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Abstract. We review recent results on stability of traveling waves in partly parabolic reaction-
diffusion systems with stable or marginally stable equilibria. We explain how attention to what
are apparently mathematical technicalities has led to theorems that allow one to convert spectral
calculations, which are used in the sciences and engineering to study stability of a wave, into
detailed, theoretically-based information about the behavior of perturbations of the wave.
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1. Introduction

A reaction-diffusion equation in one space-dimension is a partial differential equation of the form

Yt = DYxx +R(Y ), (1.1)

with x ∈ R, t ≥ 0, and Y : R × R+ → R
n. The function R : Rn → R

n is smooth. D = diag(di) is an
n × n constant diagonal matrix with di > 0 for i = 1, . . . , k, where k a number between 1 and n, and
di = 0 otherwise. The equation is parabolic if k = n and partly parabolic otherwise.

Partly parabolic systems, or, as they are also called in the literature, partly dissipative [56, p.283],
partially degenerate [31]), or partially parabolic systems, are perhaps less familiar than parabolic systems.
They have diffusion in some equations (those for which di > 0) and no diffusion in others. Examples
include equations modeling nerve impulses, such as Hodgkin-Huxley and FitzHugh-Nagumo; combustion
and chemical reaction equations in which some reactant is a solid (hence does not diffuse); intracellular
calcium dynamics in the presence of immobile buffers [32–34, 62, 63]; population interaction models in
which some populations diffuse and others do not [11, 27, 28]; and models for malignant tumor growth
[40].

One direction of study of partly parabolic systems has been existence and properties of attractors of the
associated semiflows; see references in [56]. In addition, examples of traveling waves in partly parabolic
equations have been studied for a long time. However, interest in traveling waves of partly parabolic
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equations as a class appears to be recent. For commentary on this class of equations, see Tsai [62] and
Rottmann-Matthes [48].

Because of Galilean invariance (resulting from no x-dependence in the equations), system (1.1) admits
solutions of the form Y∗(ξ), ξ = x − ct, called traveling waves. Traveling waves move with constant
velocity while keeping their shape. When c = 0, they are called standing waves, and are the equilibrium
(that is, time-independent) solutions of (1.1). Without loss of generality we will always take c ≥ 0. In
general, traveling waves of (1.1) with velocity c are equilibrium solutions of the PDE

Yt = DYξξ + cYξ +R(Y ), (1.2)

obtained from (1.1) by replacing x by the moving coordinate ξ = x − ct. Since a shift Y∗(· + q), q ∈ R,
of a traveling wave is also a traveling wave, equilibria of (1.2) come in one-parameter families.

Traveling wave solutions of (1.1) are the simplest solutions other than constants. They arise in ap-
plied problems from such fields as optical communication, combustion theory, biomathematics (calcium
waves in tissue, nerve conduction, population dynamics), chemistry (autocatalytic reactions), and botany
(vegetation patterns). In applications traveling waves are frequently the most important solutions.

Our interest is in traveling waves that connect spatially homogeneous state. Hence we suppose that
Y∗(ξ) is an equilibrium solution of (1.2) with

lim
ξ→±∞

Y∗(ξ) = Y±.

Y∗(ξ) is called a pulse if Y− = Y+ and a front if Y− 6= Y+. Such traveling waves are found by replacing
Yt in (1.2) by 0, writing the resulting ODE as a first-order system Zξ = G(Z, c), Z ∈ R

n+k, and looking
for solutions that connect equilibria. Equilibria of the ODE represent spatially homogeneous solutions of
the PDE.

We shall limit our attention to traveling waves that approach their end states Y± exponentially. Such
waves are sometimes embedded in a continuum of waves. Some of these waves may not be physical
because, for example, they have negative values for physical quantities that must be nonnegative. In other
cases some of the waves converge to one or both of their end states at rates slower than exponential. The
latter may be stable to exponentially small perturbations of themselves [39], but this means that they
are observed only when carefully prepared, nonphysical initial conditions are used. Physically important
initial conditions are generally strongly localized and therefore are exponentially small perturbations of
traveling waves that converge to their end states exponentially. Hence it is usually sufficient to only
consider traveling waves with this property.

In this paper we will review recent, general results that aid in the stability analysis of pulses and fronts
in partly parabolic systems.

2. Linear stability

2.1. Definitions

The definitions in this section do not depend on whether the system is partly or fully parabolic.
Linearizing (1.2) at the traveling wave Y∗, we obtain the linear PDE

Yt = LY := (D∂ξξ + c∂ξ +DR(Y∗))Y. (2.1)

There are two related constant-coefficient linear PDEs

Yt = L±Y := (D∂ξξ + c∂ξ +DR(Y±))Y, (2.2)

obtained by linearizing (1.2) at Y±. The spectrum of the operator associated with L± on L2(R)n, which
we denote L±, can be computed using Fourier transform. It is a collection of curves in the complex plane.
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Definition 2.1. The equilibrium Y− is said to be

(i) stable in L2 if the spectrum of L− is contained in the half-plane {Reλ ≤ −ν} for some ν > 0;
(ii) marginally stable in L2 if the spectrum of L− is contained in the half plane {Reλ ≤ 0} and includes

at least one point on the imaginary axis;
(iii) unstable in L2 if the spectrum of L− contains points with Reλ > 0;

and analogously for Y+.

The right-hand boundary of the union of the spectra of L− and L+ on L2 is also the right-hand
boundary of the essential spectrum of the operator associated with L on any of the standard Banach
spaces L2(R)n, L1(R)n, H1(R)n, or BUC(R)n (bounded uniformly continuous functions); we denote all
these operators by L, and we will usually omit the exponent n and the set R in the notation. The latter
two spaces are better suited to the study of nonlinear equations, since they are closed under multiplication.

