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“Happy families are all alike; every unhappy family is unhappy in its own way.”

Leo Tolstoy, Anna Karenina

Anna Karenina Principle : “By that sentence, Tolstoy meant that, in order to be
happy, a marriage must succeed in many different respects: sexual attraction,
agreement about money, child discipline, religion, in-laws, and other vital issues.
Failure in any one of those essential respects can doom a marriage even if it has all
the other ingredients needed for happiness.

“This principle can be extended to understanding much else about life besides mar-
riage.”

Jared Diamond, Guns, Germs, and Steel

Principle of Fragility of Good Things : “Good things (e.g. stability) are more fragile
than bad things. It seems that in good situations a number of requirements must
hold simultaneously, while to call a situation bad even one failure suffices.”

Vladimir Arnold, Catastrophe Theory



Plan

(1) Saddle-node bifurcation in the fast equation
(2) Rarefactions in the Dafermos regularization of a system of conservation laws

(3) Crystalline interphase boundaries



|. Saddle-Node Bifurcation in the Fast Equation

M. Krupa and P. Szmolyan, 2001, expanding on ideas of F. Dumortier and R. Rous-
sarie.

System:

X=¢€(1+...)
y=—X—Y+... (X xyterms allowed)

y y
Y
\v

*VVVV +
e=0 >0

Question: For € > 0, where does the normally attracting invariant curve go?



Classical analysis

X=¢€(1+...)
V= —X—Y°+... (XZ, Xy terms allowed)

y

outer solutio

inner solutiol
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To get inner solution, let X = €3a, y = €3h.



System:
X==¢(1+...)
V= —X—Y+... (X%, xy terms allowed)
2 1
Let X = €3a, y = €3D.
fa—¢ (1+ O(e%))
g3y = —e3a— e3b? + O(e)
Simplify.

Rescale time (divide by 8%).
a=1+ O(e%)
0 = —a—b?+ O(e?)

Note three terms have order €°. Set € = 0.

db

_:__2
ia a—b



_:__2
ia a—b

Convert this Riccati equation to a linear equation by the substitution b = %%.
dc
— +ac=0.
da?

There is an explicit solution in terms of Airy functions. Convert back to get b in
terms of a.

b

N

a=—b?

N

Use the blue one and try to match to the outer solutions using asymptotic expan-
sions.

Solution is asymptotic to a = k (—k = first zero of Airy function), i.e., X = Ke3.



Blow-Up: a Geometric Approach to Matching

Extend the original system:

X=¢€(14...)
Y= —X—V+...
e=0

The blow-up transformation for this problem is a map from S x (0, 00) (blow-up
space) to Xye-space. Let ((X,y,€),r) be a point of & x [0, ), so X*+y*+ €% = 1.
Then

X=T1°X, y=Trly, &=Tr°t.
The origin has been “blown up” to a sphere (“quasi-homogeneous” spherical coor-
dinates).

Under this transformation the system pulls back to a vector field X on S x 0, )
for which the sphere r = 0O consists entirely of equilibria. The vector field we shall
study is X = r~1X. Division by I desingularizes the vector field on the sphere r = 0
but leaves it invariant. It is equivalent to rescaling time.



In blow-up space there is no loss of normal hyperbolicity.

outer solution

Top view of sphere:

inner solution

center directio
€ x=kg23

eigenvalues =2, -3
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Coordinate system on top of the sphere gives inner solution.

Coordinate systems on side and front of sphere allow geometric matching to outer
solutions.

Flow past sphere:

Center manifold of this point is shown. It is the extension
of the normally hyperbolic invariant manifold of outer solut
IN Xye-space.



Calculations

X=¢(1+...)
y=—X—Yy+
e=0

Chartfor € >0
Xx=r%a, y=rb, €=r3  acR,beR,r>0

r‘a=r3(1+0(r))
rb= —r?a—r?p?+0O(r®)
r=0

Simplify and rescale time (divide by r).

a =1+0(r)
b'=—-a—b*+0(r?)
r'=0

We have seen this before: “rescaling chart.”

