20. Show that coexistence occurs in the competing
species model governed by system (7)—(8) if and
only if there is an asymptotically stable critical point
in the first quadrant.

21. When one of the populations in a competing species
model is being harvested, the phase plane diagram is
completely changed. For example, consider the
competition model

L i—a-y)-h,

dy
=159,
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where h is the constant harvest rate. For h = 0, 1/32,
and 5/32, determine the critical points, discuss the
type and stability of the critical points, and sketch
the phase plane diagrams. In each case discuss the
implications of the competition model.

Many differential equations arise from problems in mechanics and for these equations it is
natural to study the effect that energy in the system has on the solutions to the system. By analyz-
ing the energy, we can often determine the stability of a critical point (even in the more elusive
case when it is a center of the corresponding linear equation). As we will see in the next
section, these ideas can be generalized to systems that are unrelated to problems in mechanics.

Conservative Systems

In Chapter 4 we considered some mechanical systems that were governed by Newton’s
second law

d%

ar?

(force equals mass times acceleration). When the force F = F(t, x, x') depends only on x, we
can introduce its antiderivative —U(x),

E=ma=

aul
rer= -2 o v = - [rae,
and express the second law as
1 s AIB L 0
LS ke

Under this condition, the quantity
. ()
@) E”‘(E) + Ulx)

is constant during the motion, because

df1 f(ax\? 2 dxd%x  dU
L m|ZE) + yl)p = ZmEEE 44U
dt {z"’(m) (")} 2"ddr T i
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Example 1

Solution

Since (m/2)(dx/dt)? is the kinetic energy of the system, it is customary to refer to U(x) as the
potential energy and (m/2)(dx/df)* + U(x) as the total energy of the system. We have thus
shown that the total energy is constant. This “energy conservation” principle appeared in a dif-
ferent context in Section 4.8, where it was called the “energy integral lemma.”

By dividing the equations throughout by the bothersome constant m, we obtain the stan-
dard form of the differential equation for a conservative system
d
@3) P+g(x)=0.
where g(x) = U’ (x)/m; the equivalent phase plane system

dx _
“@ T

®) %’,’ =)

the potential function
G(x) = J' gx)dx + C;
and the energy function
E(x,v)=v*2+ G(x) .
The fact that the total energy is constant means that the level curves

©) E(x,v) =k, kaconstant,

contain the phase plane trajectories of the system (4)—(5); that is, the curves (6) are integral
curves.

Find the energy function E(x, v) for the following equations. Select E so that the energy at the
critical point (0, 0) is zero, that is, £(0, 0) = 0.

2
@ &3 +x-x=0
d%
(b) 3+ sin.x = 0 (penduium equation)
&
(©

(a) Here g(x) = x — x*. By integrating g, we obtain the potential function
G(x) = (1/2)x> — (1/4)x* + C. Thus, E(x, v) = (1/2)v* + (1/2)x> — (1/4)x* + C.
Now E(0, 0) = 0 implies that C = 0. Hence, the energy function we seek is

E(x,v) = (1/2* + (1/2)2% = (1/4)x".
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(b) Since g(x) = sin x, the potential function is G(x) = ~cos x + C, which gives
Ex,v) = (1/20v% = cos x + C, Setting £(0,0) = 0, we find C = 1. Thus, the
energy function is £(x, v) = (1/2)v? — cosx + 1.

(© Here 2(x) = x — x* and the potential function is G(x) = (1/2)x? — (1/5)° + ¢.
Setting £(0, 0) = 0, we get C = 0, so the energy function is £(x, v) = (1/2)v? +
1/2)2% = (1/5)%°. »

Notice that the pendulum equation in part (b) also has a critical point at (7, 0). Setting the
energy to be zero at (,0)—that is, E(m,0) = O—we amive at the energy function
E(x,v) = (1/2)0® — cosx — 1.

For conservative systems, much useful information about the phase plane can be gained
directly from the potential function G(x). A convenient way of doing this is to place the graph
of the potential function z = G(x) (the potential plane) directly above the phase plane diagram
with the z-axis aligned with the v-axis (see Figure 12.21). This places the relative extrema for
G(x) directly over the critical points for the system, since G'(xo) = g(xo) = 0 implies that
(xo, 0)s a critical point for (4)~(5).

k! Gx)

5 Potential
Plane

Phase
* Plane

Figure 12.21 Relationship between potential plane (sbove) and phase plane (below)
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Example 2

Solution

To understand the relationship between the potential plane and the phase plane, let’s look
at the level curves for the energy function. In general, we have

+Gkx) =k,

©ls,

where G(x) is the potential function with G'(x) = g(x). Solving for v gives
v==V2[k- G{x)] .