The discrete spectrum of L (eigenvalues of finite algebraic multiplicity that are isolated in the spectrum)
can be studied using ODE techniques. The approach is based on exponential dichotomies; see [29, Chapter
5], [30], [53]. Briefly, the eigenvalue equation for (2.1), λU = LU , can be rewritten as a first-order linear
ODE of the form

Zξ = (B(ξ) + λC)Z, Z : R → R
n+k. (2.3)

Eigenfunctions Y (·) of L correspond to solutions Z(·) of (2.3) that lie in the function space under con-
sideration. There is a number ℓ such that for λ to the right of the essential spectrum of L, the space
of solutions of (2.3) that approach 0 exponentially as ξ = −∞ (respectively ξ = ∞) has dimension ℓ
(respectively dimension n+ k − ℓ). If these spaces have nontrivial intersection, λ is in the discrete spec-
trum of L on any of the standard function spaces mentioned above; otherwise λ is in the resolvent set
of L. One can construct an analytic function D(λ), the Evans function [30, 53], defined (at least) to the
right of the essential spectrum, whose zeros are the eigenvalues of L; the multiplicity of the zero gives
the algebraic multiplicity of the eigenvalue. For the standard function spaces mentioned above, there is
always an eigenvalue 0 with eigenfunction Y ′

∗ , the derivative of the traveling wave.
We shall use the following definitions to describe stability properties of the waves:

Definition 2.2.
(i) A traveling wave Y∗ is called spectrally stable in a space E if the spectrum of the linear operator L on

E is contained in the half-plane {Reλ ≤ −ν} for some ν > 0, except for a simple eigenvalue at 0.
(ii) A traveling wave Y∗ is called spectrally unstable due to essential spectrum in a space E if the discrete

spectrum of the linear operator L in E is contained in the half-plane {Reλ ≤ −ν} for some ν > 0,
except possibly for a simple eigenvalue at 0, but the essential spectrum has nonempty intersection with
the imaginary axis.

(iii) Assume that 0 is a simple eigenvalue of L on a space E , and let Y denote the null space of the Riesz
spectral projection of the operator L onto the span of Y ′

∗ . In this case, a traveling wave Y∗ is called
linearly stable in E if L generates a C0 semigroup etL that, when restricted to Y, satisfies the estimate
‖etL

∣∣Y‖ ≤ Ke−δt for some K > 0 and δ > 0 and all t ≥ 0.
(iv) A traveling wave Y∗ is called nonlinearly stable (or orbitally stable) in E if a solution of (1.2) that starts

near Y∗ in Y∗ + E stays close to the curve of shifts {Y∗(· + q), q ∈ R}, of Y∗ for t ≥ 0, in some norm
(possibly not the norm of E).

(v) A traveling wave Y∗ is called nonlinearly exponentially (resp. algebraically) stable with asymptotic
phase in E provided (1) it is stable in E , and (2) a solution of (1.2) that starts near Y∗ in Y∗ + E
converges exponentially (resp. algebraically) to a particular shift Y∗(· + q0) of Y∗ as t → ∞. The
convergence may be in a norm different from the norm on E .

2.2. Using spectral information to show linear stability

In the stability theory of traveling waves, one usually attempts to show that spectral stability or linear
stability plus some additional conditions imply nonlinear exponential stability with asymptotic phase.
Two basic theorems are used:
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1. Henry’s Theorem [29, Section 5.1]. If, in the space E , R defines a C1 mapping, the operator L is
sectorial, and the traveling wave Y∗ is spectrally stable, then Y∗ is nonlinearly exponentially stable
with asymptotic phase.

2. Theorem of Bates and Jones [3, Theorem 1.1 and proof of Theorem 4.3]. If, in the space E , R defines
a C1 mapping, and the traveling wave Y∗ is linearly stable, then Y∗ is nonlinearly exponentially stable
with asymptotic phase.

These theorems are discussed in [53, pp. 1040–1041].
The result of Bates and Jones is proved by showing that in Y∗ + E , Y∗ has a local stable manifold

tangent to Y at Y∗. Shifting this manifold by Y (ξ) → Y (ξ + q) sends it to the stable manifold of the
shifted traveling wave Y∗(ξ + q). The set of such shifts with q close to 0 foliates a neighborhood of Y∗,
which proves the result.

Henry’s result follows from the result of Bates and Jones: the hypotheses of Henry’s Theorem imply
that Y∗ is linearly stable, because of a spectral mapping theorem that relates the spectrum of a sectorial
operator to the spectrum of the analytic semigroup it generates. However, Henry’s proof is different
from that of Bates and Jones. First, Henry observes that the hypotheses imply that Y∗ is linearly stable.
Next, Henry decomposes a solution near Y∗ into Y (ξ, t) = Y∗(ξ + q(t)) + Ỹ (ξ, t), with Ỹ (·, t) ∈ Y for
each t. Using the linear stability of Y∗, Henry appeals to the variation of constants formula to show that
|q(t)|+ ‖Ỹ (t)‖ stays small, the solution is defined for all time, Ỹ (·, t) → 0, and q(t) approaches constant
q0 as t → ∞.

In the space H1 or BUC, Henry’s approach applies when the reaction-diffusion equation is parabolic.
Bates and Jones, on the other hand, show how to apply their result when the reaction-diffusion equation
is partly parabolic, provided the traveling wave is a pulse. The difficulty in using the approach of Bates
and Jones is that spectral stability, not linear stability, is the more directly verifiable condition. For
operators that generate C0 semigroups but are not sectorial, spectral stability does not always imply
linear stability. There is no generally applicable spectral mapping theorem; cf. [13] and [16, Section
IV.3]. For partly parabolic systems, L is not sectorial. Indeed, Evans, whose series of papers on stability
of pulses in nerve impulse models is now considered fundamental, devoted considerable effort to this issue
[17]. His argument was simplified by Bates and Jones. The basic idea is that for a pulse, L− = L+, so
etL can be regarded as a compact perturbation of etL− , a semigroup generated by a constant-coefficient
operator.

Henry’s result and the result of Bates and Jones are both special cases of general results on existence
of locally invariant manifolds and foliations for semilinear equations in Banach spaces. As an example,
we mention the following result of Chen, Hale, and Tan [12]. Consider an ordinary differential equation
Yt = AY + F (Y ) on a Banach space, with F of class C1, F (0) = 0 and DF (0) = 0. Assume (1) A
generates a C0 semigroup eAt such that the spectrum of eA decomposes into a part on the unit circle and
a part bounded away from the unit circle, and (2) F can be restricted to a small neighborhood of 0 and
then extended to the whole space in such a way as to have sufficiently small norm. Then there are local
center, stable, center-stable, unstable, and center-unstable manifolds of 0; there is an invariant foliation
of the center-stable manifold such that all solutions that start in one leaf of the foliation converge to
the same solution on the center manifold; and there is a similar invariant foliation of the center-unstable
manifold. For other results on invariant manifolds see for instance [4, 5, 14, 37, 38, 41] and the literature
cited therein.