11



12

Side and front charts are used for geometric matching.

Chart for X< 0

X=¢g(1+...)
V= —X—V+...
e=0

X=—r% y=rb, e=r3, beR, ceR, r>0.
—2ri =r3¢(1+0(r))
tb+rb=r?—r?p?+O(r®)
3rfc+r’c=0

Solve forr, b, C.

= —%rzc(lJr O(r))

b=r— rb2+%rbc+ O(r?)

= ng2(1+ O(r))

Rescale time (divide by r).
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Chart for y< 0

X=¢€(14...)
V= —X—V+...
e=0

X=ra Yy=-—I, €&€=I7C, acR, ceR, r>0.

2ria+réa=r3c(1+0(r))
—f =—réa—r+0(r’
3rfc+r3c=0

Solve for a, 1, C.
a=rc(1+0(r)) —2ra(a+1+0(r))
f =r%(a+1+0(r)
c=—3cr(a+1+0(r))

Rescale time (divide by r).



a =c(1+0(r))—2a(a+1+0(r))
r'=r(a+1+0(r)
¢’ =—-3c(a+1+0O(r))

C

9

P < a

1//\

2 2 2
a=kc? so x=ra=r2kc? = Kk(r’c)3 = ke

h/
r

wWIN
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To deal with loss of normal hyperbolicity in a manifold of equ ilibriafor € =0:

(1) Identify manifolds of possible outer solutions.
(2) Extend the system by making € into a variable.

(3) Decide on blow-up coordinates. Expect € to be among the variables that are
blown up.

(4) Use one chart to identify inner solution.

(5) Use other charts to match.
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ll. Gain-of-Stability Turning Points

(Rarefactions in the Dafermos Regularization)

Consider the system

I
<

A(u) —xl)v,

Y

|-
m —~

with (u,v,X) € R" x R" x R and A(u) an n x n matrix.

Let n= K+ + 1. Assume that on an open set U in R":
e There are numbers A1 < A such that A(u) has
— Kk eigenvalues with real part less than A1,
— | eigenvalues with real part greater than Ao,
— a simple real eigenvalue A(U) with A1 < A(U) < Az.
e A(u) has an eigenvector r(u) for the eigenvalue A(u), and DA(u)r(u) > O.

Notice UX-space is invariant for every €. For € = O it consists of equilibria, but loses
normal hyperbolicity along the surface X = A(u). (Not in standard form for a slow-
fast system.)

Goal: For € > 0, find a solution that connects U= U to U= U" as X passes
A(u).
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Simplify by restricting to a normally hyperbolic invariant manifold.

u=y,
v=(A(U) —xl)y,
X=E,

Near X = A(U), there is a normally hyperbolic invariant manifold with coordinates
(U,z1,X,€) with z; a coordinate along r(u) in v-space.

For € = 0, within the normally hyperbolic invariant manifold, the equilibria z; = O still
lose normal hyperbolicity when x = A(u).

We therefore make the change of variables X = A(u) 4+ 0 and blow up the set zy =
o=¢e=0:

u=u,
h:ﬁi
O="r0,
£ =T,

with z;% + 0%+ €% = 1 (quasi-homogeneous “spherical cylindrical” coordinates).

For the new system, the spherical cylinder r = O consists entirely of equilibria. Di-
vide by r to desingularize.
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Systemwith n=1,souceRandveR:

u=\y,
v=(a(u)—x)v, a' >0
X =E.

UX-space is invariant for every €. For € = O it consists of equilibria, but loses normal
hyperbolicity along the curve X = a(u).

Look for a solution with  U(—o) =u~, u(e0) =ut, U~ < u”.

<

“

- X
lLJJ;/ x=a(u)

Y

>0
M - \\ X

b VE
llJJ/ x=a(u)

Second picture shows possible outer solutions.
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Preliminary change of coordinates: X = a(u) 4+ 0. Also, extend system.

u=\y,
V= —0V,

o=¢c—a'(uy,

e=0.

