MA 225-001 Final Exam

S. Schecter

May 9, 2005

1. For each of the following sentences, (i) translate into a symbolic sentence that uses the symbols $\wedge, \vee, \sim, \forall$ and \exists wherever appropriate; (ii) write a clear denial as a symbolic sentence; and (iii) translate your denial into ordinary English. The universe for each statement is the set of all people.
(a) There is a person who does not love anybody.
(b) Everybody is happy or nobody is happy.
2. Definitions:
(a) Let a and b be integers. We say a divides b if there is an integer k such that $a k=b$.
(b) An integer a is even if there is an integer k such that $a=2 k$.
(c) An integer a is odd if there is an integer k such that $a=2 k+1$.
(d) A real number x is rational if there exist integers a and b, with $b \neq 0$, such that $x=\frac{a}{b}$.
(e) A real number x is irrational if it is not rational.

Using these definitions, prove the following statements.
(a) If a, b and c are integers such that a divides b and a^{2} divides c, then a^{2} divides $c-a b$.
(b) If $2 a^{2}+7 a+3$ is an even integer, then a is odd. (Give a contrapositive proof. You may assume that every integer is either even or odd.)
(c) If x and y are real numbers such that x is rational and y is irrational, then $\frac{1}{2}(x+y)$ is irrational. (Give a proof by contradiction.)
3. Let A, B, C and D be sets. Prove that if $A \subseteq \tilde{B}$ and $C \subseteq D$, then $A-D \subseteq \tilde{B} \cap \tilde{C}$.
4. Let A, B and C be sets. Prove that if $A \subseteq C$ and $B \cap \tilde{A} \subseteq C$ then $B \subseteq C$. (Hint: any point is either in A or not in A.)
5. Prove by induction: For every natural number n,

$$
\frac{1}{1 \cdot 4}+\frac{1}{4 \cdot 7}+\cdots+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1} .
$$

6. Define a relation on $\mathbb{R} \times \mathbb{R}$ by $(x, y) R(a, b)$ if $x \leq a$ and $y \geq b$.
(a) Show that R is reflexive and transitive
(b) Show by example that R is not symmetric.
7. Define $f: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{6}$ by $f\left(x / \equiv_{4}\right)=3 x / \equiv_{6}$.
(a) Show that f is a function.
(b) Is f one-to-one? Justify your answer.
(c) Is f onto? Justify your answer.
8. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}2 x+1 & \text { if } x<0 \\ x^{2}+1 & \text { if } x \geq 0\end{cases}
$$

(a) Prove that f is one-to-one.
(b) Prove that f is onto.
(c) Give the inverse function.
9. Let $S=\{x \in \mathbb{Z}: x \leq 0\}=\{\ldots,-3,-2,-1,0\}$. Prove that S is denumerable in the following steps:
(a) Define a function $f: \mathbb{N} \rightarrow S$ that is a bijection.
(b) Prove that the function you have defined is a bijection, i.e., prove that it is one-to-one and onto.
10. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. Assume that g is one-to-one and $g \circ f$ is onto. Prove that f is onto.