A recent result of the authors (see [22]) states that spectral stability implies linear stability of fronts
and pulses in partly parabolic systems of the form

∂tu = D∂xxu+ Ã∂xu+R1(u, v), (2.4)

∂tv = R2(u, v), (2.5)

with D, Ã constant matrices, D = diag(d1, . . . , dk), all di > 0, and R1 and R2 continuously differentiable
maps. The interesting case is when 1 ≤ k < n, so the equation is partly parabolic.

3
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The linearization of system (2.4)–(2.5) at a traveling wave with velocity c, written in moving coordi-
nates, takes the form

∂tU = D∂ξξU +A∂ξU +B11(ξ)U +B12(ξ)V,

∂tV = c∂ξV +B21(ξ)U +B22(ξ)V, (2.6)

where now A = Ã + diag(c, . . . , c). We assume that each Bij(ξ) exponentially approaches a constant
matrix B±

ij as ξ → ±∞, which is the case when the traveling wave approaches its end states exponentially.
Consider the linear operator L associated with the differential expression

L =

(
D∂ξξ +A∂ξ +B11 B12

B21 c∂ξ +B22

)
(2.7)

on one of the standard Banach spaces L2(R)n, H1(R)n, L1(R)n, or BUC(R)n.

Theorem 2.3. [22] Suppose the spectrum of L is contained in Reλ ≤ −ν, ν > 0, except for an eigenvalue
0 of finite algebraic multiplicity. Let Y be the kernel of the Riesz spectral projection onto the generalized
eigenspace for the 0 eigenvalue, and let 0 < δ < ν. Then there is a number K > 0 such that ‖etL|Y‖ ≤
Ke−δt.

Theorem 2.3 follows from [22, Theorem 3.1]. It allows one to conclude that if a traveling wave for a partly
parabolic problem is spectrally stable, then it is linearly stable. The result of Bates and Jones can then
be used to conclude nonlinear exponential stability with asymptotic phase.

The novelty of Theorem 2.3 is twofold. First, it works not only for pulses but also for fronts. As an
application, we note that spectral stability for fronts that occur in nerve-impulse equations was proved in
[44, 52, 69]. Theorem 2.3 can be used to deduce linear stability from these results; nonlinear exponential
stability with asymptotic phase then follows from the result of Bates and Jones. Details are in Section
2.3. Second, Theorem 2.3 is true in BUC. A natural space to use in the stability theory of traveling
waves would include the waves themselves and patterns that might bifurcate from them. Unlike the
other spaces, BUC allows perturbations that are only bounded at infinity; this is sometimes required to
capture physically important bifurcating patterns.

We remark that a less traditional class of function spaces that allow bounded perturbations to fronts
is the uniformly local spaces introduced in [18] and studied in detail in [42]. Uniformly local spaces have
been used to study stability of fronts that undergo a Turing or Hopf bifurcation in the wake of the front
in [8, 24]; they allow one to obtain a priori estimates for the periodic perturbations.

The proof of Theorem 2.3 uses properties of the second-order and first-order operators that are the
diagonal elements of the matrix (2.7) (the second-order operator is sectorial, the first-order operator
is related to an operator that generates an evolutionary semigroup [13]); triangular factorizations of L;
and the Gearhart-Prüss or Greiner Spectral Mapping Theorem [65], for dealing with Hilbert space and
Banach space respectively.

In independent work, Jens Rottmann-Matthes, in his Bielefeld thesis [47] under Wolf-Jürgen Beyn,
proved a similar spectral stability implies linear stability result. Rottmann-Matthes’s approach applies
to a more general class of systems, but the analysis is restricted to H1, since it uses Laplace transform.
His work is based on [35].

Rottmann-Matthes studies the nonlinear system

∂tu = D∂xxu+
(
g(u, v)

)
x
+R1(u, v), (2.8)

∂tv = C∂xv +R2(u, v), (2.9)

where u ∈ R
k, v ∈ R

n−k, D and C are constant real matrices, D + D⊤ > 0, C = diag(c1, . . . , cn−k),
and g,R1, R2 are C3; cf. (2.4)–(2.5). He assumes the existence of a steady state solution Y∗ of (2.8)–
(2.9), and proves that a Cauchy problem for this system has a unique weak solution that is in fact is

4
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a strong solution. The solution exists on 0 ≤ t < T ∗ for some T ∗ ≤ ∞. For any T < T ∗, (u, v) ∈
C([0, T ], Y∗ + H1) ∩ H1((0, T ), Y∗ + L2), and u is also in L2((0, T ), Y∗ + H2) [47, Theorem 4.7]. The
solution is global in the sense that if T ∗ < ∞, then the H1-norm of (u, v) blows up as t → T ∗.

In addition to the nonlinear system (2.8)–(2.9), Rottmann-Matthes considers the linear system

∂tU = D∂ξξU +A11(ξ)∂ξU +A12(ξ)∂ξV +B11(ξ)U +B12(ξ)V,

∂tV = C∂ξV +A22(ξ)∂ξV +B21(ξ)U +B22(ξ)V, (2.10)

where D and C are as above, Aij , Bij are bounded continuously differentiable matrix valued functions
having the limits Aij,±, Bij,± as ξ → ±∞, and, in addition, A22,± = 0, while the diagonal elements of
B22,± are strictly negative; see [47, Assumption 4.24]. Compare (2.6). This system is more general than
that obtained by linearizing (2.8)–(2.9) about the steady state.

Assuming spectral stability in H1 for the linearization of (2.8)–(2.9) at the steady state, Rottmann-
Matthes proves linear stability [47, Theorem 4.34] and nonlinear stability with asymptotic phase [47,
Theorem 4.39]. The spectral stability implies linear stability result also holds for the more general linear
operator (2.10).

In addition to [47], see [48]–[51].

2.3. Application of Theorem 2.3 to FitzHugh–Nagumo fronts

Consider the FitzHugh–Nagumo equation

ut = uxx + f(u)− v, (2.11)

vt = ǫ(u− γv), (2.12)

with x ∈ R, f(u) = u(1 − u)(u − a), a ∈ (0, 1) fixed. This equation is a simplification of the Hodgkin-
Huxley equation, which models propagation of electrical waves along nerve axons.

The existence of various traveling fronts (u∗, v∗), for which limξ→±∞(u∗(ξ), v∗(ξ)) both exist but are
different, has been shown by Yanagida [69] and Deng [15]. The fronts travel at nonzero speeds and
approach their limits exponentially as ξ → ±∞.

