MA 225-002 Answers to Final Exam of May 9, 2005

S. Schecter

September 29, 2011

- 1. (a) $\exists x \forall y \sim (x \text{ loves } y)$
 - (b) $\forall x(x \text{ is happy}) \lor \sim \exists x(x \text{ is happy})$
- 2. (a) Let a, b and c be integers such that a divides b and a^2 divides c. Then there exists an integer k such that b = ak, and there exists an integer l such that $c = a^2l$. Hence $c-ab = a^2l-a \cdot ak = a^2(l-k)$. Since l-k is an integer, a^2 divides c-ab.
 - (b) For a contrapositive proof, assume a is even. We must show that $2a^2 + 7a + 3$ is odd. Since a is even, there exists an integer k such that a = 2k. Hence $2a^2 + 7a + 3 = 2(2k)^2 + 7(2k) + 3 = 2(4k^2 + 7k + 1) + 1$. Since $4k^2 + 7k + 1$ is an integer, $2a^2 + 7a + 3$ is odd.
 - (c) For a proof by contradiction, assume x and y are real numbers such that x is rational, y is irrational, and $\frac{1}{2}(x+y)$ is rational. Since x and $\frac{1}{2}(x+y)$ are rational, there are integers k, l, m, and n, with $l \neq 0$ and $n \neq 0$, such that $x = \frac{k}{l}$ and $\frac{1}{2}(x+y) = \frac{m}{n}$. Therefore $y = 2 \cdot \frac{1}{2}(x+y) - x = 2 \cdot \frac{m}{n} - \frac{k}{l} = \frac{2ml-kn}{nl}$. Since 2ml - kn and nl are integers and $nl \neq 0$, y is rational. This contradicts the assumption that y is irrational.
- 3. Assume $A \subseteq \tilde{B}$ and $C \subseteq D$. Let $x \in A D$. Then $x \in A$ and $x \notin D$. Since $x \in A$ and $A \subseteq \tilde{B}, x \in \tilde{B}$. Now $x \notin D$ implies $x \in \tilde{D}$, and $C \subseteq D$ implies $\tilde{D} \subseteq \tilde{C}$. Therefore $x \in \tilde{C}$. Since $x \in \tilde{B}$ and $x \in \tilde{C}, x \in \tilde{B} \cap \tilde{C}$. Therefore $A - D \subseteq \tilde{B} \cap \tilde{C}$.

- 4. Assume $A \subseteq C$ and $B \cap \tilde{A} \subseteq C$. Let $x \in B$. Then $x \in B \cap A$ or $x \in B \cap \tilde{A}$. If $x \in B \cap A$, then $x \in A$; since $A \subseteq C$, $x \in C$. If $x \in B \cap \tilde{A}$, then, since $B \cap \tilde{A} \subseteq C$, $x \in C$. Thus $x \in C$ in both cases; hence $B \subseteq C$.
- 5. Prove by induction that the following statement P(n) is true for every natural number n:

$$\frac{1}{1\cdot 4} + \frac{1}{4\cdot 7} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{3n+1}.$$

P(1) is the statement $\frac{1}{1\cdot 4} = \frac{1}{3\cdot 1+1}$. It is true. Assume P(n) is true. Then

$$\frac{1}{1\cdot 4} + \frac{1}{4\cdot 7} + \dots + \frac{1}{(3n-2)(3n+1)} + \frac{1}{(3(n+1)-2)(3(n+1)+1)}$$

$$= \frac{n}{3n+1} + \frac{1}{(3(n+1)-2)(3(n+1)+1)} = \frac{n}{3n+1} + \frac{1}{(3n+1)(3n+4)}$$

$$= \frac{n(3n+4)+1}{(3n+1)(3n+4)} = \frac{3n^2+4n+1}{(3n+1)(3n+4)} = \frac{(3n+1)(n+1)}{(3n+1)(3n+4)} = \frac{n+1}{3n+4}$$

$$= \frac{n+1}{3(n+1)+1}.$$

Thus P(n+1) is true.

- 6. Define a relation on $\mathbb{R} \times \mathbb{R}$ by (x, y) R(a, b) if $x \leq a$ and $y \geq b$.
 - (a) Since $x \leq x$ and $y \geq y$, (x, y) R(x, y). Therefore R is reflexive. To show R is transitive, assume (x, y) R(a, b) and (a, b) R(u, v). Then $x \leq a$ and $a \leq u$, and $y \geq b$ and $b \geq v$. Therefore $x \leq u$, and $y \geq v$. Hence (x, y) R(u, v). Thus R is transitive.
 - (b) Show by example that R is not symmetric: (1,4)R(2,3) is true, but (2,3)R(1,4) is not true.
- 7. Define $f : \mathbb{Z}_4 \to \mathbb{Z}_6$ by $f(x/\equiv_4) = 3x/\equiv_6$.
 - (a) Show that f is a function: if $x_1 \equiv_4 x_2$, then there is an integer k such that $x_1 x_2 = 4k$. Then $3x_1 3x_2 = 12k = 6 \cdot 2k$. Since 2k is an integer, $3x_1 \equiv_6 3x_2$, so f is a function.