Thus, the velocity v exists (is real-valued) only when k — G(x) = 0. This generally results in
three types of behavior.

When G(x) has a strict local minimum at x (above the point A) as illustrated in Figure
1221, the integral curves E(x, v) = k, where k is slightly greater than G(xo), are closed curves
encircling the critical point A = (xo, 0). To see this, observe that there is an interval (a, b) con-
taining xo with G(a) = G(b) = ks and G(x) < ks for x in (a, b). Since v = V2[ks — G)]
s defined on (a, b) with v = 0 at x = a and b, the two curves v = +V/2[ks — G(x)] join up
at a and b to produce the closed curve. As this occurs for any k satisfying G(xo) < k =ks,
the critical point A is encircled by closed trajectories corresponding to periodic solutions. Thus,
A s a center.

When G(x) has a strict local maximum at x, (above the point B), the integral curves
E(x, v) = k are not closed curves encircling the critical point B = (x, 0). For k = G(x,), the
curves touch the x-axis at x,, but for k > G(x,), v = V2[k — G(x)] is strictly positive and
the level curves do not touch the x-axis. Finally, when k < G(xy), there is an interval about x;
above and below in which there are no points of the curve E(x, v) = k (the quantity under the
radical in the formula for v is negative). Hence, the critical point B is a saddle point, and the
level curves near B resemble hyperbolas. This is illustrated in Figure 12.21 by the level curves
corresponding to ko, ky, and k; near B.

Finally, away from the extreme points of G(x), the level curves may be part of a closed
trajectory, such as the integral curve corresponding to k = kp, or may be unbounded, such as.
the integral curves corresponding to k = k; or kg

Use the potential plane to help sketch the phase plane diagram for the equations:

2, 2, 12,
(a)%+x—x3=0. (b)%i—sinx:(). ©LErx-

ar

In Example 1 we found that potential functions for these equations are

@ G() = (1/2x% — (1/4)% ®)G(x) =1 —cosx; (©) G(x) = (1/2)x* = (1/5)%".

(a) The local maxima and minima of G(x) occur when G'(x) = g(x) = x = > = 0;
namely, at x = 0, — 1, 1. Consequently, the phase plane diagram for equation (a) has
critical points at (0, 0), (~1,0), and (1, 0). Since G(x) has a strict local minimum at
x = 0, the critical point (0, 0) is a center. Furthermore, G(x) has local maxima at
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z

/\/‘/“W
x

1

Figure 12.22 Potential and phase plane for d%x/df* + x —

x = *1,s0 (—1,0)and (1, 0) are saddle points. The potential plane and the phase
plane are displayed in Figure 12.22.

(b) The local maxima and minima of G(x) = 1 — cos x occur when G'(x) = g(x) =
sinx = 0. Here G(x) has local minima for x = 0, =277, =447, . . . and local maxima
for x = £, £37, £5, . ... Consequently, the critical points (2n7, 0), where n is
an integer, are centers, while the critical points ((2n + 1), 0) are saddle points. The
potential and phase planes are given in Figure 12.23 on page 798.

(c) The extreme values for G(x) = (1/2)x* — (1/5)x” occur when G'(x) = g(x) =
x — x* = 0; thatis, for x = 0 and 1. Here G has a minimum at x = 0 and a maxi-
mum at x = 1. Hence, the critical point (0, 0) is a center, and the critical point (1, 0)
is a saddle point (see Figure 12.24 on page 798). ¢

‘You may have already observed that the three conservative systems in Example 2 have the
same corresponding linear equation dx/dr> + x = 0. As we know, the origin is a stable center
for this linear equation. Thus, Theorem 2 of the preceding section gives us no information
about the stability of the origin for the three almost linear equations. However, using the energy
method approach, we were able to determine that for these three conservative systems the ori-
gin is indeed a stable center.
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G(x)

=0

Figure 12.23 Potential and phase plane for d%x/df* + sin x

Gx)
A

Figure 12.24 Potential and phase plane for d%x/dr® + x —



Example 3

Solution
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Nonconservative Systems

For nonconservative systems the energy of the system does 7ot remain constant along its tra-
jectories in the Poincaré phase plane. Consequently, the level curves of the energy function are
not integral curves for the system. However, if we know that the energy is decreasing along a
trajectory, then it follows that the trajectory is moving toward a state that has a lower total
energy. This state may correspond to a critical point or a limit cycle (defined in Section 12.6).
‘We will demonstrate this behavior in the following examples.
A nonconservative system with nonlinear damping has the form
2.
D5+ b afa) + 4() = 0,

where G(x)
ing. Let

J8(x)dx corresponds to the potential energy and h(x, dv/dr) represents damp-

E(x, de/d) =1 (%)2 +Gx)

as in the case of a conservative system (h = 0). If we now compute dE/dt, we find

dE _ dx d* dx _ dx|d%
===t oRE=E|LE,
dr dt di* C dr dt [dr2 8x)

= =L avfat)

where we have used d’x/dr* + g(x) = —h(x, dx/dr). Consequently, the energy E is decreasing
when vh(x, v) > 0 and is increasing when vh(x, v) < 0.

