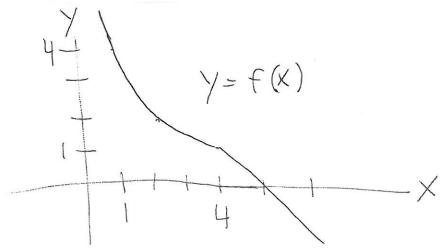
MA 225-001 Test 3


S. Schecter

April 22, 2005

- 1. Define a relation R on $\mathbb{R} \times \mathbb{R}$ by (x, y) R(u, v) iff xy = uv.
 - (a) Prove that R is reflexive, symmetric and transitive.
 - (b) List two elements of the equivalence class of (1,4), other than (1,4) itself.
- 2. Define $f: \mathbb{Z}_2 \to \mathbb{Z}_3$ by $f(x/\equiv_2) = 2x/\equiv_3$. Is this a function? Justify your answer.
- 3. Define $f: \mathbb{Z}_8 \to \mathbb{Z}_4$ by $f(x/\equiv_8) = x/\equiv_4$.
 - (a) Prove that f is a function.
 - (b) Is f one-to-one? Briefly justify your answer.
- 4. Define $f:(0,\infty)\to\mathbb{R}$ by

$$f(x) = \begin{cases} \frac{4}{x} & \text{if } 0 < x < 4. \\ 5 - x & \text{if } x \ge 4 \end{cases}$$

Show that f is one-to-one and onto.

5. Let $f: \mathbb{R} \to \mathbb{R}$ be a function such that $[0, \infty) \subseteq \operatorname{Rng}(f)$. Let $g: \mathbb{R} \to [0, \infty)$ be the function $g(y) = y^2$. Prove that $g \circ f$ is onto.