- (b) Is f one-to-one? No: $f(0/\equiv_4) = 0/\equiv_6$ and $f(2/\equiv_4) = 6/\equiv_6 = 0/\equiv_6$. However, $0/\equiv_4 \neq 2/\equiv_4$.
- (c) Is f onto? No. f(0/ ≡₄) = 0/ ≡₆, f(1/ ≡₄) = 3/ ≡₆, f(2/ ≡₄) = 6/ ≡₆ = 0/ ≡₆, f(3/ ≡₄) = 9/ ≡₆ = 3/ ≡₆. Hence the range of f includes just two of the six elements of Z₆. (Or: f is not onto because Z₄ has just four elements, so the range of f includes at most four of the six elements of Z₆.)
- 8. Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 2x+1 & \text{if } x < 0, \\ x^2+1 & \text{if } x \ge 0 \end{cases}$$

(a) f is one-to-one: Let x_1 and x_2 belong to \mathbb{R} , and let $f(x_1) = f(x_2)$. Case 1: $x_1 < 0$ and $x_2 < 0$. Then $2x_1 + 1 = 2x_2 + 1$. Algebra yields $x_1 = x_2$. Case 2: $x_1 \ge 0$ and $x_2 \ge 0$. Then $x_1^2 + 1 = x_2^2 + 1$. Therefore

Case 2. $x_1 \ge 0$ and $x_2 \ge 0$. Then $x_1 + 1 = x_2 + 1$. Therefore $x_1^2 = x_2^2$. Since $x_1 \ge 0$ and $x_2 \ge 0$, $x_1 = x_2$.

Case 3: $x_1 < 0$ and $x_2 \ge 0$. Then $f(x_1) = 2x_1 + 1 < 1$ and $f(x_2) = x_2^2 + 1 \ge 1$. This case cannot occur.

(b) f is onto: Let $y \in \mathbb{R}$.

Case 1: y < 1. Let $x = \frac{1}{2}(y - 1)$. Then x < 0. Therefore $f(x) = 2x + 1 = 2 \cdot \frac{1}{2}(y - 1) + 1 = y$.

Case 2: Let $y \ge 1$. Let $x = \sqrt{y-1}$. This makes sense because $y-1 \ge 0$. Then $x \ge 0$. Therefore $f(x) = x^2+1 = (\sqrt{y-1})^2+1 = y$.

(c) Inverse function: from part (b),

$$f^{-1}(y) = \begin{cases} \frac{1}{2}(y-1) & \text{if } y < 1, \\ \sqrt{y-1} & \text{if } y \ge 1. \end{cases}$$

9. Let $S = \{x \in \mathbb{Z} : x \leq 0\} = \{\dots, -3, -2, -1, 0\}$. Define $f : \mathbb{N} \to S$ by f(n) = 1 - n. (Clearly f is a function from \mathbb{N} into \mathbb{Z} . Since $n \in \mathbb{N} \Rightarrow n \geq 1 \Rightarrow -n \leq -1 \Rightarrow 1 - n \leq 0$, we see that an acceptable codomain for f is indeed S.)

$$f$$
 is one-to-one: $f(n_1) = f(n_2) \Rightarrow 1 - n_1 = 1 - n_2 \Rightarrow n_1 = n_2.$

f is onto: Let $x \in S$. Let n = 1 - x. Since $x \in \mathbb{Z}$, $n \in \mathbb{Z}$. Also, $x \leq 0 \Rightarrow -x \geq 0 \Rightarrow 1 - x \geq 1$. Therefore $n \in \mathbb{N}$. We have f(n) = 1 - n = 1 - (1 - x) = x. Therefore f is onto.

10. Let $f : A \to B$ and $g : B \to C$ be functions. Assume that g is one-to-one and $g \circ f$ is onto. Prove that f is onto.

Let $y \in B$. Let $z = g(y) \in C$. Since $g \circ f$ is onto, there exists $x \in A$ such that $(g \circ f)(x) = g(f(x)) = z$. Thus g(y) = z and g(f(x)) = z. Since g is one-to-one, y = f(x). Therefore f is onto.