For € = 0, normal hyperbolicity of uo-space is lost along the u-axis (g = 0).

Blow-up:

I
ﬁl\l) f=
|

~

N
| g ]

mn Q < <
I
—

m

|
~

withue R, (v,0,€) € &, 1> 0.

Divide vector field on blow-up space by r to desingularize

r = O remains invariant, and on it U= 0.

. The spherical cylinder



|

- - /

¥
l,
7

center direction

Flow on blow-up space for fixed u. The g-axis points toward you.

e No loss of normal hyperbolicity.
e Dashed curves do not have constant U.

e The “plane” u = constant, v = O is invariant.

21
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Use chart for € > O (rescaling chart) to find inner solution

u=\y,

V= —0V,
o=¢c—a'(uy,
e=0.

v=rla, o=rb, €=r% acR beR, r>0.

Substitute, solve for a and b, rescale time (divide by r):

u=ra,

a— —ab,
b=1-a'(u)a,
r=0.

Note three terms in & and b equations have order €°. First three equations are a
slow-fast system with small parameter r. For r = O, flow with U = constant:

DN

/K
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For r = O, flow with U = constant:

Slow manifold is Ip = {(u,a,b) : a= a,%u), b=0}. Forr =0, lgis a normally

hyperbolic curve of equilibria.

Therefore for r > O there is a nearby normally hyperbolic invariant curve |, parame-
terized by u.

On [;, to lowest order the differential equation (slow equation) is U = rwlu) > 0:

gives inner solution. The Exchange Lemma can help with matching.
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Matching: In uvoe-space, {(u,v,0,€) :v=_0, 0 < —d < 0} is 3-dimensional nor-
mally repelling invariant manifold.

Let M~ ={(u,v,0,€) :u=u,v=0, 0 < —0 < 0} a 2-dimensional invariant sub-
set.

In blow-up space M~ extends as a normally hyperbolic invariant manifold to the
sphere r = O: it's now {(u, (v,0,€),r):u=u,v=0, o < 0}.

Uu=u \Y;

WY(M~) (dimension = 3) includes an open subset of {u~} x § x {0} that we call
WH(My ).
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DN

\/V/—

u=u-, r=0

For r =0, in uab-space, W"Y(M; ) (dimension = 2) is transverse to W*(lp) (dimen-
sion = 2).

For small r, WY(M;") is close to WY(M; ).

By the Exchange Lemma, for small r > 0, WY(M,) is close to WY(l;) when u
reaches u'.

(Transversality to W5(l,) is exchanged for closeness to WY(l;).)
For r = 0, in uab-space, W(lp) is transverse to WS(My ).
Therefore for small r > 0, WY(M,") is transverse to WS(M,").

This gives, for small r > 0, an intersection of WY(M,") and W5(M,")
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Heteroclinic orbits in a Hamiltonian system

Motivation

Sourdis and Fife, Existence of heteroclinic orbits for a corner layer problem in
anisotropic interfaces, Advances in Differential Equations 12 (2007), 623—668:

The physical motivation comes from a multi-order-parameter phase field model, de-
veloped by Braun et al. for the description of crystalline interphase boundaries.
The smallness of € is related to large anisotropy. [The heteroclinic orbit represents
a moving interface between ordered and disordered states.] The mathematical in-
terest stems from the fact that the smoothness and normal hyperbolicity of the crit-
ical manifold fails at certain points. Thus the well-developed geometric singular
perturbation theory does not apply. The existence of such a heteroclinic, and its
dependence on &, is proved via a functional analytic approach.



We consider

(1)
(2)

where

(3)

Second-order system

Xt = Ox(X,Y),
82YTT = Oy(X,Y),

XY) = ¥~ %+ hix)

e,

AVavi

x=0 x>0

Graph of (1/4y*—(1/2)xy?

x_ 0

Graph ofh(x)
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First-order system

Write (1)—(2) as a first-order system (the slow system) with Uy = X, Uz =:

(4) Uir = Uo,

1
(5) Uor = Ox(Ug, Ug) = —§u§+ h (uy),
(6) €Uz = Ug,

(7) €Usr = Gy(Uy, Ug) = U3 — UgUs.