Let (u∗, v∗) be a traveling front solution of (2.11)–(2.12), that is, a stationary solution of the following
system obtained from (2.11)–(2.12) by passing to a moving coordinate frame ξ = x− ct:

ut = uξξ + cuξ + f(u)− v, (2.13)

vt = cvξ + ǫ(u− γv). (2.14)

Writing
(
u(ξ, t), v(ξ, t)

)
=

(
u∗(ξ), v∗(ξ, t))+

(
U(ξ, t), V (ξ, t)

)
and then W (ξ, t) = (U(ξ, t), V (ξ, t)), system

(2.13)–(2.14) becomes
Wt = LW +N (W ) (2.15)

with

LW = L(U, V ) =

(
∂ξξ + c∂ξ + f ′(u∗(ξ)) −1

ǫ c∂ξ − ǫγ

)(
U
V

)
,

N (W ) = N (U, V ) =

(
f(u∗(ξ) + U(ξ))− f(u∗(ξ)− f ′(u∗(ξ))U(ξ)

0

)
.

One can associate with L a densely defined unbounded linear operator L on E2
0 , E0 = BUC(R), L2(R), or

H1(R). The natural domain is the direct sum of the domains of the operators ∂ξξ and ∂ξ. The nonlinear
operator N is C1 on E2

0 for E0 = BUC(R) or H1(R).
For E0 = BUC(R) or L2(R), Yanagida [69], Nii [44], and Sandstede [52] show that L is spectrally

stable. With the aid of [21], it follows that the same is true for E0 = H1(R). Theorem 2.3 and the result
of Bates and Jones are used in [22] to obtain the following result.

5
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Theorem 2.4. ([22]) Let E0 = BUC(R) or H1(R). Then each of the traveling front solutions (u∗, v∗)
for (2.11)–(2.12) whose existence was shown in Yanagida [69] or Deng [15] is nonlinearly exponentially
stable with asymptotic phase in E2

0 .

2.4. Marginally unstable spectrum and exponential weight functions

Returning to the general discussion of (2.1), we note that if the spectrum of L− or L+ touches or passes
through the imaginary axis then none of the results mentioned in Section 2.2 can be used. However,
these spectra sometimes can be shifted to the left of the imaginary axis if a space with a weighted norm
is used. For c > 0, an exponential weight with positive (resp. negative) growth rate shifts the essential
spectrum to the left (resp. right).

In the study of traveling waves for viscous conservation laws and related equations, one encounters
marginally stable equilibria that cannot be stabilized by any exponential weight. There is now a large body
of work by Zumbrun and collaborators on this situation, based on detailed estimates for the semigroup
generated by the linearized equations; see, for example, [70].

The idea of using weights was introduced by Sattinger [55]. The weight functions used are of exponential
type: for α = (α−, α+) ∈ R

2, the weight function γα(ξ) is a smoothed version of the function

γα(ξ) =

{
eα−

ξ if ξ ≤ 0,

eα+ξ if ξ ≥ 0.
(2.16)

In this context we denote the original unweighted Banach space H1 or BUC by E0, with norm ‖ ‖0, and
let

Eα = {Y (ξ) : γα(·)Y (·) ∈ E0},

with norm ‖Y ‖α = ‖γα(·)Y (·)‖0. Associated with L is a linear operator Lα on Eα. Via the operator of
multiplication by γα(·), the operator Lα is similar to the operator associated with γαLγ

−1
α on E0; spectral

information for Lα can be more readily calculated for the latter operator. In particular, Lα− (respec-
tively Lα+) denotes the operator similar to the constant-coefficient operator eα−

ξL−e
−α

−
ξ (respectively

eα+ξL+e
−α+ξ), where L± are defined by (2.2).

If α− ≤ 0 and α+ ≥ 0, then Eα is a space of bounded functions (since H1(R) →֒ L∞(R)), R defines
a smooth mapping on Eα, and Henry’s result or the result of Bates and Jones can be used to prove
nonlinear stability. If α− < 0 (respectively α+ > 0), using the space Eα amounts to restricting the
allowed perturbations to those that approach Y− (respectively Y+) like a multiple of e−α

−
t (respectively

e−α+t) or faster. This may well be a mathematically natural restriction: if one of the end states of
the wave is marginally stable or unstable, we may have to restrict our attention to perturbations that
approach it at some exponential rate in order to have any chance of a stability result. In some cases, as
we shall see, the restriction may also be physically natural.

If α− > 0 or α+ < 0, then Eα contains unbounded functions, and one cannot use the results of Henry
or Bates and Jones to prove stability, since the requirement that R define a C1 mapping on Eα is violated.
Indeed, such weighted space are not suited to the study of nonlinear problems, since they are not closed
under multiplication.

On the other hand, the use of an exponential weight function with α− > 0 is attractive on physical
grounds. With such a weight, a perturbation of a traveling wave that in the sup norm does not decay,
or even grows, but lags further and further behind the traveling wave, does not prevent stability. If the
state behind the wave is marginally stable, or even unstable, this may well be appropriate.

In physics, a convective instability occurs when perturbations grow in time but are simultaneously
transported to the left or right of a traveling wave (but not both) faster than they grow, so that, in a
coordinate frame that moves with the wave, they eventually die out at each point in space. By contrast,
an absolute instability occurs when perturbations grow at each spatial location in a coordinate frame that
moves with the wave. These concepts originated in plasma physics [10].

6
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From the mathematical point of view, convective instability is captured by using exponential weights;
see [53, 54] for references and examples. Indeed, if a perturbation grows while being convected to, for
example, −∞, then the perturbation may stay bounded or even decay in an exponentially weighted norm
with a weight that decays at −∞.

Such a wave, which is unstable in the space E0 but stable in the space Eα, has been called both
convectively unstable and convectively stable in the literature. We prefer to call the wave convectively
stable, since this terminology stresses the pointwise stability of the wave.

The term “convective” can be informally explained as follows. Suppose that (1.2) has a solution of
the form Y∗(ξ) + Ỹ (ξ − c1t) with c1 < 0; thus the traveling wave Y∗(ξ) has a perturbation that moves
left relative to the wave, and does not decay in an unweighted norm. We ask whether the perturbation
decays exponentially in ‖ ‖α, where for simplicity α− = α+ > 0. (We need α− > 0 to get any sort of
decay.) We have

‖eα−
ξỸ (ξ − c1t)‖ = ‖eα−

(η+c1t)Ỹ (η)‖ = eα−
c1t‖eα−

ηỸ (η)‖.

