Exchange Lemmas

Steve Schecter

North Carolina State University

Plan

- (1) Boundary value problems
- (2) Fitzhugh-Nagumo Equation
- (3) Exchange Lemma of Jones and Kopell
- (4) General Exchange Lemma
- (5) Exchange Lemma of Jones and Tin
- (6) Loss-of-stability turning points: Liu's Exchange Lemma
- (7) Gain-of-stability turning points
- (8) Basis of proof: Generalized Deng's Lemma

Boundary Value Problems

$$\dot{\xi} = F(\xi, \varepsilon), \quad \xi(t_{-}) \in A_{-}(\varepsilon), \quad \xi(t_{+}) \in A_{+}(\varepsilon),$$

To show existence of a solution: show that the manifold of solutions that start on $A_{-}(\varepsilon)$ and the manifold of solutions that end on $A_{+}(\varepsilon)$ meet transversally.

Remarks

- ullet The problem with $\epsilon=0$ may be degenerate in some major way .
- Such problems are called singularly perturbed.
- The geometric approach to these problems, which focuses on *tracking manifolds of potential solutions* rather than on asymptotic expansions of solutions, is called *geometric singular perturbation theory* (Fenichel, Kopell, Jones, ...).

Fitzhugh-Nagumo Equation

$$u_t = u_{xx} + f(u) - w$$

$$w_t = \varepsilon(u - \gamma w)$$

$$f(u) = u(u-a)(1-u), \quad 0 < a < \frac{1}{2}, \qquad 0 < \gamma, \qquad 0 < \varepsilon << 1.$$

u = voltage potential across nerve axon membrane.

w =negative feedback effects.

Is there a traveling wave $(u,w)(\xi)$, $\xi=x-ct$ for some velocity c, such that $u(\xi)\to 0$ as $\xi\to\pm\infty$?

$$-cu_{\xi} = u_{\xi\xi} + f(u) - w$$
$$-cw_{\xi} = \varepsilon(u - \gamma w)$$

$$-cu_{\xi} = u_{\xi\xi} + f(u) - w$$
$$-cw_{\xi} = \varepsilon(u - \gamma w)$$

Write as a first-order system, make c a variable:

$$u_{\xi} = v$$

$$v_{\xi} = -cv - f(u) + w$$

$$w_{\xi} = \frac{\varepsilon}{c}(\gamma w - u)$$

$$c_{\xi} = 0$$

Slow-fast system, 2 slow variables, 2 fast variables. Equilibria for $\varepsilon > 0$: v = 0, w = f(u), $w = \frac{1}{\gamma}u$. For γ small there is just the origin for each c:

Origin has 1 negative eigenvalue and 2 eigenvalues with positive real part.

Set $\varepsilon = 0$:

$$u_{\xi} = v$$

$$v_{\xi} = -cv - f(u) + w$$

$$w_{\xi} = 0$$

$$c_{\xi} = 0$$

Normally hyperbolic manifolds of equilibria, 1 positive eigenvalue, 1 negative eigenvalue:

 M_0 and N_0 are actually 2-dimensional. Both are given by

$$u = f^{-1}(w)$$
, $v = 0$, $c = \text{arbitrary}$.

$$u_{\xi} = v$$

$$v_{\xi} = -cv - f(u) + w$$

$$w_{\xi} = \frac{\varepsilon}{c} (\gamma w - u)$$

$$c_{\xi} = 0$$

For $\varepsilon > 0$, M_0 and N_0 persist as normally hyperbolic invariant manifolds. Differential equation on them:

$$w_{\xi} = \frac{\varepsilon}{c} (\gamma w - f^{-1}(w)) + O(\varepsilon^{2})$$

$$c_{\xi} = 0$$

For c < 0 and γ small:

Let $J = \{(0,0,0,c) : c \text{ arbitrary}\}$. $J \subset M_{\varepsilon}$ for all ε . Look for a solution that at time t_{-} is in $W^{u}_{\varepsilon}(J)$ (dimension = 2) and at time t_{+} is in $W^{s}(M_{\varepsilon})$ (dimension=3).

 $W^u_{\epsilon}(J)$ exists and depends smoothly on ϵ from the theory of normally hyperbolic invariant manifolds.