In (4)—(7) let T = £€0. We obtain the fast system:

(8) Ujg = €Uy,
1 /
(9) Uzs = €0x(Up,U3) =€ (—§U§+ h (Ul)) :
(10) U3g = Ua,
(11) Use = Oy (Ug, Us) = U3 — UsUs = Ug(U5— Uy ).

Equilibria of the fast system for € > O:

1 1
(ug,0,0,0) with h'(up) =0, (ug,0, +uZ 0) with — St h(uy) =0.



Assumptions on h:

h(X) h(X)
\/\/ Wyz)xm(x)
X_ 0 X_ iXo X4

0
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Fast system

Uig = SUZ,

1 2 /
Uog = ng(ul, U3) =€ —§U3—|— h (Ul) ;
Uzg = Ug,

Uss = Gy(U, Us) = U3 — Uyl = Uz(U5 — Uy)

Equilibria of the fast system for € = O (yellow) and for € > O (black dots):

Uz
U3:O
.2 L
U1=U3
5 U
Us
(us=0)

1
70)7 (X—HOv:I:X—Zi—aO)'

St

(X—7 07 07 0)7 (X07 07 +
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For each €, the fast system has the first integral

1 1
H (U1, Up, Us, Ug) = Eu% + Euﬁ —g(uy, Us).

Note:

1
H(x_,0,0,0) = H(x.,0,x%,0) =0.

Goal: show that for small & > 0, }here IS a heteroclinic solution of the fast
system from (x_,0,0,0) to (x,,0,x%,0).

1
Fore >0, (x_,0,0,0) and (x.,0,x%,0) are hyperbolic equilibria of the fast system
with two negative eigenvalues and two positive eigenvalues.

Manifolds of possible outer solutions: The heteroclinic solution should corre-
spond to an intersection of the 2-dimensional manifolds W,'(x_, 0,0, 0) and

1
WS(x,,0,x2,0) that is transverse within the 3-dimensional manifold H~1(0) (which
IS Indeed a manifold away from equilibria).
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Fast limit and slow systems

Set € = 0 in the fast system to obtain the fast limit system:

(12) Uic = 07
(13) UZO' — O7
(14) U3zg = Ug,
(15) Uss = Gy(Us, Us) = Us(U5— Uy).
Equilibria:
U>
|| ul
Us

(us=0)
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Three manifolds of normally hyperbolic equilibria:

E = {(up,uz0,0) : u; < 0and u; arbitrary },
1
F_ = {(ug,uz,—u3,0) : uy > 0 and uy arbitrary },
1
F. = {(ug,u,uf,0) : uy > 0 and u, arbitrary}.

U3

Each has one positive eigenvalue and one negative eigenvalue. (On E. there are
two pure imaginary eigenvalues. On the uy-axis all eigenvalues are 0.)
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Set € = 0in the slow system to obtain the slow limit system:

(16) Uir = Uo,
1 /
(17) Upe = Ox(Ug, Ug) = —§u§+ H (uy),
(18) 0= Ug,
(19) 0 = gy(Uy,Us) = us(u3 — uy).

E., F. are manifolds of solutions of (18)—(19). Equations (16)—(17) give the slow
system on these manifolds.

Slow system on E_ (U; < O, Uy arbitrary):

(20) Uir = Uz,
(21) Uzr = G(U1,0) = h'(uy).

