MA 225-001 Final Exam

S. Schecter

May 9, 2005

- For each of the following sentences, (i) translate into a symbolic sentence that uses the symbols ∧, ∨, ∼, ∀ and ∃ wherever appropriate; (ii) write a clear denial as a symbolic sentence; and (iii) translate your denial into ordinary English. The universe for each statement is the set of all people.
 - (a) There is a person who does not love anybody.
 - (b) Everybody is happy or nobody is happy.
- 2. Definitions:
 - (a) Let a and b be integers. We say a divides b if there is an integer k such that ak = b.
 - (b) An integer a is even if there is an integer k such that a = 2k.
 - (c) An integer a is odd if there is an integer k such that a = 2k + 1.
 - (d) A real number x is rational if there exist integers a and b, with $b \neq 0$, such that $x = \frac{a}{b}$.
 - (e) A real number x is *irrational* if it is not rational.

Using these definitions, prove the following statements.

- (a) If a, b and c are integers such that a divides b and a^2 divides c, then a^2 divides c ab.
- (b) If $2a^2 + 7a + 3$ is an even integer, then *a* is odd. (Give a contrapositive proof. You may assume that every integer is either even or odd.)
- (c) If x and y are real numbers such that x is rational and y is irrational, then $\frac{1}{2}(x+y)$ is irrational. (Give a proof by contradiction.)
- 3. Let A, B, C and D be sets. Prove that if $A \subseteq \tilde{B}$ and $C \subseteq D$, then $A D \subseteq \tilde{B} \cap \tilde{C}$.
- 4. Let A, B and C be sets. Prove that if $A \subseteq C$ and $B \cap \tilde{A} \subseteq C$ then $B \subseteq C$. (Hint: any point is either in A or not in A.)

5. Prove by induction: For every natural number n,

$$\frac{1}{1\cdot 4} + \frac{1}{4\cdot 7} + \dots + \frac{1}{(3n-2)(3n+1)} = \frac{n}{3n+1}$$

- 6. Define a relation on $\mathbb{R} \times \mathbb{R}$ by (x, y) R(a, b) if $x \leq a$ and $y \geq b$.
 - (a) Show that R is reflexive and transitive
 - (b) Show by example that R is not symmetric.
- 7. Define $f : \mathbb{Z}_4 \to \mathbb{Z}_6$ by $f(x/\equiv_4) = 3x/\equiv_6$.
 - (a) Show that f is a function.
 - (b) Is f one-to-one? Justify your answer.
 - (c) Is f onto? Justify your answer.
- 8. Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 2x+1 & \text{if } x < 0, \\ x^2+1 & \text{if } x \ge 0. \end{cases}$$

- (a) Prove that f is one-to-one.
- (b) Prove that f is onto.
- (c) Give the inverse function.
- 9. Let $S = \{x \in \mathbb{Z} : x \leq 0\} = \{\dots, -3, -2, -1, 0\}$. Prove that S is denumerable in the following steps:
 - (a) Define a function $f : \mathbb{N} \to S$ that is a bijection.
 - (b) Prove that the function you have defined is a bijection, i.e., prove that it is one-to-one and onto.
- 10. Let $f: A \to B$ and $g: B \to C$ be functions. Assume that g is one-to-one and $g \circ f$ is onto. Prove that f is onto.