MA 225-002 Answers to Final Exam of May 9,

1.

2.

(a)
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JxVy ~ (z loves y)

(b) Vx(z is happy)V ~ Jz(x is happy)

(a)

Let a, b and ¢ be integers such that a divides b and a? divides c.
Then there exists an integer k such that b = ak, and there exists
an integer [ such that ¢ = a?l. Hence c—ab = a*l—a-ak = a*(I-k).
Since [ — k is an integer, a? divides ¢ — ab.

For a contrapositive proof, assume a is even. We must show that
2a% + 7a + 3 is odd. Since a is even, there exists an integer k
such that a = 2k. Hence 2a* + Ta + 3 = 2(2k)? + 7(2k) + 3 =
2(4k* + Tk + 1) + 1. Since 4k* + 7Tk + 1 is an integer, 2a® + 7a + 3
is odd.

For a proof by contradiction, assume x and y are real numbers
such that z is rational, y is irrational, and (x + y) is rational.
Since = and (SL’ + y) are rational, there are 1ntegers k, 1, m, and
nwithl;éOandn#O suchthatxzfand (:c+y) LS
Therefore y = 2- Sz +y) —z =2-2 - & = 2m£nlm' Smce
2ml — kn and nl are integers and nl 7é 0, y is rational. This
contradicts the assumption that y is irrational.

3. Assume AC Band C C D. Let z € A— D. Then z € Aand z ¢ D.

Sincexz € Aand A C B, z € B. Nowz):géDlmphestD andC C D
implies D C C. Therefore z € C. Since z € Band z € C, z € BN C.
Therefore A— D C BN C.



4. Assume A C C and BNACC. Letx € B. Thenz € BN A or
€ BNA Ifz € BNA, thenz € A; since AC C,z e C. If
z € BN A, then, since BNAC C, z € C. Thus = € C in both cases;
hence B C C.

5. Prove by induction that the following statement P(n) is true for every
natural number n:
1 n P 1 _n
(Bn—2)Bn+1) 3n+1

1-4 4-7

P(1) is the statement & = ﬁ It is true.

Assume P(n) is true. Then
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Thus P(n + 1) is true.

6. Define a relation on R x R by (z,y) R (a,b) if z < a and y > b.

(a) Since x < z and y > y, (x,y) R(x,y). Therefore R is reflexive.
To show R is transitive, assume (z,y) R (a,b) and (a,b) R (u,v).
Then z < a and a < u, and y > b and b > v. Therefore x < u,
and y > v. Hence (z,y) R (u,v). Thus R is transitive.

(b) Show by example that R is not symmetric: (1,4)R(2,3) is true,
but (2,3)R(1,4) is not true.

7. Define f : Zy — Zg by f(z/ =4) = 32/ =s.

(a) Show that f is a function: if 21 =4 x5, then there is an integer k
such that 2y — z9 = 4k. Then 3x; — 329 = 12k = 6 - 2k. Since 2k
is an integer, 3x1 =4 372, so f is a function.
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(b) Is f one-to-one? No: f(0/ =4) =0/ =¢ and f(2/ =4) = 6/ ==
0/ =¢. However, 0/ =4 # 2/ =4.

() Ts f onto? No. f(0/ =¢) = 0/ =e, f(1/ =1) = 3/ =5, f(2/ =4
) =6/ =¢=0/ =¢, f(3/ =4) =9/ == 3/ =¢. Hence the range of
f includes just two of the six elements of Zg. (Or: f is not onto
because Z4 has just four elements, so the range of f includes at
most four of the six elements of Zg.)

8. Define f: R — R by

Fa) = {2x+1 if © < 0,

?+1 ifx>0.

(a) f is one-to-one: Let z; and x5 belong to R, and let f(z1) = f(x2).
Case 1: 1 < 0 and 2o < 0. Then 2z, + 1 = 225 + 1. Algebra
yields xy = xs.

Case 2: z; > 0 and 25 > 0. Then 27 + 1 = 22 + 1. Therefore

2? = 3. Since z; > 0 and x5 > 0, 71 = 5.

Case 3: =1 < 0 and z9 > 0. Then f(z;) = 227 +1 < 1 and
f(z3) = 23 +1 > 1. This case cannot occur.

(b) fis onto: Let y € R.
Case 1: y < 1. Let # = (y —1). Then x < 0. Therefore
fl@)=204+1=2-J(y—1)+1=y.
Case 2: Let y > 1. Let z = \/y — 1. This makes sense because
y—1>0. Then z > 0. Therefore f(z) = 2°+1 = (\/y — 1)?+1 =
y.

(c) Inverse function: from part (b),

f—l(y) _ %(y - 1) ify < 17
y—1 if y > 1.

9. Let S={r €Z:2<0}={..,-3,-2,—-1,0}. Define f: N — §
by f(n) = 1 —n. (Clearly f is a function from N into Z. Since
neEN=n>1= -n<-1=1-—n <0, we see that an acceptable
codomain for f is indeed S.)

f is one-to-one: f(ni) = f(ny) =1—n; =1—ny = ny = no.
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10.

fis onto: Let z € S. Let n =1 —x. Since x € Z, n € Z. Also,
r<0=—x>0=1—x>1. Therefore n € N. We have f(n) =
1—n=1-(1-xz)=x. Therefore f is onto.

Let f: A — B and g : B — C be functions. Assume that g is
one-to-one and g o f is onto. Prove that f is onto.

Let y € B. Let z = g(y) € C. Since g o f is onto, there exists z € A

such that (g o f)(z) = g(f(z)) = 2. Thus g(y) = z and g(f(x)) = =.
Since g is one-to-one, y = f(z). Therefore f is onto.



