MA 225-002 Test 3 Definitions

S. Schecter

October 31, 2011
$A \times B=\{(a, b): a \in A$ and $b \in B\}$.
A relation from A to B is a subset R of $A \times B$. We say that a is R-related to b, and write $a R b$, if $(a, b) \in R$.

A relation from A to A is usually just called a relation on A.
Let A be a set and let R be a relation on A.

1. R is reflexive if for all $x \in A, x R x$.
2. R is symmetric if for all x and y in A, if $x R y$, then $y R x$.
3. R is transitive if for all x, y and z in A, if $x R y$ and $y R z$, then $x R z$.

A relation R on a set A is an equivalence relation if R is reflexive, symmetric and transitive.
Let R be an equivalence relation on A and let $x \in A$. The equivalence class of x is

$$
[x]=\{y \in A: x R y\} .
$$

$[x]$ is also written x / R.
Let m be a positive integer. The relation \equiv_{m} on \mathbb{Z} is defined by

$$
x \equiv_{m} y \text { if } m \text { divides } x-y .
$$

The set of equivalence classes for \equiv_{m} is denoted \mathbb{Z}_{m}, which is pronounced " $\mathbb{Z} \bmod m$." It has m elements: [0], [1], $\ldots,[m-1]$.

A function f from A to B is a relation from A to B that satisfies

1. For each $x \in A$ there exists $y \in B$ such that $x f y$.
2. If $x f y$ and $x f z$ then $y=z$.

A function f from A to B is usually denoted $f: A \rightarrow B$. We always write $f(x)=y$ to mean $x f y$. A is called the domain of f, and B is called the codomain of f. Condition (2) says that functions are well-defined: There is no ambiguity in which element of B is $f(x)$. Condition (1) says that $f(x)$ is defined for every $x \in A$.

The range of f is $\{y \in B$: there exists $x \in A$ such that $f(x)=y\}$.
Common functions:

1. The identity function on $A: I_{A}: A \rightarrow A, I_{A}(x)=x$.
2. For $A \subseteq B$, the inclusion map from A to $B: i: A \rightarrow B, i(x)=x$.
3. The projections of $A \times B$ onto A and $B: \Pi_{1}: A \times B \rightarrow A, \Pi_{1}(x, y)=x$, and $\Pi_{2}: A \times B \rightarrow B, \Pi_{2}(x, y)=y$.

Two functions f and g are equal if

1. They have the same domain A.
2. For all $x \in A, f(x)=g(x)$.

Our text does not require that the codomains be the same.
If $f: A \rightarrow B$ and $D \subseteq A$, the restriction of f to D is denoted $\left.f\right|_{D}$ and is defined as follows: $\left.f\right|_{D}: D \rightarrow B,\left.f\right|_{D}(x)=f(x)$.

Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. $g \circ f: A \rightarrow C$ is defined by $(g \circ f)(x)=g(f(x))$.
A function $f: A \rightarrow B$ is called surjective or onto if the range of f is B. In other words, f is onto if for each $y \in B$ there exists $x \in A$ such that $f(x)=y$.

A function $f: A \rightarrow B$ is called injective or one-to-one if for all $x_{1}, x_{2} \in A$, if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Equivalently, f is one-to-one if for all $x_{1}, x_{2} \in A$, if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$.

If $f: A \rightarrow B$ is called a bijection if it is one-to-one and onto. In this case one can define its inverse function $f^{-1}: B \rightarrow A$ as follows: $f^{-1}(y)=x$ if and only if $y=f(x)$.