Slow system on F, (U; > O, Uy arbitrary):

(22) Ujr = Uy,
1

1 1
(23) Ur = Ox(Up, U7) = Uit h'(ug).
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Phase portraits of slow system on E_ and F, in U;Uy-coordinates, both extended to
u; = 0:

/.
N

\
@

(a) (b)

e In (a), (x_,0) is a hyperbolic saddle, and a branch of its unstable manifold
meets the U, axis at a point (0, U).

e In (b), (X,,0) is a hyperbolic saddle, and a branch of its stable manifold meets
the Uy aX|s at the same point (0, U).
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Slow limit system on E_ and F,:

U F_
E ; =
2 F,
[_
r + B
l\),(_ g
U3

We want to show that for small € l> 0, there is a heteroclinic solution of the fast
system from (x_,0,0,0) to (x,,0,x%,0) thatiscloseto ' _UT ..
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Blow-up

To the fast system append the equation €5 = O:

(24) U1g = €Uy,
1
(25) Uz = EQx(U1,U3) = 8(—§U:23 + M (uy)),
(26) U3g = Uy,
(27) Use = Oy(Ug, U) = U3 — UyUs,

For € = 0, the Uy-axis consists of equilibria of (24)—(27) that are not normally hyper-
bolic within U;U>U3U4-Space

In U UoUsUsE-space, we blow up the uo-axis to the product of the Uy-axis with a
3-sphere. The 3-sphere is a blow-up of the origin in U;UzUsE-Space.

The blowup transformation is a map from R X S x [0,0) to UyUpUzUse-space. Let
(Up, (Ug, U3, Ug, €),T) be a point of R x $* x [0,); we have Uy + Uz + Us° + €2 = 1.
Then

(29) U =T%0;, Up=Uy, Ug=TUs, Us=T%Uy, €=
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S~

p_’(.;) S B\

P, (€)

Under this transformation (24)—(28) pulls back to a vector field X on R x S® x 0, )
for which the cylinder r = O consists entirely of equilibria. The vector field we shall
study is X =~ 1X. Division by I desingularizes the vector field on the cylinder r =0
but leaves it invariant.

Let p_(€) (respectively p,(€)) be the unique point in R x S* x [0, ) that corre-
1

sponds to (x_,0,0,0,€) (respectively (x,,0,x7,0,€)). We wish to show that for
small € > O there is an integral curve of X from p_(€) to p.(€).
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.,Cl_f

AN
rann N

In blow-up space:

ol _ corresponds to ['_ and approaches a point §_ = (u5,§4_,0) on the blow-up
cylinder.
e [, corresponds to I, and approaches a point § = (U5, ,0) on the blow-up

cylinder.
e On the blow-up cylinder, each 3-sphere U, = constant is invariant.

Proposition (inner solution).  There is an integral curve [ g of_)~( from §_ to G, that
lies in the 3-dimensional hemisphere given by u, = U3, r =0, € > 0.

Theorem. For small € > O there is an integral curve [(€) of X from p_(€) to p, (€).
Ase —0,I(e) - T_UloUIl,.
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We shall need three charts on blow-up space:

e>0

l/;1<0 ui

Us, Uy

I/l1>0



Chart for € >0

(30)

U = rzbl,

2
Uz = Uz, U3z= rb37 Ug =T b47

with r > 0. After division by r, (24)—(28) becomes

(31)

(32)
(33)
(34)
(35)

blS — Uy,

1
s = 12(— P04 (1))
b3S: b47
bas = b3 — bybs,

rS:O.

Note: r = O implies Uys = 0.

41
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Chart for u; <0

(36)

Ui = —V2,

U = U, Usz=Vag, Us= Vza4,

with v > 0. After division by v, (24)—(28) becomes

(37)
(38)

(39)
(40)

(41)

1
Vi = —Evéuz,

n = VB~ 5P+ H(-VP)),

1
Az = ay+ §6u2a3,

ay = a3+ ag + Oliray,

3
6{ — ééZUZ.

Note: V= 0implies uy = 0.

£ =9,



Chart for u; >0

(42)

Uy =W, Upy=Uy U3=WCz Us=W<Cy,

with w > 0. After division by w, (24)—(28) becomes

(43)
(44)

(45)
(46)

(47)

1
W = EWVU27
U = WY(~ WG+ H (W),

1
Cat = C4— EWZCS’

3
Cqt — C3 — C3 — YU2Cy,

3
Yt = —EVZUZ-

Note: w = 0 implies uyx = 0.

