Theorem. Let $X_{1, \ldots}, X_{k}, Y$ be Banach spaces, et $D_{1} \subset X_{1}, \ldots, D_{k} \subset X_{k}$ be open sets, let $f: D_{1} \times \cdots \times D_{k} \rightarrow Y$ be a function. Assume that cut each point $\left(x_{1}, \ldots, x_{k}\right) \in D_{1} x \cdots x D_{2}$, each pariah derivative $D_{i} f\left(x_{1}, \ldots, x_{k}\right) \in L\left(x_{i}, y\right)$ exists, and each map $D_{i} f: D_{1} \times \ldots \times D_{k} \rightarrow L\left(x_{i}, y\right)$ is continuous. Then f is continnowely deppenentrable, and

$$
D f\left(x_{1}, \ldots, x_{k}\right)\left(h_{1}, \cdots, h_{k}\right)=D_{1} f\left(x_{1}, \ldots, x_{k}\right) h_{1}+\cdots+D_{k} f\left(x_{1}, \ldots, x_{k}\right) h_{k} .
$$

Proof for the case $k=2$. The following calculation shows that $\operatorname{DF}\left(x_{1}, x_{2}\right)$ is the bounded linear map

$$
\begin{aligned}
\left(h_{1}, h_{2}\right) \rightarrow & D_{1} f\left(x_{1}, x_{2}\right) h_{1}+D_{2} f\left(x_{1}, x_{2}\right) h_{2} \\
& f\left(x_{1}+h_{1}, x_{2}+h_{2}\right)-f\left(x_{1}, x_{2}\right)-\left(D_{1} f\left(x_{1}, x_{2}\right) h_{1}+D_{2} f\left(x_{1}, x_{2}\right) h_{2}\right) \\
= & f\left(x_{1}+h_{1}, x_{2}+h_{2}\right)-f\left(x_{1}+h_{1}, x_{2}\right)+f\left(x_{1}+h_{1}, x_{2}\right)-f\left(x_{1}, x_{2}\right) \\
- & \left(D_{1} f\left(x_{1}, x_{2}\right) h_{1}+D_{2} f\left(x_{1}, x_{2}\right) h_{2}\right) \\
=(& \left.\int_{0}^{1} D_{2} f\left(x_{1}+h_{1}, x_{2}+t h_{2}\right)-D_{2} f\left(x_{1}, x_{2}\right) d t\right) / h_{2} \\
+ & \left.\int_{0}^{1} D_{1} f\left(x_{1}+t h_{1}, x_{2}\right)-D_{1} f\left(x_{1}, x_{2}\right) d t\right) h_{1}
\end{aligned}
$$

Thenefre, given $\xi>0$,

$$
\begin{aligned}
& \left\|f\left(x_{1}+h_{1}, x_{2}+h_{2}\right)-f\left(x_{1}, x_{2}\right)-\left(D_{1} f\left(x_{1}, x_{2}\right) h_{1}+D_{2} f\left(x_{1}, x_{2}\right) h_{2}\right)\right\| \leq \\
& \quad \sup _{0 \leq t \leq 1}\left\|D_{2} f\left(x_{1}+h_{1}, x_{2}+t h_{2}\right)-D_{2} f\left(x_{1}, x_{2}\right)\right\|\left\|h_{2}\right\|+ \\
& \sup _{0 \leq t 1}\left\|D_{1} f\left(x_{1}+t h_{1}, x_{2}\right)-D_{1} f\left(x_{1}, x_{1}\right)\right\|\left\|h_{1}\right\| \leq \frac{\varepsilon}{2}\left\|h_{2}\right\|+\frac{\varepsilon}{2}\left\|h_{1}\right\|
\end{aligned}
$$

$\leq \varepsilon\left\|\left(h_{1}, h_{2}\right)\right\|$ for $\left\|\left(h_{1}, h_{2}\right)\right\|$ sufficiently smail, beciule
$D_{i} f$ and $D_{2} f$ depend continnourly on $\left(x_{1}, x_{2}\right)$.
To show that $D f\left(x_{1}, x_{2}\right)$ depends continuinely on $\left(x_{1}, x_{2}\right)$: Fix $\left(x_{1}, x_{2}\right)$.

$$
\begin{gathered}
\left(D f\left(x_{1}, y_{2}\right)-D f\left(x_{1}^{\prime}, x_{2}\right)\right)\left(h_{1}, h_{2}\right)= \\
\left(D_{1} f\left(x_{1}, x_{2}\right)-D_{1} f\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\right) h_{1}+\left(D_{2} f\left(x_{1}, x_{2}\right)-D_{2} f\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\right) h_{2}
\end{gathered}
$$

Theneque il $\left.D f\left(x_{1}, x_{2}\right)-\operatorname{Df}\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\right)\left(h_{1}, h_{2}\right) \| \leqslant$

$$
\frac{\varepsilon}{2}\left\|h_{1}\right\|+\frac{\varepsilon}{2}\left\|h_{2}\right\| \leq \varepsilon\left\|\left(h_{1}, h_{2}\right)\right\| \text { fo }\left\|\left(x_{1}, x_{2}\right)-\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\right\|
$$

Suffivently sinuil, again becousse $D_{1} f$ and $D_{2} f$ depind contininas)ly on $\left(x_{1}, x_{2}\right)$. Hence of $\left\|\left(x_{1}, x_{2}\right)-\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\right\|$ siffininatly small, $\left\|D f\left(x_{1}, x_{2}\right)-D f\left(x_{1}^{\prime}, x_{2}^{\prime}\right)\right\| \leq \varepsilon$.