Sketch the phase plane for the damped pendulum equation
d* s
= b= tising =0,
e @

where b is a positive constant.

We first observe that vh(x, v) = v(bv) = bv? > 0 for v # 0. Hence, the energy is continually
decreasing along a trajectory. The level curves for the energy function E(x,v) =
(1/2)v* + 1 = cos x are just the integral curves for the (undamped) simple pendulum equation
and are sketched in Figure 12.23. (Recall that the integral curves E(x, v) = k are symmetric with
respect to the x-axis and shrink to points on the x-axis as k decreases.) Hence, a trajectory must
move toward the x-axis. Note that the critical points for the damped pendulum are the same as for
the simple pendulum. Moreover, they are of the same type. The resulting phase plane diagram is
sketched in Figure 12.25 on page 800. In this case the separatrices (colored curves) divide the
plane into strips. A typical trajectory in a strip decays and spirals into an asymptotically stable
spiral point (colored dots) located at multiples of 277 along the x-axis. #
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Figure 12.25 Phase plane diagram for damped pendulum

In the next example, the trajectories approach a limit cycle.

Example 4 Sketch the phase plane diagram for the equation
& [ dx)z dx
|2+ |5 -5 +x=0.
dr* [x dt, "

Solution Here h(x, v) = (x* + v? — 1)v. Hence, vh(x, v) = v2(x + v? — 1), which is zero on
unit circle x2 + v = 1, positive outside the unit circle, and negative inside. Consequently,
jectories beginning inside the unit circle spiral out and trajectories beginning outside the cire
spiral in (see Figure 12.26). The unit circle (in color) is the trajectory for the solut
x(r) = cos r and is called a limit cycle.

Figure 12.26 Phase plane diagram for d’x/df* + (2 + (dx/def — 1)dx/dt + x =0




12.4

In Problems 1-6, find the potential energy function G(x)
and the energy function E(x, v) for the given equations.
Select E so that E(0, 0) =

dx

L-S+2-3x+1=0

X
5 tcosx=0

5
st R —x=0

> :
o L R VW
50 3 55 %)

6. e =l

In Problems 7-12, use the potential plane to help sketch
the pha:e Pplane diagrams for the given equations.
d’x d’x
7.W+X =0 8.F+9x=0

9.d—x’z‘+u2+x—1:0

2
lO.%—sinx=0 g

d2+(x 1P =0

In Problems 13-16, use the energy function to assist in
sketching the phase plane diagrams for the given non-
conservative systems.

d’ | dx

B b2
2
14."‘1'7’2%;5“—;(‘:0
d* | dx i
) he 0
2
16.% ;ﬁ+zx2+x—1-o
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17. Nonlinear Spring. The general nonlinear spring
equation

22 +tax+pP=0,

where & > 0 and  are parameters, is used to model
a variety of physical phenomena. Holding & > 0
fixed, sketch the potential function and the phase
plane diagram for 8> 0 and also for 8 < 0.
Describe how the behavior of solutions to the equa-
tion differs in these cases.

-
.

Cusps. We have observed that where the potential
energy function G(x) for a conservative system has a
strict maximum (minimum), the corresponding criti-
cal point is a saddle point (center). At a critical point
(0, 0) for which G(x) also has a point of inflection
(g, G'(xo) = glxo) = 0,G"(xo) = g'(xo) = 0,and
G"(xo) = g"(x) # 0), the curve in the phase plane
has a cusp. Demonstrate this by sketching the
potential plane and the phase plane diagrams for the
equation

19. General Relativity. In studying the relativistic
motion of a particle moving in the gravitational field
of a larger body, one encounters the equation

"—’; tu—aP-1=0,
do
where u is inversely proportional to the distance of
the particle from the body, 6 is an angle in the plane
of motion, and A is a parameter with 0 < A < 1.
(a) Sketch the phase plane diagram for
0<A<1/4
(b) Sketch the phase plane
<A<
(¢c) What observations can be made about the
motion of the particle in these two cases?

diagram  for
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