Back to $\varepsilon = 0$:

$$u_{\xi} = v$$

$$v_{\xi} = -cv - f(u) + w$$

$$w_{\xi} = 0$$

$$c_{\xi} = 0$$

Phase portrait for (w, c) = (0, 0)

For $(w,c) = (0,c^*)$, $c^* < 0$, (0,0) connects to (1,0)

For $(w,c)=(w^*,c^*)$, $w^*>0$, right equilibrium connects to left equilibrium.

Slow and fast orbits, $c = c^*$:

Is there a true homoclinic orbit nearby for $\varepsilon > 0$?

- 1. For $\varepsilon = 0$: $W_0^u(J)$ (dimension = 2) intersects $W^s(N_0)$ (dimension = 3) transversally in an orbit with $c = c^*$.
- 2. Therefore for ε small, $W^u_{\varepsilon}(J)$ intersects $W^s(N_{\varepsilon})$ transversally in an orbit with $c = c(\varepsilon)$, $c(0) = c^*$.
- 3. For $\varepsilon = 0$: $W^u(N_0 \cap \{c = c^*\})$ (dimension = 2) intersects $W^s(M_0)$ (dimension = 3) transversally in an orbit with $w = w^*$.
- 4. Therefore for ε small, $W^u(N_{\varepsilon} \cap \{c = c(\varepsilon)\})$ intersects $W^s(M_{\varepsilon})$ transversally in an orbit with "w near w^* ."
- 5. For ε small, does $W^u_{\varepsilon}(J)$ become close to $W^u(N_{\varepsilon} \cap \{c = c(\varepsilon)\})$? If so we are done.

Exchange Lemma of Jones and Kopell

Slow-Fast Systems

$$\dot{a} = f(a, b, \varepsilon), \quad \dot{b} = \varepsilon g(a, b, \varepsilon), \quad (a, b) \in \mathbb{R}^n \times \mathbb{R}^m.$$

Set $\varepsilon = 0$:

$$\dot{a} = f(a, b, 0), \quad \dot{b} = 0.$$

Assume:

- (1) $f(\hat{a}(b), b, 0) = 0$.
- (2) $D_a f(\hat{a}(b), b, 0)$ has
 - *k* eigenvalues with negative real part.
 - *l* eigenvalues with positive real part.
 - k + l = n.
- (3) $g(\hat{a}(b), b, 0) \neq 0$.
- (1) and (2) say the m-dimensional manifold $a = \hat{a}(b)$ is a normally hyperbolic manifold of equlibria for $\varepsilon = 0$.

After a change of coordinates:

$$\dot{x} = A(x, y, c, \varepsilon)x,$$

$$\dot{y} = B(x, y, c, \varepsilon)y,$$

$$\dot{c} = \varepsilon((1, 0, \dots, 0) + L(x, y, c, \varepsilon)xy),$$

 $(x,y,c) \in \mathbb{R}^k \times \mathbb{R}^l \times \mathbb{R}^m$ (contracting \times expanding \times center), A(0,0,c,0) has eigenvalues with negative real part, B(0,0,c,0) has eigenvalues with positive real part.

Note that on xc-space and yc-space, \dot{c} depends on only on c and ε . Gives "fast foliation."

Flow with $\varepsilon = 0$.

Flow with $\varepsilon > 0$.

Exchange Lemma of Jones and Kopell

Assume:

- (1) For each ε , M_{ε} is a submanifold of xyc-space of dimension l.
- (2) $M = \{(x, y, c, \varepsilon) : (x, y, c) \in M_{\varepsilon}\}$ is itself a manifold.
- (3) For each ε , M_{ε} meets xc-space transversally in a point $(x(\varepsilon), 0, 0)$.

Under the forward flow, each M_{ε} becomes a manifold M_{ε}^* of dimension l+1.

Theorem 1 (Exchange Lemma of Jones and Kopell, 1994). Let

$$c^* = (c_1^*, 0, \dots, 0) \in \mathbb{R}^m$$

with $0 < c_1^*$. Let $y^* \neq 0$. Let A be a small neighborhood of (y^*, c_1^*) in yc_1 -space. Then for small $\varepsilon_0 > 0$ there are smooth functions $\tilde{x} : A \times [0, \varepsilon_0) \to \mathbb{R}^k$ and $\tilde{c} : A \times [0, \varepsilon_0) \to \mathbb{R}^{m-1}$ such that:

- (1) $\tilde{x}(y, c_1, 0) = 0$.
- (2) $\tilde{c}(y, c_1, 0) = \tilde{c}(0, c_1, \varepsilon) = 0.$
- (3) As $\varepsilon \to 0$, $(\tilde{x}, \tilde{c}) \to 0$ exponentially, along with its derivatives with respect to all variables.
- (4) For $0 < \varepsilon < \varepsilon_0$, $\{(x, y, c_1, \dots, c_m) : (y, c_1) \in A, x = \tilde{x}(y, c_1, \varepsilon), \text{ and } (c_2, \dots, c_m) = \tilde{c}(y, c_1, \varepsilon)\}$ is contained in M_{ε}^* .

