y)(−∞) = (uL, 0), (u, y)(∞) = (0, 1).



Combustion fronts in one layer

One-layer traveling wave system (system parameters fixed):

u̇ =
1

λ1

(

−σ
(

b1uy + a1u +
d1

A1

(y − 1)
)

+ c1u

)

,(0.14)

ẏ =
1

σ
A1f(u, y).(0.15)

Phase portrait for σ > c1
a1

:

u

y

uL(σ)

1 ?
u=0.

We want a connecting orbit from the hyperbolic saddle UL(σ) = (uL(σ), 0) to the
nonhyperbolic equilibrium UR = (0, 1).



u

y

uL(σ)

1 ?
u=0.

Definition 0.1. A connecting orbit from a hyperbolic equilibrium UL to a non-
hyperbolic equilibrium UR is called strong if it lies in the stable manifold of UR.
The corresponding traveling wave is also called strong.

Theorem 0.2. There is a number σ∗, with c1
a1
< σ∗ < ∞, such that the one-

layer system has a connecting orbit from UL(σ) to UR if and only if σ∗ ≤ σ <
∞. The connecting orbit is strong if and only if σ = σ∗.



Proof. 1. Phase portrait of (0.14)–(0.15) for large σ:

Let σ = 1

ǫ
, multiply the resulting system by by ǫ:

u̇ =
1

λ1

(

−
(

b1uy + a1u +
d1

A1

(y − 1)
)

+ ǫc1u

)

,(0.16)

ẏ = ǫ2A1f(u, y).(0.17)

“Fast-slow” form. Phase portrait for ǫ = 0:

u

y

1

d1/(a1A1)

• There is a normally hyperbolic curve of equilibria.
• Therefore for small ǫ, near it there is a normally hyperbolic invariant curve.



Phase portrait for small ǫ or large σ:

u

y

1

• For large σ, there are connections, but they are not strong.

2. Phase portrait of (0.14)–(0.15) for small σ > c1
a1

:

Let σ = c1
a1

+τ . Since u(σ) → ∞ as τ → 0, also let u = 1

s
. We obtain the following

system for s > 0 (corresponding to u > 0):

ṡ =
s

λ1

(

(
c1

a1

+ τ )
(

b1y + a1 +
d1

A1

(y − 1)s
)

− c1

)

,(0.18)

ẏ =
A1a1

c1 + a1τ
ye−Es.(0.19)



Phase portrait for τ = 0:
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Phase portrait for small τ > 0:
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Phase portrait of (0.14)–(0.15) for small σ > c1
a1

:

u

y

1

• For small σ > c1
a1

, there is no connection.
• There must be a connection for some intermediate σ∗.



3. Define a separation function S(σ) between W u(UL(σ)) and W s(UR).

u

y

1 S(σ)<0

At a value σ = σ∗ where the separation is 0 (i.e., where there is a strong connection),
let the connecting solution be (u∗(t), y∗(t)), and let

T (t) =
∂u̇

∂u
(u∗(t), y∗(t)) +

∂ẏ

∂y
(u∗(t), y∗(t)).

Then we have the well-known Melnikov integral formula

S ′(σ∗) =

∫ ∞

−∞

exp

(

−

∫ t

0

T (s) ds

)

(u̇∗(t), ẏ∗(t)) ·

(

∂ẏ

∂σ
(u∗(t), y∗(t)),−

∂u̇

∂σ
(u∗(t), y∗(t))

)

dt.

This is positive.

• Therefore the value of σ at which a strong connection exists is unique.

�



We regard only strong traveling waves as physical.

Reasons:

• In numerical simulations of the PDE, only strong combustion fronts seem to
form.

• If (u∗(ξ), y∗(ξ)) is a strong connection,
∫ ∞

ξ0
u∗(ξ) dξ is finite, because u(ξ)

approaches 0 exponentially. Thus the total heat ahead of the combustion front
is finite. This conclusion does not hold for connections that are not strong.
Since the source of the heat is the combustion front, how could there be an
infinite amount of heat ahead of it?

• In other combustion contexts, the addition to the equations of perturbation
terms such as heat loss to the rock formation causes the zero eigenvalues at
unburned states to become positive, thus eliminating connections that are not
strong. (However, the unburned states remain equilibria, even though they are
nonhyperbolic before perturbation.)



Two-layer traveling wave system: equilibria

u̇ =
1

λ1

(

−σ
(

b1uy + a1u +
d1

A1

(y − 1)
)

+ c1u− w

)

,

ẏ =
1

σ
A1f(u, y),

v̇ =
1

λ2

(

−σ
(

b2vz + a2v +
d2

A2

(z − 1)
)

+ c2v + w

)

,

ż =
1

σ
A2f(v, z),

ẇ = q(v − u).

Restrict to: 0 ≤ y, z ≤ 1.

Assume: σ > max
(

c1
a1
, c2
a2

)

.

