MA 225-002 Answers to Final Exam of May 9, 2005

S. Schecter

September 29, 2011

1. (a) $\exists x \forall y \sim(x$ loves $y)$
(b) $\forall x(x$ is happy $) \vee \sim \exists x(x$ is happy $)$
2. (a) Let a, b and c be integers such that a divides b and a^{2} divides c. Then there exists an integer k such that $b=a k$, and there exists an integer l such that $c=a^{2} l$. Hence $c-a b=a^{2} l-a \cdot a k=a^{2}(l-k)$. Since $l-k$ is an integer, a^{2} divides $c-a b$.
(b) For a contrapositive proof, assume a is even. We must show that $2 a^{2}+7 a+3$ is odd. Since a is even, there exists an integer k such that $a=2 k$. Hence $2 a^{2}+7 a+3=2(2 k)^{2}+7(2 k)+3=$ $2\left(4 k^{2}+7 k+1\right)+1$. Since $4 k^{2}+7 k+1$ is an integer, $2 a^{2}+7 a+3$ is odd.
(c) For a proof by contradiction, assume x and y are real numbers such that x is rational, y is irrational, and $\frac{1}{2}(x+y)$ is rational. Since x and $\frac{1}{2}(x+y)$ are rational, there are integers k, l, m, and n, with $l \neq 0$ and $n \neq 0$, such that $x=\frac{k}{l}$ and $\frac{1}{2}(x+y)=\frac{m}{n}$. Therefore $y=2 \cdot \frac{1}{2}(x+y)-x=2 \cdot \frac{m}{n}-\frac{k}{l}=\frac{2 m l-k n}{n l}$. Since $2 m l-k n$ and $n l$ are integers and $n l \neq 0, y$ is rational. This contradicts the assumption that y is irrational.
3. Assume $A \subseteq \tilde{B}$ and $C \subseteq D$. Let $x \in A-D$. Then $x \in A$ and $x \notin D$. Since $x \in A$ and $A \subseteq \tilde{B}, x \in \tilde{B}$. Now $x \notin D$ implies $x \in \tilde{D}$, and $C \subseteq D$ implies $\tilde{D} \subseteq \tilde{C}$. Therefore $x \in \tilde{C}$. Since $x \in \tilde{B}$ and $x \in \tilde{C}, x \in \tilde{B} \cap \tilde{C}$. Therefore $\bar{A}-D \subseteq \tilde{B} \cap \tilde{C}$.
4. Assume $A \subseteq C$ and $B \cap \tilde{A} \subseteq C$. Let $x \in B$. Then $x \in B \cap A$ or $x \in B \cap \tilde{A}$. If $x \in B \cap A$, then $x \in A$; since $A \subseteq C, x \in C$. If $x \in B \cap \tilde{A}$, then, since $B \cap \tilde{A} \subseteq C, x \in C$. Thus $x \in C$ in both cases; hence $B \subseteq C$.
5. Prove by induction that the following statement $P(n)$ is true for every natural number n :

$$
\frac{1}{1 \cdot 4}+\frac{1}{4 \cdot 7}+\cdots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1}
$$

$P(1)$ is the statement $\frac{1}{1 \cdot 4}=\frac{1}{3 \cdot 1+1}$. It is true.
Assume $P(n)$ is true. Then

$$
\begin{array}{r}
\frac{1}{1 \cdot 4}+\frac{1}{4 \cdot 7}+\cdots+\frac{1}{(3 n-2)(3 n+1)}+\frac{1}{(3(n+1)-2)(3(n+1)+1)} \\
=\frac{n}{3 n+1}+\frac{1}{(3(n+1)-2)(3(n+1)+1)}=\frac{n}{3 n+1}+\frac{1}{(3 n+1)(3 n+4)} \\
=\frac{n(3 n+4)+1}{(3 n+1)(3 n+4)}=\frac{3 n^{2}+4 n+1}{(3 n+1)(3 n+4)}=\frac{(3 n+1)(n+1)}{(3 n+1)(3 n+4)}=\frac{n+1}{3 n+4} \\
=\frac{n+1}{3(n+1)+1}
\end{array}
$$