Transversality to xc-space is "exchanged" for closeness to yc-space.

Brunovsky's Reformulation of Jones and Kopell's Exchange Lemma as an Inclination Lemma

Theorem 2 (1999). Let $c^* = (c_1^*, 0, \dots, 0) \in \mathbb{R}^m$ with $0 < c_1^*$. Let A be a small neighborhood of $(0, c_1^*)$ in yc_1 -space. Then for small $\varepsilon_0 > 0$ there are smooth functions $\tilde{x}: A \times [0, \varepsilon_0) \to \mathbb{R}^k$ and $\tilde{c}: A \times [0, \varepsilon_0) \to \mathbb{R}^{m-1}$ such that:

- (1) $\tilde{x}(y, c_1, 0) = 0$.
- (2) $\tilde{c}(y, c_1, 0) = \tilde{c}(0, c_1, \varepsilon) = 0.$
- (3) As $\varepsilon \to 0$, $(\tilde{x}, \tilde{c}) \to 0$ exponentially, along with its derivatives with respect to all variables.
- (4) For $0 < \varepsilon < \varepsilon_0$, $\{(x, y, c_1, \dots, c_m) : (y, c_1) \in A, x = \tilde{x}(y, c_1, \varepsilon), \text{ and } (c_2, \dots, c_m) = \tilde{c}(y, c_1, \varepsilon)\}$ is contained in M_{ε}^* .

Exchange Lemma of Jones and Tin

Consider again:

$$\dot{x} = A(x, y, c, \varepsilon)x,$$

$$\dot{y} = B(x, y, c, \varepsilon)y,$$

$$\dot{c} = \varepsilon((1, 0, \dots, 0) + L(x, y, c, \varepsilon)xy),$$

 $(x,y,c) \in \mathbb{R}^k \times \mathbb{R}^l \times \mathbb{R}^m$ (contracting \times expanding \times center), A(0,0,c,0) has eigenvalues with negative real part, B(0,0,c,0) has eigenvalues with positive real part.

Assume:

- (1) For each ε , M_{ε} is a submanifold of xyc-space of dimension l+p, $0 \le p \le m-1$.
- (2) $M = \{(x, y, c, \varepsilon) : (x, y, c) \in M_{\varepsilon}\}$ is itself a manifold.
- (3) M_0 meets xc-space transversally in a manifold N_0 of dimension p.
- (4) N_0 projects smoothly to a submanifold P_0 of c-space of dimension p.
- (5) The vector $(1,0,\ldots,0)$ is not tangent to P_0 .

Then:

- (1) Each M_{ε} meets xc-space transversally in a manifold N_{ε} of dimension p.
- (2) N_{ε} projects smoothly to a submanifold P_{ε} of c-space of dimension p.
- (3) The vector $(1,0,\ldots,0)$ is not tangent to P_{ε} .

After a change of coordinates $c = (u, v, w) \in \mathbb{R} \times \mathbb{R}^p \times \mathbb{R}^{m-1-p}$ that takes each P_{ε} to v-space, the system can be put in the form

$$\dot{x} = A(x, y, u, v, w, \varepsilon)x,$$

$$\dot{y} = B(x, y, u, v, w, \varepsilon)y,$$

$$\dot{u} = \varepsilon(1 + e(x, y, u, v, w, \varepsilon)xy),$$

$$\dot{v} = \varepsilon F(x, y, u, v, w, \varepsilon)xy,$$

$$\dot{w} = \varepsilon G(x, y, u, v, w, \varepsilon)xy.$$

Under the forward flow, each M_{ε} becomes a manifold M_{ε}^* of dimension l+p+1. Each P_{ε} becomes a manifold P_{ε}^* of dimension p+1, which in our coordinates is just uv-space.