Therefore ‖Ỹ (· − c1t)‖α = eα−
c1t‖Ỹ ‖α. This is exponential decay because α−c1 < 0.

Definition 2.5. We say that a traveling wave Y∗ is spectrally convectively stable in the space E0 provided
the wave Y∗ is spectrally unstable in E0 due to the essential spectrum, but there is a pair α = (α−, α+) 6=
(0, 0), with α−, α+ ≥ 0, such that the wave Y∗ is spectrally stable in E0 ∩ Eα.

Next we propose a corresponding nonlinear definition modeled on Definition 2.2 (v) of nonlinear sta-
bility with asymptotic phase.

Definition 2.6. We say that a traveling wave Y∗ is nonlinearly convectively stable with asymptotic phase
in the space E0 provided (1) it is stable in E0, (2) it is spectrally convectively stable in E0, with α =
(α−, α+), and (3) any solution of (1.2) that starts near Y∗ in Y∗ + (E0 ∩ Eα) converges in Eα to a
particular shift Y∗(·+ q0) of Y∗ as t → ∞.

Thus Definition 2.6 requires at the linear level instability in E0 due to essential spectrum (Def. 2.2 (ii))
and nonlinear stability with asymptotic phase in E0∩Eα in the sense of Definition 2.2 (v). This definition
is not standard, but it includes several results in the literature.

Note that the norm of E0∩Eα is defined as max(‖ ‖0, ‖ ‖α); smallness in E0∩Eα is equivalent to smallness
in both ‖ ‖0 and ‖ ‖α. Also, the norm of E0 ∩ Eα is equivalent to the norm of Eβ with β = (0, α+).

The idea of using an exponential weight function with α− > 0 together with an unweighted norm to
prove stability results for traveling waves goes back to a paper of Pego and Weinstein on traveling waves
in a dispersive equation [45].

Kunze and Schneider [36] proved a similar type of nonlinear stability of a trivial solution in a model
problem with marginally stable equilibria. They assume that perturbations are small in three norms—
unweighted (H1 or BUC), weighted, and L1—and show that such perturbations stay small in the un-
weighted norm and L1, and converge—exponentially in the weighted norm and algebraically (like t−

1
2 )

in the sup norm—to a particular shift of the wave. A part of what Kunze and Schneider show is called
diffusive stability with asymptotic phase. A traveling wave is diffusively stable with asymptotic phase if
perturbations that are small in both the sup norm and L1 stay small in L1 and decay like t−

1
2 in the sup

norm to a particular shift of the wave. It is reasonable to expect diffusive stability in parabolic problems
with a marginally stable equilibrium. The term “diffusive” is used since the time decay is related to the
decay of heat semigroup.

Passing to the exponentially weighted space Eα creates difficulties in applying the results of Henry or of
Bates and Jones to derive nonlinear stability from linear stability. Indeed, unless some severe restrictions
are imposed, the reaction term R on Eα is no longer C1. There is no reason to believe that spectral
convective stability implies nonlinear convective stability in general. In all examples that we know of,
the passage to nonlinear convective stability requires some additional property of the system. In the
work of Pego and Weinstein [45] a Hamiltonian structure is used. In [9, 36] a specific reaction term with

7
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DR(Y±) = 0 is considered. In work on Turing and Hopf bifurcation of the left state [8,24] the stability of
the bifurcating Turing patterns is used. In the paper [68] on a scalar nonlocal reaction-diffusion equation,
properties of the bifurcating periodic pattern are used. In [19,21,23] convective stability is derived using
an assumption that the left state has stability for some components of the solution (see Hypotheses 3.1
and 3.2 below).

We shall discuss [23] in more detail, since it applies to a class of partly parabolic systems.

3. Nonlinear convective stability with asymptotic phase in a class of parabolic

and partly parabolic problems

3.1. Nonlinear results

The paper [23] studies a commonly encountered class of problems that includes both parabolic and partly
parabolic cases. Somewhat more than nonlinear convective stability with asymptotic phase is proved, as
we shall see.

Consider a traveling wave Y∗ of (1.1), which may be either a front or a pulse. Without loss of generality
we take Y− to be 0. Let E0 = H1(R) or BUC(R).

Hypothesis 3.1. Let α− > 0, and let α+ ≥ 0. We assume that α+ is small enough so that Y ′
∗ ∈ Eα,

and we assume that Y∗ is spectrally stable in Eα. In appropriate variables we write Y = (U, V ), where
U ∈ R

k, V ∈ R
n−k, and we assume that the reaction term R in (1.1) satisfies R(U, 0) = 0.

Many combustion problems satisfy this hypothesis. For example, in a combustion problem with n− 1
independent reactants, let y1 denote temperature and let (y2, . . . , yn) denote reactant concentrations.
Suppose the left state of a combustion front with positive velocity has temperature y1 = y1− > 0 and
reactant concentrations (y2, . . . , yn) = (0, . . . , 0) (i.e., behind the front temperature is high and the
reactants are all burned). Let U = u and V = (v1, . . . , vn−1) with u = y1 − y1− and (v1, . . . , vn−1) =
(y2, . . . , yn). Then Y− = 0. Since the reaction rate is 0 when the reactant concentrations are all 0, the
reaction term will have the appropriate form R(U, 0) = 0 mentioned in Hypothesis 3.1.

Referring to the general equation (1.1), for Y = (U, V ) ∈ R
n, where U ∈ R

k, V ∈ R
n−k, and the

splitting is such that R(U, 0) = 0, equation (1.1) takes the form

Ut = D1Uxx +R1(U, V ), (3.1)

Vt = D2Vxx +R2(U, V ), (3.2)

with D1 and D2 nonnegative diagonal matrices, and R1(U, 0) = R2(U, 0) = 0. Linearizing (1.2) at
Y− = (0, 0), we obtain

Ut = L(1)U +D2R1(0, 0)V := D1Uξξ + cUξ +D2R1(0, 0)V,

Vt = L(2)V := D2Vξξ + cVξ +D2R2(0, 0)V.

Note the triangular structure of the linearization at Y−.

Hypothesis 3.2. We assume that the operator associated with L(2) on E0 has its spectrum in the half-
plane Reλ ≤ −ρ for some ρ > 0.