For q = 0:

• ẇ = 0.

• There is a normally hyperbolic curve of equilibria with y = z = 0.

• There is a nonhyperbolic equilibrium XR = (0, 1, 0, 1, 0).



u,v

y,z

w

2d

3d

(0,1,0,1,0)

(uL(w,σ),0,vL(w,σ),0,w)

There is one value of w, w = wL(σ), for which uL(σ) = vL(σ).



For q > 0:

• There is a normally hyperbolic invariant curve of equilibria with y = z = 0.

• It contains one equilibrium XL(σ), for which u = v and w = wL(σ).

• There is a nonhyperbolic equilibrium XR = (0, 1, 0, 1, 0).

u,v

y,z

w

2d

3d

(0,1,0,1,0)

(uL(w,σ),0,uL(w,σ),0,w)
with w=wL(σ)

We want a strong connecting orbit from XL(σ) to XR.

We expect strong connections for isolated values of σ.



Combustion fronts in two layers for large q

Fix the system parameters.

Theorem 0.3. If q is sufficiently large, there is a wave speed σ∗(q) for which

the traveling wave system has a strong connection from XL(σ∗) to XR.

Proof. Let

q =
1

ǫ2
, w =

ω

ǫ
, ξ = ǫη.

Using ′ to denote d
dη

, we obtain

u′ = ǫh(u, y, σ) −
ω

λ1

,(0.20)

v′ = ǫk(v, z, σ) +
ω

λ2

,(0.21)

y′ = ǫ
A1

σ
f(u, y) ,(0.22)

z′ = ǫ
A2

σ
f(v, z) ,(0.23)

ω′ = v − u ,(0.24)



Set ǫ = 0:

u′ = −
ω

λ1

,(0.25)

v′ =
ω

λ2

,(0.26)

y′ = 0 ,(0.27)

z′ = 0 ,(0.28)

ω′ = v − u .(0.29)

A linear equation. There is a 3-dimensional plane of equilibria

S0 = {(u, v, y, z, ω) : v = u and ω = 0}.

The eigenvalues of (0.25)–(0.29) are 0, 0, 0, ±( 1

λ1
+ 1

λ2
)

1
2 , so S0 is a normally

hyperbolic.

For small ǫ > 0, any compact part of S0 perturbs to a normally hyperbolic invariant
manifold Sǫ. In Sǫ, v ≈ u everywhere.

For variables on Sǫ we use (u, y, z).



DE on Sǫ, in the variables (u, y, z), in the slow time ξ:

u̇ =
1

λ1 + λ2

(λ1h(u, y, σ) + λ2k(u, y, σ)) ,(0.30)

ẏ =
A1

σ
f(u, y) ,(0.31)

ż =
A2

σ
f(u, z) ,(0.32)

plus terms of order ǫ. With ǫ = 0, this describes one-layer with two fuels.

Phase portrait on Sǫ to lowest order for σ > c1+c2
a1+a2

;

u

y

z

1

1

Study large σ and small σ > c1+c2
a1+a2

as in the one-layer case. �

We have not been able to show σ∗ is unique.



Combustion fronts in two layers for small q

P = system parameter space.

For Π ∈ P and q = 0, there is a strong traveling wave in layer i with speed σi(Π).

M = {Π ∈ P : σ1(Π) = σ2(Π)}.

A point Π ∈M is regular if D(σ1 − σ2)(Π) 6= 0.

Theorem 0.4. Let Π∗ be a regular point of M , and let σ∗ = σ1(Π
∗) = σ2(Π

∗).
Then for small q > 0 there is an open subset Uq of P near Π∗ where there is

a strong traveling wave with speed near σ∗.

M

q

π

Π∼



Explanation:

Write Π = (Π̃, π), where π is chosen so that at Π∗ = (Π̃∗, π∗), the partial derivative
σ1 − σ2 in the π-direction is nonzero.

Fix Π̃ = Π̃∗.

Write the traveling wave system as

U̇ = G(U,w, σ, π),(0.33)

V̇ = H(V, w, σ, π),(0.34)

ẇ = q(v − u),(0.35)

σ̇ = 0,(0.36)

π̇ = 0,(0.37)

with U = (u, y), V = (v, z), G = (G1, G2) and H = (H1, H2).

State space is now UV wσπ-space (dimension = 7), and q is a parameter.

In short: Ẋ = F (X, q), X = (U, V, w, σ, π).



Important equilibria for q = 0:

L0 = {(u, y, v, z, w, σ, π) : u = uL(w, σ, π) =
σd1 − A1w

A1(σa1 − c1)
,

v = vL(w, σ, π) =
σd2 + A2w

A2(σa2 − c2)
, y = z = 0},

R0 = {(u, y, v, z, w, σ, π) : u = v = w = 0 and y = z = 1}.

u,v

y,z

w,σ,π
L0

R0

• L0 has dimension 3, it’s a normally hyperbolic manifold of equilibria. W u(L0)
has dimension 5

• R0 has dimension 2. W s(R0) has dimension 4

We expect W u(L0) ∩W
s(R0) to have dimension 2. What is it?