£ = Wy.

43
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~

Construction of the inner solution [0

Consider the restriction of the vector field X to the invariant 3-sphere S= {u} x
S’ x {0}, S = {(Uy, U3, Ug, €) : U] + U5+ U7 + €% = 1}.

Chart on the open subset of Swith u; < 0: use (a3, au,9). In this chart:

1 *
(48) 83t = &y + §5U233,
(49) aq = a3+ ag+ OUsay,
35
(50) & = Ee‘>2u2.
5
\vvw(o,o,o;
P
\\ a4

az

Only equilibrium is §— = (0,0,0). Hyperbolicity is recovered in the ag- and ay-
directions.
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Chart on the open subset of Swith u; > 0: Use (Cz,Cs,Y). In this chart:

1
(51) Cyt = Cq— QWZC&
(52) Cat = Cg — C3 — YU,Ca,
3 .
(53) =5V Us.
Y
—

W*%(1,0,0 + -

1
C3

Three equilibria, §" = (1, 0,0). Hyperbolicity is recovered in the C3- and C4-directions.
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Chart on the open subset of Swith € > 0: use (by,bs, bs). In this chart, we have:

(54) blS — uza
(55) bSS — b47
(56) bas = b3 — bybs — bs(b2— by).

The solution of (54) with b;(0) = Ois by = u3S. Substitute into (56) and combining
(55) and (56) into a second-order equation:

(57) bass = ba(b3 — Uzs)
By Sourdis and Fife, (57) has a solution b3(s) with bzs > 0 such that

1 3
(S1) bs(s) = (\S|_%‘e_%(”5)2|5|2) as S— —oo,

(S2) bs(s) = (U3s)2 + 0(572) as S — o,
(S3) bsg(s) <Cls| 2, s£ 0.

( U;S, b3 (

S),
and W®(q.

bss(S)) is a solution of (54)—(56). It represents an intersection of W*(q_)
) in the 3-sphere S
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Transversality

W (G_) and WS({.. ) are 2-dimensional submanifolds of the 3-sphere S

Let o= (U3, Mo, 0). They intersect along Mo
Proposition. W®(§_) and W(§. ) intersect transversally within Salong I,

Proof. The linearization of
blS — U;,
bSS — b47
Dss = bg — b4bs

along (U3S,bs(s),bss(S)) is

Bis 0 0 0) By
Bas — b3 (S) 3b3 (S) 2_ U;S 0 B4

We must show there are no solutions with appropriate behavior at S = 4= other
than multiples of (U3, b3s, Dass).
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There is a complementary 2-dimensional space of solutions of (58) with B;(s) =0
and (B3(S),B4(S)) a solution of

Bss\ 0 1\ (B3
(59) <B4s) B <3b3(5)2— UsS O) (84)

We must show that no nontrivial solution has appropriate behavior at S= +o.

(59) is equivalent to the second order linear system
(60) Biss = (3b3(S)2 — U;S) Bs.

By Alikakos, Bates, Cahn, Fife, Fusco, and Tanoglu, Analysis of the corner layer
problem in anisotropy, Discrete Contin. Dyn. Syst. 6 (2006), 237-255, (60) has no
nontrivial solutions in L2, hence no solution with the correct asymptotic behavior.



Matching

E
G- P
NI
EN |
NG
p_(€) 5\
p.(€)
Recall: for each €, the fast system has the first integral
1 1 1 1
H (Ul, U2, Us, U4) = éug + éuﬁ — (Zug — EU]_U% + h(Ul)) .

H gives rise to a first integral H on blow-up space:

- _ 1, 1
2_

_ 1 1_ _
H (U, (Ug, Us, Ug, €),T) = §u§+ r* (E ZJ@H— éulﬁz) —h(r*ty).
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p_(€)

P, (€)

Let N denote the set of points in blow-up space at which H=0andr3s=¢.
Away from equilibria of X, each N, is a manifold of dimension 3.