On the other hand, the spectrum of L(1) on E0 is the set of curves λ = djν
2 + ciν, ν ∈ R, j = 1,...,

k. Each curve touches (if dj > 0) or equals (if dj = 0) the imaginary axis, so the equilibrium Y− is
marginally stable. Note, however, that in E0 the operator associated with L(1) generates a semigroup
that is uniformly bounded for t ≥ 0. (For dj > 0 this can be seen by explicitly writing the semigroup
using the heat kernel; for dj = 0 the semigroup preserves the norm.)

8
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Theorem 3.3. Assume Hypotheses 3.1 and 3.2. Then the wave Y∗ is nonlinearly convectively stable in
the sense of Def. 2.6, with α given by Hypothesis 3.1. Thus if the perturbation (Ũ(·, 0), Ṽ (·, 0)) of the
traveling wave is initially small in E0 ∩ Eα, then the corresponding solution of (1.2) decays exponentially
in Eα as t → ∞ to a particular shift of the wave. The solution can be written as

(U, V )(ξ, t) = (U∗(ξ + q(t)) + Ũ(ξ, t), V∗(ξ + q(t)) + Ṽ (ξ, t))

where, for each t, the function (Ũ(·, t), Ṽ (·, t)) belongs to a fixed subspace of E0 ∩ Eα complementary to

the the span of Y ′
∗(·). Ũ(·, t) stays small in E0, while Ṽ (·, t) decays exponentially in E0 as t → ∞.

Thus in the unweighted norm the U -component of a perturbation stays small and the V -component
decays. More can be said about the U -component if the diagonal entries of D1 are all positive.

Theorem 3.4. In addition to the assumptions in Theorem 3.3, let us suppose that the linear equation
Ut = L(1)U is parabolic, i.e., the diagonal entries of D1 are all positive. If the initial perturbation of the
traveling wave is also small in L1, then Ũ(·, t) stays small in the L1-norm and decays like t−

1
2 in the

L∞-norm as t → ∞.

This sort of decay (diffusive stability) is typical for the heat equation.
These theorems are useful for both parabolic and partly parabolic systems. We will discuss applications

to partly parabolic systems only.
The proofs of Theorems 3.3 and 3.4 use Theorem 2.3 in order to include the possibility that D1 and

D2 may have some diagonal entries equal to 0.

3.2. Application to gasless combustion [21].

Theorems 2.3, 3.3, and 3.4 are applicable to the following simple combustion model in one space dimension,
which originally motivated our work:

∂ty1 = ∂xxy1 + y2ρ(y1), (3.3)

∂ty2 = −βy2ρ(y1), (3.4)

where

ρ(y1) =

{
e
−

1
y1 if y1 > 0,

0 if y1 ≤ 0.

In this system, y1 is temperature, y2 is concentration of unburned fuel, ρ is unit reaction rate, and ǫ
and β > 0 are constant parameters. Our motivation for looking at this well-studied problem, in which
the reactant does not diffuse, was heat-enhanced methods of oil recovery in which the reactant is coke
contained in the rock formation [1].

The value y1 = 0 represents ignition temperature and is also taken to be the background temper-
ature, at which the reaction does not take place. If one looks for traveling waves (y1∗, y2∗) such that
(y1∗(−∞), y2∗(−∞)) = (y1−, 0) with y1− > 0, (y1∗(∞), y2∗(∞)) = (0, 1), and (y1∗(ξ), y2∗(ξ)) approaches
its ends states exponentially as ξ → ±∞, then one finds that for each β there is a unique c > 0 for
which such a wave exists. This wave represents a combustion front that leaves behind it high temper-
ature y− = 1/β and no fuel, while in front of it temperature is 0 and there is fuel, with concentration
normalized to 1.

The lack of diffusion in the second equation inspired the linear Theorem 2.3, and the form of the
nonlinear term in this and related problems inspired Theorems 3.3 and 3.4.

Both equilibria (1/β, 0) and (1, 0) are marginally stable, but the left equilibrium has stability of one
component, as Theorem 3.3 requires. More precisely, the linearization about (1/β, 0), in the frame
ξ = x− ct that moves with the front, is

∂ty1 = ∂ξξy1 + c∂ξy1 + ρ(1/β)y2,

∂ty2 = c∂ξy2 − βρ(1/β)y2.

9
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Note that the second equation is decoupled from the first, and the differential operator defined by the
second equation on an unweighted space has its spectrum strictly to the left of the imaginary axis.

For the full system in the moving frame, the spectrum of the linearization on an unweighted space at
(y−, 0) is a parabola in the left-half plane that touches the origin (caused by the first equation), together
with a vertical line to the left of the imaginary axis (caused by the second equation). At (0, 1) the
spectrum is the same parabola and the imaginary axis.

To move the spectrum of the linearization at these points to the left, one needs a weight function γα(ξ)
as in (2.16) with α− and α+ both positive. We simply use the function γα(ξ) = eαξ with α positive but
not too big.

An a priori upper bound for the modulus of isolated eigenvalues was obtained in [67]. With the
aid of this bound, a numerical Evans function calculation in [2] shows that for small β there are no
eigenvalues in the right half-plane other than 0, which was shown numerically to be simple. For larger
β the traveling wave apparently loses stability when a pair of complex eigenvalues crosses the imaginary
axis (see numerical evidence in [6]). In [21] we verified analytically that the 0 eigenvalue is simple for all
β.

After the change of variables u = y1 − y1−, v = y2, one can apply the nonlinear theorems formulated
above. The conclusion is that if one makes a perturbation of the wave that is small in both the unweighted
norm (H1 or BUC) and the corresponding weighted norm with weight function eαξ, then the perturbed
initial condition will decay in the weighted norm to a shift of the wave, while in the unweighted norm the
u-component of the perturbation will remain small, and the v-component of the perturbation will decay
exponentially. If the u-component of the perturbation is in addition small in L1, it will decay in the sup
norm like t−

1
2 as t → ∞.

All these conclusions have natural physical interpretations, which we will now briefly discuss.

(1) Since α > 0, we restrict ourself only to perturbations that decay in space exponentially ahead
of the front. In BUC, some restriction of this sort is clearly necessary, since (3.3)–(3.4) admits fronts
that decay in space very slowly to the right state; they cannot be allowed as perturbations. Nor can
perturbations be allowed that approach a right state (0, y2+) with y2+ 6= 1.

