MA 225-002 Test 3 Definitions

S. Schecter

October 31, 2011

 $A \times B = \{(a, b) : a \in A \text{ and } b \in B\}.$

A relation from A to B is a subset R of $A \times B$. We say that a is R-related to b, and write a R b, if $(a, b) \in R$.

A relation from A to A is usually just called a relation on A.

Let A be a set and let R be a relation on A.

- 1. R is reflexive if for all $x \in A$, x R x.
- 2. R is symmetric if for all x and y in A, if x R y, then y R x.
- 3. R is transitive if for all x, y and z in A, if x R y and y R z, then x R z.

A relation R on a set A is an *equivalence relation* if R is reflexive, symmetric and transitive.

Let R be an equivalence relation on A and let $x \in A$. The equivalence class of x is

$$[x] = \{ y \in A : x R y \}.$$

[x] is also written x/R.

Let *m* be a positive integer. The relation \equiv_m on \mathbb{Z} is defined by

$$x \equiv_m y$$
 if m divides $x - y$.

The set of equivalence classes for \equiv_m is denoted \mathbb{Z}_m , which is pronounced " $\mathbb{Z} \mod m$." It has *m* elements: [0], [1], ..., [*m* - 1].

A function f from A to B is a relation from A to B that satisfies

- 1. For each $x \in A$ there exists $y \in B$ such that x f y.
- 2. If x f y and x f z then y = z.

A function f from A to B is usually denoted $f : A \to B$. We always write f(x) = y to mean x f y. A is called the *domain* of f, and B is called the *codomain* of f. Condition (2) says that functions are well-defined: There is no ambiguity in which element of B is f(x). Condition (1) says that f(x) is defined for every $x \in A$.

The range of f is $\{y \in B : \text{ there exists } x \in A \text{ such that } f(x) = y\}.$

Common functions:

- 1. The identity function on A: $I_A : A \to A$, $I_A(x) = x$.
- 2. For $A \subseteq B$, the inclusion map from A to B: $i : A \to B$, i(x) = x.
- 3. The projections of $A \times B$ onto A and B: $\Pi_1 : A \times B \to A$, $\Pi_1(x, y) = x$, and $\Pi_2 : A \times B \to B$, $\Pi_2(x, y) = y$.

Two functions f and g are equal if

- 1. They have the same domain A.
- 2. For all $x \in A$, f(x) = g(x).

Our text does not require that the codomains be the same.

If $f: A \to B$ and $D \subseteq A$, the restriction of f to D is denoted $f|_D$ and is defined as follows: $f|_D: D \to B, f|_D(x) = f(x).$

Let $f: A \to B$ and $g: B \to C$ be functions. $g \circ f: A \to C$ is defined by $(g \circ f)(x) = g(f(x))$.

A function $f : A \to B$ is called *surjective* or *onto* if the range of f is B. In other words, f is onto if for each $y \in B$ there exists $x \in A$ such that f(x) = y.

A function $f: A \to B$ is called *injective* or *one-to-one* if for all $x_1, x_2 \in A$, if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$. Equivalently, f is one-to-one if for all $x_1, x_2 \in A$, if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

If $f: A \to B$ is called a *bijection* if it is one-to-one and onto. In this case one can define its inverse function $f^{-1}: B \to A$ as follows: $f^{-1}(y) = x$ if and only if y = f(x).