MA 225-001 Test 1

S. Schecter

February 16, 2005

1. Use truth tables to decide whether $\sim Q \Rightarrow P$ and $P \vee Q$ are equivalent propositional forms.
2. (1) Translate into a symbolic sentence with quantifiers, (2) write a clear denial as a symbolic sentence, and (3) translate your denial into ordinary English. The universe is people.

Everyone is free or everyone is not free.
3. Definitions:
(a) Let a and b be integers. We say a divides b if there is an integer k such that $a k=b$.
(b) An integer a is even if there is an integer k such that $a=2 k$.
(c) An integer a is odd if there is an integer k such that $a=2 k+1$.
(d) A real number x is rational if there exist integers a and b, with $b \neq 0$, such that $x=\frac{a}{b}$.
(e) A real number x is irational if it is not rational.

Using these definitions, prove four of the following five statements. Do not use previously proved results. For some statements, the universe is given in parentheses. A suggested method of proof is given for some statements.
(a) If a divides b and $a+b$ divides c, then a divides c. (Integers.)
(b) If 6 does not divide $12 a+3 b$, then b is odd. (Integers. Contrapositive proof.)
(c) If x is a rational number other than 0 and y is irrational, then $x y$ is irrational. (Real numbers. Proof by contradiction.)
(d) If n is an integer, then $2-3 n+n^{2}$ is even. (Proof by cases.)
(e) For every integer n the following is true: If there is an integer k such that $n=3 k+1$, then there is an integer l such that $n+1=3 l-1$.