(2) Physically natural initial conditions have (y1, y2) = (0, 1) on an interval x0 ≤ x < ∞. On this
interval they constitute an exponentially small perturbation of the front. Hence we can expect that
physically natural initial conditions will produce the front that converges to its rest states exponentially,
not one of the fronts that converge more slowly. This is in fact what is seen in simulations.

(3) Since α > 0, perturbations can be left behind the traveling wave without decay in the unweighted
norm; in the moving variable ξ, in the weighted norm, they are gradually killed by multiplication by
eαξ. For example, imagine initial conditions in which the fuel y2 is 0 for x < −ǫ and 1 for x > ǫ, and
there is some heat just near x = 0. If there is enough heat, combustion will start near x = 0 and a
combustion wave will propagate to the right, where the fuel is. The heat produced will gradually diffuse.
Such a solution will eventually look like our traveling wave at the right but not far to the left (where the
y1-component of the traveling wave approaches 1

β
but the y1-component of the solution approaches 0).

This is convergence in the weighted norm. The initial heat perturbation of the traveling wave was not in
L1, so Theorem 3.4 does not apply.

(4) If a bump of heat is added behind the traveling wave, where there is no fuel to burn, it will diffuse
according to the heat equation. This is consistent with Theorem 3.4.

(5) On the other hand, if a bump of fuel is added behind the traveling wave, where the temperature is
high, it will immediately burn. This is consistent with the exponential decay of v predicted by Theorem
3.3.

Thus Theorems 3.3 and 3.4, applied to the combustion model (3.3)–(3.4), do not just “make rigorous”
the formal argument for stability of the traveling wave based on the spectrum of the linearization. In
addition, they use the spectral calculations commonly done in science and engineering to obtain detailed,
physically natural information about the stability of the wave.

10
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The results can be viewed as an example of “front propagation into unstable states” [66]. In a wave
traveling to the right, the left state gradually takes over from the right state. It is natural to expect that
for stability, the left state must be stable, but the right state need not be. In the combustion example,
the left state has a sort of stability (its spectrum touches the imaginary axis), and the right state has less
(its spectrum includes the imaginary axis). The lack of stability of the right state is taken into account
by only allowing certain perturbations at the right, which nevertheless constitute a physically important
class of perturbations. The marginal stability of the left state translates into the actual behavior of the
allowed perturbations.

3.3. Application to exothermic-endothermic chemical reactions [23]

Theorem 3.3 is also applicable to a model in which two chemical reactions occur at rates determined
by temperature [58–60]. One reaction is exothermic (produces heat), the other is endothermic (absorbs
heat). In the original model, both reactants and heat can diffuse.

The system considered in [58–60] reads

∂tz1 = ∂xxz1 + z2f2(z1)− σz3f3(z1), (3.5)

∂tz2 = d2∂xxz2 − z2f2(z1), (3.6)

∂tz3 = d3∂xxz3 − τz3f3(z1). (3.7)

Here z1 is temperature, z2 is quantity of an exothermic reactant, and z3 is quantity of an endothermic
reactant. The parameters σ, and τ are positive, and there are positive constants ai and bi such that

fi(u) =

{
aie

−
bi
u for u > 0,

0 for u ≤ 0.

The parameters d2, d3 in [58–60] are assumed to be positive, but the nonlinear stability results formu-
lated below hold if either or both of d2, d3 are 0.

Let Z∗ be a traveling wave solution of (3.5)–(3.7) with speed c > 0, Z− = (1 − σ
τ
, 0, 0), and Z+ =

(0, 1, 1). In [58], Simon, et al., show numerically that in certain parameter regimes, such traveling waves
exist for which both end states are approached at an exponential rate.

Making the change of variables y1 = z1 − (1 − σ
τ
), y2 = z2, y3 = z3, and passing to the moving

coordinate frame ξ = x− ct, converts (3.5)–(3.7) to the system

∂ty1 = ∂ξξy1 + c∂ξy1 + y2f2(z + y1)− σy3f3(z + y1), (3.8)

∂ty2 = d2∂ξξy2 + c∂ξy2 − y2f2(z + y1), (3.9)

∂ty3 = d3∂ξξy3 + c∂ξy3 − τy3f3(z + y1). (3.10)

Applying Theorem 3.3 to this system yields the following detailed stability result. Suppose the constants
d2, d3, σ, τ , ai, bi, and c > 0 are chosen so that there is a traveling wave Y∗ that approaches 0 exponentially
as ξ → −∞ and approaches Y+ = (−z, 1, 1), z = 1 − σ

τ
> 0, exponentially as ξ → ∞. Assume also that

this wave has no unstable isolated eigenvalues. Let α = (α−, α+), α− > 0 and α+ > 0; β = (0, α+), and
E0 = H1(R) or BUC(R). Let Y 0 ∈ Y∗ + E3

β with ‖Y 0 − Y∗‖β small, and let Y (t) be the solution of the

system (3.8)–(3.10) in Y∗ + E3
β with Y (0) = Y 0. Then:

1. Y (t) is defined for all t ≥ 0.

2. Y (t) = Ỹ (t) + Y∗(ξ − q(t)) with Ỹ (t) in a fixed subspace of E3
β complementary to the span of Y ′

∗ .

3. ‖Ỹ (t)‖β + |q(t)| is small for all t ≥ 0.

4. ‖Ỹ (t)‖α decays exponentially as t → ∞.
5. There exists q∗ such that |q(t)− q∗| decays exponentially as t → ∞.

6. There is a constant C independent of Y 0 such that ‖ỹ1(t)‖0 ≤ C‖Ỹ 0‖β for all t ≥ 0.

11
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7. ‖(ỹ2, ỹ3)(t)‖0 decays exponentially as t → ∞.

The conclusions of this theorem can be interpreted physically as in Section 3.2. This is another
example in which a numerical study of the Evans function can be coupled with a rather routine check
of the hypotheses of Theorem 3.3 to produce quite detailed information on the kind of stability that the
traveling wave enjoys.

3.4. Application to gasless combustion with heat loss [57]

The following model is an extension of (3.3)–(3.4):

∂ty1 = ∂xxy1 + y2ρ(y1 − ȳ1)− γy1, (3.11)

∂ty2 = κ∂xxy2 − βy2ρ(y1 − ȳ1), (3.12)

with β and ρ as before. Here κ ≥ 0 is the diffusion constant of the reactant, ȳ1 ≥ 0 is ignition temperature,
y1 = 0 is background temperature, and −γy1, γ ≥ 0, represents heat loss to the environment due to
Newton’s law of cooling.

