Theorem. Let
$$X_{1,3}$$
, $X_{k,2}$, Y be conceled spaces, let
 $D_1 \subset X_{1,3}$, $D_k \subset X_{k,2}$ be open sets, let
 $f: D_1 \times \cdots \times D_k \Rightarrow Y$ be a function. Assume that
at each point $(x_{1,3}, x_{k,2}) \in D_1 \times \cdots \times D_2$, each partial
derivative $D_1 f(x_{1,3}, x_{k,2}) \in L(X; Y)$ is
and each map $D_1 f: D_1 \times \cdots \times D_k \Rightarrow L(X; Y)$ is
continuous. Then f is continuously differentiable, and
 $Df(x_{1,3}, x_{k,2})(h_{1,3}, y_{k,2}) = D_1 f(x_{1,3}, x_{k,2})(h_{1,3}, y_{k,2})(h_{1,3}, y_{k,2})$
 $\frac{Proof}{10}$ for the case $h = 2$. The following calculation
shars that $Df(x_{1,3}x_{2})$ is the bounded linear map
 $(h_{1,3}h_{2}) \Rightarrow D_1 f(x_{1,3}x_{3})h_{1} + D_2 f(x_{1,3}x_{3})h_{2};$
 $f(x_{1}+h_{1,3}, x_{2}+h_{2}) - f(x_{1,3}x_{3}) - f(x_{1,3}x_{3})h_{1} + D_2 f(x_{1,3}x_{3})h_{3}$
 $= (f(x_{1}+h_{1,3}, x_{2}+h_{2}) - D_2 f(x_{1,3}x_{3})dx_{1})h_{1,3}$

Therefore, given
$$i > 0$$
,
 $||f(x_{1}H_{1}, x_{2}H_{2}) - f(x_{1}, x_{2}) - (D_{f}(x_{1}, x_{2}) h_{1} + D_{2}f(x_{1}, x_{2}) h_{2})|| \leq$
Sup $||D_{2}f(x_{1}H_{1}, x_{2}H_{2}) - D_{1}f(x_{1}, x_{2})|||h_{2}|| +$
 $otter ||D_{1}f(x_{1}H_{1}, x_{2}H_{2}) - D_{1}f(x_{1}, x_{2})|||h_{1}|| \leq \frac{1}{2}||h_{1}|| + \frac{1}{2}||h_{1}||$
 $\leq c ||(h_{1})h_{2}|| + n ||(h_{1})h_{2}|| = sufficiently small, because$
 $D_{1}f \text{ and } D_{2}f \text{ deptend continuously on (x_{1}, x_{1})
To show that $Df(x_{1}, x_{2})$ depends continuously on (x_{1}, x_{1})
To show that $Df(x_{1}, x_{2})$ depends continuously on (x_{1}, x_{1}) .
 $(D_{1}f(x_{1}, x_{2}) - D_{1}f(x_{1}', x'_{1})) h_{1} + (D_{2}f(x_{1}, x_{2}) - D_{2}f(x_{1}', x'_{2})) h_{2}$
Therefore $||(Df(x_{1}, x_{2}) - Df(x_{1}', x'_{1}))(h_{1}, h_{2})|| \leq \frac{2}{2} ||h_{1}|| + \frac{2}{2} ||h_{2}|| \leq \frac{2}{2} ||h_{2}|| \leq \frac{2}{2} ||h_{2}|| = \frac{2}{2} ||h_{2}|| + \frac{2}{2} ||h_{2}|| = \frac{2}{2} ||h_{2}|| + \frac{2}{2} ||h_{2}|| \leq \frac{2}{2} ||h_{2}|| = \frac$$