For the vector field X and € > 0, the equilibria p_(€) and p..(€) have 2-dimensional
unstable and stable manifolds.

We will prove the theorem by showing that for small € > 0, W"(p_(€)) and W3(p..(€))
have a nonempty intersection that is transverse within Ng.
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Chart for u; < O:

1
Vi = —Evéuz,

n = VB~ 5P+ H(-P)),

1
ax = ag+ §6U233,
ay = a3+ ag + dUpay,

3
= ~5°Up.
Ot 50Uz
The 3-dimensional space az = a4 = O is invariant, and is normally hyperbolic near
the plane of equilibria a3 = a4 = d = 0. One eigenvalue is positive, one is negative.

The plane of equilibria corresponds to E_. Normal hyperbolicity within & = O is not
lost at V= 0, which corresponds to u; = 0.

Restrict to az = a4 = 0 and divide by O:

(61) V= —%vuz,
(62) Uy = Vv?h'(—V?),
3
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V= —EVUZ,
(= H (V)

-3

= §6U2.

Equilibria on the lines {(V,Up,0) : v = (—X_)%,uz = 0} and {(V,Up,0) : v=0=
0, u # 0} are normally hyperbolic within vu,0-space, with one positive eigenvalue
and one negative eigenvalue.



53

Lemma. As Oy — O+, W“((—x_)%,O, do) approaches WY(0, us, 0) in the C?! topol-
ogy. (Both have dimension 1.) (Corner Lemma.)

Lemma. In the chart for u; < 0, as &y — 0+, W“((—X_)%,O, 0,0,0p) approaches
the manifold of unstable fibers over WY(0, u5,0) in the C! topology. (Both have
dimension 2.)

The latter corresponds to W(qy) in S= {u3} x S* x {0}.
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Chart for u; > O:

1
W = EWYUZJ
U = WY(~ WG+ H (W),

1
Cat = C4— EWZC&

3
Cat = C3— C3 — YUoCa,

3
Yt = —EVZUZ-

The equilibria of the plane c3 = 1, ¢4 = Yy = 0 have, transverse to the plane, one
positive eigenvalue, one negative eigenvalue, one zero eigenvalue.

Therefore this plane is part of a 3-dimensional normally hyperbolic invariant mani-
fold S, with equations

C3=1+ y263(W7 Uz,y), Cq = y64(W7 Uz, y)

The plane of equilibria corresponds to F,. Normal hyperbolicity within y= 0 is not
lost at w = 0, which corresponds to u; = 0.

Restrict to S and divide by :
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(64)
(65)

(66)

1
Lemma. As Yo — O+, WS(x2,0,Yo) approaches WS(0,us,0) in the C! topology.
(Both have dimension 1.)

1
Lemma. In the chart for u; > 0, as yp — O+, W3(x%,0,1,0,Yo) approaches the
manifold of stable fibers over WS(0, u5, 0) in the C! topology. (Both have dim 2.)

The latter corresponds to W®(,.) in S= {us} x $* x {0}.
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Conclusion: in blow-up space,
As € — 04, WY(p_(g)) approaches W%(d_) in the C? topology.
As € — 0+, WS(p..(€)) approaches W®({, ) in the C* topology.

We showed W (G_) and W(G,) meet transversally within the 3-sphere r = 0,
Uy = U5, which is Np.

In the chart for € > 0, H corresponds to

1 1 1 1

Ho (b1, Up, b3, b, 1) = ZU5 +r*(Zbs — b3+ Zb.b3) + h(r?by).
2 2 4 2

No corresponds to the set of (b, Uz, b3,b4,1) such that H, =0 and r = 0. The

functions Hy and r have linearly independent gradients provided Uy # 0. There-
fore, where u, # 0O, the sets N 1 = N; depend smoothly on r. Since W (§_) and
€

W®(q4.) meet transversally within Np, it follows that W"(p_(€)) and W3(p..(€))
meet transversally within N¢ for € small.

P, (€)