There is an extensive literature on this system in the case κ > 0; see [61] for a review. Equilibria must
have y1 = 0. If y2 is normalized to be 1 ahead of a possible combustion front, so the right state of the front
is (0, 1), then it turns out that the left state of the front is (0, y∗1), where y∗1 > 0 represents the unknown
concentration of reactant left unburned. For fixed (κ, β) and small γ > 0, there are two combustion
fronts, a somewhat mysterious one with speed near 0 (mysterious in the sense that its speed goes to 0
as γ → 0, but the bifurcation at γ = 0 has not been successfully analyzed), and one that is related to
the known combustion front for γ = 0. Existence of the two waves has been proved for some values of
(κ, β) by Leray-Schauder degree, and is known numerically [7, 46]. In addition, “high activation-energy
asymptotics” has been used to study the limit β → ∞, i.e., the limit in which the reaction produces less
and less heat. As γ increases, the two waves appear to join and disappear in a saddle-node bifurcation
[57]. Spectral stability of the waves has been studied for κ > 0 [57] and κ = 0 [25] by identifying the
essential spectrum and, via numerical Evans function calculations, the eigenvalues.

In [25], geometric singular perturbation theory (instead of Leray-Schauder degree or asymptotics) is
used to show existence of traveling waves with speeds near the speeds of the waves that exist for γ = 0.
In some parameter regimes numerical Evans function calculation shows that the waves are spectrally
unstable due to essential spectrum only.

In this case linear and nonlinear results from [22] and [23] can be applied to prove stability for both
κ = 0 and κ > 0.

One interest of this work is that, when applying Theorems 3.3 and 3.4, the variables that play the
roles of u and v are reversed in the case γ > 0 from their previous roles in the case γ = 0. Hence these
results say that if a little heat is added behind the wave, it will quickly vanish, but if a little reactant is
added behind the wave, it may not. The reason is that in the case of heat loss to the environment, the
temperature far back in the wave is near 0; added heat is lost to the environment, and added reactant
does not burn.

4. Some open problems in the stability analysis of waves in partly parabolic

systems

4.1. Porous medium combustion

The following well-known, simplified model of combustion in a porous medium is due to Sivashinsky; see
the review paper [26] for references.
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Tt − (1− γ−1)Pt = ǫTxx + Y G(T ), (4.1)

Pt − Tt = Pxx, (4.2)

Yt = ǫLe−1Yxx − γY G(T ). (4.3)

Here P , T and Y are the appropriately scaled pressure, temperature, and concentration of the deficient
reactant, γ > 1 is the specific heat ratio, ǫ is the ration of thermal to molecular diffusivities, and G(T )
is a function of combustion type with ignition temperature. More precisely, G(T ) = 0 for 0 ≤ T < Tign

and is an increasing Lipschitz continuous function for T ≥ Tign, except for a possible discontinuity at
the ignition temperature T = Tign. For ǫ = 0, it is known that there is a unique combustion front that
connects the completely burned state to the state in which all of the fuel is present. It is also known
that for small ǫ > 0, this front perturbs to a unique front with nearby speed. In both cases the stability
properties of the front are not known.

For ǫ > 0, the system can be put into a more standard form by means of the linear transformation

T =
−γ + γǫ+ µ(γ, ǫ)

2γǫ
T̃ +

−γ + γǫ− µ(γ, ǫ)

2γ
P̃ , µ(γ, ǫ) =

√
γ2 + 2γ2ǫ+ γ2ǫ2 − 4γǫ,

P = T̃ + ǫP̃ ,

Y = Ỹ .

The resulting system is

T̃t =
(γ + γǫ+ µ(γ, ǫ))

2
T̃xx +

γ(γ + γǫ+ µ(γ, ǫ))

2µ(γ, ǫ)
G(T̃ , P̃ , Ỹ ), (4.4)

P̃t =
(γ + γǫ− µ(γ, ǫ))

2
P̃xx −

γ(γ + γǫ− µ(γ, ǫ))

2ǫµ(γ, ǫ)
G(T̃ , P̃ , Ỹ ), (4.5)

Ỹt =
ǫ

Le
Ỹxx − γG(T̃ , P̃ , Ỹ ), (4.6)

where

G(T̃ , P̃ , Ỹ ) = Ỹ G(
−γ + γǫ+ µ(γ, ǫ)

2γǫ
T̃ +

−γ + γǫ− µ(γ, ǫ)

2γ
P̃ ).

For ǫ > 0 fixed and Le ≫ 1, the diffusion coefficient in (4.6) is small. In the limit Le = ∞, (4.4)–(4.6) is
partly parabolic.

On the other hand, (4.1)–(4.3) is often simplified by taking ǫ = 0. In this case, introducing a new
variable R = T − (1− γ−1)P leads to the equivalent, partly parabolic system,

Rt = Y G(R + (1− γ−1)P ), (4.7)

Pt = γPxx + γY G(R + (1− γ−1)P ), (4.8)

Yt = −γY G(R+ (1 − γ−1)P ), (4.9)

where the first two equations are decoupled from the third.

Both systems (4.4)–(4.6) and (4.7)–(4.9) satisfy the assumption on the reaction term in Hypothesis
3.1, provided U is the first two variables and V is the third. With this splitting, Hypothesis 3.2 is also
satisfied. However, it is not known whether there is a region in parameter space where the spectral
stability condition of Hypothesis 3.1 holds. The essential spectrum is not a problem, but it is not known
whether discrete eigenvalues always prevent stability.
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4.2. Simplified Model of Calcium Dynamics

In [64] a simplified model of intracellular calcium dynamics is proposed:

∂tu = D∂xxu+ F (u,w) + ǫ(Jin − kmu),

∂tw = −γF (u,w),

with

F (u,w) = f(u)(w − u)− ksu := f(u)w − g(u),

f(u) = α+ kf
u2φ2

(u2 + φ2
1)(u+ φ2)

,

g(u) = f(u)u+ ksu,

where Jin is a bifurcation parameter, and D, ǫ, km, kf , ks, φ1, φ2 and γ are positive constants
with appropriate physical meanings. A variety of traveling waves has been found, and their spectral
stability has been studied in [64] using the Evans function. There are parameter regimes where the
wave is spectrally unstable due to the essential spectrum. It is not known what kind of instability
is created. As written, the system does not satisfy the assumption on the reaction term in Hypothesis 3.1.
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