Let

• u∗L = uL(0, σ∗, π∗).
• v∗L = vL(0, σ

∗, π∗).

W u(L0) and W s(R0) meet transversally along the a two-dimensional sheet of con-
nections from (u∗L, 0, v

∗
L, 0, 0, σ

∗, π∗) to (0, 1, 0, 1, 0, σ∗, π∗):

(U, V, w, σ, π) = (U ∗(ξ), V ∗(ξ + η), 0, σ∗, π∗).

. .

. .

(u*L,0,v*L,0) (0,1,v*L,0)

(u*L,0,0,1) (0,1,0,1)

u,y

v,z

Same picture is in paper of Bose.



For small q > 0:

• R0 persists as a 2-dimensional set of equilibria Rq.
•W s(Rq) has dimension 4.
• There is a 3-dimensional normally hyperbolic invariant manifold Lq near L0.
•W u(Lq) has dimension 5.
•W u(Lq) ∩W

s(Rq) has dimension 2 (persistence of transversal intersections).

What do orbits in W u(Lq) ∩W
s(Rq) look like?

DE on Lq to lowest order, in slow time:

w′ = vL(w, σ, π) − uL(w, σ, π),(0.38)

σ′ = 0,(0.39)

π′ = 0.(0.40)

For small q > 0:

• There is a 2-dimensional sheet of equilibria Eq in Lq given exactly by w =
wL(σ, π).

• All equilibria in Eq have u = v and are repelling within Lq.



Solutions in W u(Lq) ∩W
s(Rq) are near a “singular solution”:

u,v

y,z

w

(0,1,0,1,0)

wL(σ*,π*) slow

fast

2d

(σ,π)=(σ*,π*)

Proceeding backward from (0, 1, 0, 1, 0):

• Fast part: one of the connections in the last picture to (u∗L, 0, v
∗
L, 0, 0) (i.e., a

pair of one-layer combustion waves, perhaps shifted).
• Slow part: y and z remain 0 (the coke is burned), the temperatures slowly

equilibrate (at a value between u∗L and v∗L).



To study small q > 0, parameterize the connecting orbits from (u∗L, 0, v
∗
L, 0, 0) to

(0, 1, 0, 1, 0) for (σ, π, q) = (σ∗, π∗, 0) by ζ , α ≤ ζ ≤ β:

. .

. .

(u*L,0,v*L,0) (0,1,v*L,0)

(u*L,0,0,1) (0,1,0,1)

X(α)

X(β)

u,y

v,z

X(ζ)

Separation function between W u(Lq) and W s(Rq):

• S : ζσπq-space → R
2.

• S(ζ, σ∗, π∗, 0) ≡ 0

The implicit function lets us solve the equation

S(ζ, σ, π, q) = 0

for (σ, π) in terms of (ζ, q) with

(σ(ζ, 0), π(ζ, 0)) = (σ∗, π∗).



Graph of π(ζ, q):

ζ

ππ*

q

S=0

We wish to show that ∂π
∂q

(ζ, 0) is not constant.

Theorem 0.5. As ζ → α, ∂π
∂q

(ζ, 0) → ∞, and as ζ → β, ∂π
∂q

(ζ, 0) → −∞; or

the reverse. In particular, for small q > 0, the range of π(ζ, q) includes an

open interval.



Proof.
∂π

∂q
(ζ, 0) =

Mq(ζ)Nσ −MσNq(ζ)

MσNπ −MπNσ
,

with each term a Melnikov integral. In particular,

Mq(ζ) =

∫ ∞

−∞

ψ∗
15(ξ)

∂F

∂q
dξ =

∫ ∞

−∞

ψ∗
15(ξ)

(

v∗
(

ξ + η∗(ζ)
)

− u∗(ξ)

)

dξ

and

Nq(ζ) =

∫ ∞

−∞

φ∗25(η)
∂F

∂q
dη =

∫ ∞

−∞

φ∗25(η)

(

v∗(η) − u∗
(

η − η∗(ζ)
)

)

dη.

Near ζ = α, the uy-component of the orbit arrives near (0, 1) while the vz-
component is still near (v∗L, 0). The orbit spends a long time with (u, y, v, z)
near (0, 1, v∗L, 0), where v−u is large positive. Meanwhile ξ is very large, so ψ∗

15(ζ)
is near a positive constant. The integral becomes large. �

The traveling wave associated with a nearby connecting orbit has the combustion
zones in the two layers displaced.



Concluding remarks

Numerical results have been pretty well explained.

Stability of these waves has not yet been analyzed.

It may be possible to prove existence of a strong connection for any values of the
system parameters using the Conley index.

Can other models be analyzed similarly?