Thus $P(n+1)$ is true.
6. Define a relation on $\mathbb{R} \times \mathbb{R}$ by $(x, y) R(a, b)$ if $x \leq a$ and $y \geq b$.
(a) Since $x \leq x$ and $y \geq y,(x, y) R(x, y)$. Therefore R is reflexive. To show R is transitive, assume $(x, y) R(a, b)$ and $(a, b) R(u, v)$. Then $x \leq a$ and $a \leq u$, and $y \geq b$ and $b \geq v$. Therefore $x \leq u$, and $y \geq v$. Hence $(x, y) R(u, v)$. Thus R is transitive.
(b) Show by example that R is not symmetric: $(1,4) R(2,3)$ is true, but $(2,3) R(1,4)$ is not true.
7. Define $f: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{6}$ by $f\left(x / \equiv_{4}\right)=3 x / \equiv_{6}$.
(a) Show that f is a function: if $x_{1} \equiv{ }_{4} x_{2}$, then there is an integer k such that $x_{1}-x_{2}=4 k$. Then $3 x_{1}-3 x_{2}=12 k=6 \cdot 2 k$. Since $2 k$ is an integer, $3 x_{1} \equiv_{6} 3 x_{2}$, so f is a function.
(b) Is f one-to-one? No: $f\left(0 / \equiv_{4}\right)=0 / \equiv_{6}$ and $f\left(2 / \equiv_{4}\right)=6 / \equiv_{6}=$ $0 / \equiv_{6}$. However, $0 / \equiv_{4} \neq 2 / \equiv_{4}$.
(c) Is f onto? No. $f\left(0 / \equiv_{4}\right)=0 / \equiv_{6}, f\left(1 / \equiv_{4}\right)=3 / \equiv_{6}, f\left(2 / \equiv_{4}\right.$ $)=6 / \equiv_{6}=0 / \equiv_{6}, f\left(3 / \equiv_{4}\right)=9 / \equiv_{6}=3 / \equiv_{6}$. Hence the range of f includes just two of the six elements of \mathbb{Z}_{6}. (Or: f is not onto because \mathbb{Z}_{4} has just four elements, so the range of f includes at most four of the six elements of \mathbb{Z}_{6}.)
8. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}2 x+1 & \text { if } x<0 \\ x^{2}+1 & \text { if } x \geq 0\end{cases}
$$

(a) f is one-to-one: Let x_{1} and x_{2} belong to \mathbb{R}, and let $f\left(x_{1}\right)=f\left(x_{2}\right)$. Case 1: $x_{1}<0$ and $x_{2}<0$. Then $2 x_{1}+1=2 x_{2}+1$. Algebra yields $x_{1}=x_{2}$.
Case 2: $x_{1} \geq 0$ and $x_{2} \geq 0$. Then $x_{1}^{2}+1=x_{2}^{2}+1$. Therefore $x_{1}^{2}=x_{2}^{2}$. Since $x_{1} \geq 0$ and $x_{2} \geq 0, x_{1}=x_{2}$.
Case 3: $x_{1}<0$ and $x_{2} \geq 0$. Then $f\left(x_{1}\right)=2 x_{1}+1<1$ and $f\left(x_{2}\right)=x_{2}^{2}+1 \geq 1$. This case cannot occur.
(b) f is onto: Let $y \in \mathbb{R}$.

Case 1: $y<1$. Let $x=\frac{1}{2}(y-1)$. Then $x<0$. Therefore $f(x)=2 x+1=2 \cdot \frac{1}{2}(y-1)+1=y$.
Case 2: Let $y \geq 1$. Let $x=\sqrt{y-1}$. This makes sense because $y-1 \geq 0$. Then $x \geq 0$. Therefore $f(x)=x^{2}+1=(\sqrt{y-1})^{2}+1=$ y.
(c) Inverse function: from part (b),

$$
f^{-1}(y)= \begin{cases}\frac{1}{2}(y-1) & \text { if } y<1 \\ \sqrt{y-1} & \text { if } y \geq 1\end{cases}
$$

9. Let $S=\{x \in \mathbb{Z}: x \leq 0\}=\{\ldots,-3,-2,-1,0\}$. Define $f: \mathbb{N} \rightarrow S$ by $f(n)=1-n$. (Clearly f is a function from \mathbb{N} into \mathbb{Z}. Since $n \in \mathbb{N} \Rightarrow n \geq 1 \Rightarrow-n \leq-1 \Rightarrow 1-n \leq 0$, we see that an acceptable codomain for f is indeed S.)
f is one-to-one: $f\left(n_{1}\right)=f\left(n_{2}\right) \Rightarrow 1-n_{1}=1-n_{2} \Rightarrow n_{1}=n_{2}$.
f is onto: Let $x \in S$. Let $n=1-x$. Since $x \in \mathbb{Z}, n \in \mathbb{Z}$. Also, $x \leq 0 \Rightarrow-x \geq 0 \Rightarrow 1-x \geq 1$. Therefore $n \in \mathbb{N}$. We have $f(n)=$ $1-n=1-(1-x)=x$. Therefore f is onto.
10. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Assume that g is one-to-one and $g \circ f$ is onto. Prove that f is onto.
Let $y \in B$. Let $z=g(y) \in C$. Since $g \circ f$ is onto, there exists $x \in A$ such that $(g \circ f)(x)=g(f(x))=z$. Thus $g(y)=z$ and $g(f(x))=z$. Since g is one-to-one, $y=f(x)$. Therefore f is onto.
