Completion of prove of C'Contaration Mapping Theorem
(3) Proof that $g(y)$ is deffeentialle.

We went to show that $\mathrm{Dg}(y)$ is the limen map $A(y)$ that satisfies the equation.

$$
D_{1} T(g(y), y) A(y)+D_{2} T(g(y) y)=A(y)
$$

So lie wite:

$$
\begin{aligned}
& g(y+k)-g(y)-A(y) k=T(g(y+k), y+k)-T(g(y), y) \\
& -\left[D_{1} T(g(y), y) A(y)+D_{2} T(g(y), y)\right] k= \\
& T(g(y+k), y+k)-T(g(y), y+k)-D_{1} T(g, y)(g(y+k)-g(y)) \\
& +D_{1} T(g(y), y)(\delta(y+k)-\gamma(y)-A(y) k) \\
& +T(g(y) y+k)-T(g(y), y)-D_{2} T(y y), y=
\end{aligned}
$$

(*)

$$
\begin{aligned}
& \int_{0}^{1} D_{1} T(\dot{g}(y)+t(\dot{\gamma}(y+k)-\dot{\gamma}(y)), y+k)-D_{1} T(z(y), y) d t(j(y+k)-j \theta) \\
& +D_{1} T(8(y), y)(8(y+k)-8(y)-A(y) k) \\
& \text { (**) }+\int_{0}^{1} D_{2} T\left(\bar{y}(y), y+t_{k}\right)-D_{2} T(\bar{y}(y) ; y) d t k .
\end{aligned}
$$

Theneple

$$
\left.\left(I-D_{1} T(g(y), y)\right)(\dot{g}(y+k)-g(\rangle)-A(y) k_{2}\right)=(*)+(* *)
$$

So

$$
g(y+h)-g(y)-A(y) k=\left(I-D_{1} T(\gamma(y), y)^{-1}(*)+(* *)\right]
$$

Now $\left\|P^{T}(g(y) y)\right\| \leq \lambda<1$.
We hove seen that $y\|B\|<1$, then $(I-B)^{-1}=I+B+B^{2}+\cdots$, so $\left\|(I-B)^{-}\right\| \leq 1+\|B\|+\|B\|^{2}+\cdots$.
Therefor $\|: I-0, T(\bar{X}(y) y))^{-1} \| \leq 1+\lambda+\lambda^{2}+\cdots=\frac{1}{1-\lambda}$.

By step (2) in the proof, the ne wine numbers $\delta_{1}>0$ and $K \geq 1$ such that is $\left\|J_{k}\right\|<\delta_{1}$ then $\|g(y+k)-\delta(y)\| \leq k\|k\|$.

Let $\varepsilon>0$.
Since $D_{1} T$ and $D_{2} T$ ane contincions function of (x, y), $\exists \delta_{2}>0$ such that if $\|k\|<\delta_{2}$ then the integrands in (*) and $(* *)$ have hor $<\frac{1-\lambda}{2 K} \varepsilon$.
Let $\partial=\operatorname{mm}\left(\delta_{1}, \delta_{2}\right)$. if $\|k\|<S$, then

$$
\begin{aligned}
& \|g(y+k)-g(y)-A(y) k\| \leq \frac{1}{1 \rightarrow}(\|(*)\|+\|(* *)\|) \leq \\
& \frac{1}{1-\lambda}\left[\frac{1-\lambda}{2 k} \varepsilon\|g(y+k)-g(y)\|+\frac{1-\lambda}{2 k}\| \| \xi \|\right] \leq \frac{1}{2 k} \varepsilon \cdot k\|k\|+\frac{1}{2} \varepsilon\|j\| \\
& =\varepsilon\|h\| .
\end{aligned}
$$

This proves that $D_{g}(y)=A(y)$.