Theorem 3 (Exchange Lemma of Jones and Tin, 2009). Let $0 < u^*$. Let A be a small neighborhood of $(0, u^*, 0)$ in yuv-space. Then for small $\varepsilon_0 > 0$ there are smooth function $\tilde{x}: A \times [0, \varepsilon_0) \to \mathbb{R}^k$ and $\tilde{w}: A \times [0, \varepsilon_0) \to \mathbb{R}^{m-p-1}$ such that:

- (1) $\tilde{x}(y, u, v, 0) = 0$.
- (2) $\tilde{w}(y, u, v, 0) = \tilde{w}(0, u, v, \varepsilon) = 0.$
- (3) As $\varepsilon \to 0$, $(\tilde{x}, \tilde{w}) \to 0$ exponentially, along with its derivatives with respect to all variables.
- (4) For $0 < \varepsilon < \varepsilon_0$, $\{(x, y, u, v, w) : (y, u, v) \in A \text{ and } (x, w) = (\tilde{x}, \tilde{w})(y, u, v, \varepsilon)\}$ is contained in M_{ε}^* .

Remark

The theorem also applies to

$$\dot{x} = A(x, y, c, \varepsilon)x,$$

$$\dot{y} = B(x, y, c, \varepsilon)y,$$

$$\dot{c} = \varepsilon(1, 0, \dots, 0) + L(x, y, c, \varepsilon)xy,$$

It is really about perturbations of systems with a family of normally hyperbolic equilibria, not about slow-fast systems.

General Exchange Lemma

Important Features of the Exchange Lemma

- (1) There is a normally hyperbolic invariant manifold (c-space) and a small parameter ε .
- (2) There is a collection of submanifolds M_{ε} of xyc-space such that $M = \{(x, y, c, \varepsilon) : (x, y, c) \in M_{\varepsilon}\}$ is itself a manifold. M_{ε} meets xc-space transversally in a manifold N_{ε} (in picture, a point).
- (3) N_{ϵ} projects along the stable fibration of xc space to a submanifold P_{ϵ} of c-space of the same dimension (in picture, a point).
- (4) For $\varepsilon > 0$, the vector field is not tangent to P_{ε} .
- (5) For small $\varepsilon > 0$, the flow on c-space is followed for a long time.
- (6) It takes P_{ϵ} to a set P_{ϵ}^* of dimension one greater. As $\epsilon \to 0$, the limit of $P_{\epsilon}^* \neq$ where the limiting DE takes P_0 . Nevertheless, the limit of P_{ϵ}^* exists and has the same dimension. Call it P_0^* .
- (7) As $\varepsilon \to 0$, $M_{\varepsilon}^* \to W^u(P_0^*)$.

General Exchange Lemma (S., 2007). (1)–(6) plus technical assumptions imply (7).

What's the point?

- ullet To understand the flow on the normally hyperbolic invariant manifold for $\epsilon>0$ may require rectification, blowing-up, etc.
- Once you've done this work, the General Exchange Lemma deals with the remaining dimensions.

Loss-of-Stability Turning Points: Liu's Exchange Lemma

Liu considers a slow-fast system

$$\dot{a} = f(a, b, \varepsilon),$$

 $\dot{b} = \varepsilon g(a, b, \varepsilon),$

with $a \in \mathbb{R}^{k+l+1}$ and $b \in \mathbb{R}^{m-1}$, $m \ge 2$. Assume:

- (1) $f(0,b,\epsilon)=0$. (Hence for each ϵ , b-space is invariant, and for $\epsilon=0$ it consists of equilibria.)
- (2) $D_a f(0, b, 0)$ has
 - k eigenvalues with negative real part;
 - l eigenvalues with positive real part;
 - a last eigenvalue v(b) such that v(0) = 0.
- (3) Dv(0)g(0,0,0) > 0.

After a change of coordinates:

$$\dot{x} = A(x, y, z, c, \varepsilon)x,
\dot{y} = B(x, y, z, c, \varepsilon)y,
\dot{z} = h(z, c, \varepsilon)z + k(x, y, z, c, \varepsilon)xy,
\dot{c} = \varepsilon((1, 0, \dots, 0) + l(z, c, \varepsilon)z + L(x, y, z, c, \varepsilon)xy),$$

$$(x, y, z, c) \in \mathbb{R}^k \times \mathbb{R}^l \times \mathbb{R} \times \mathbb{R}^{m-1}$$

A(0,0,0,c,0) has eigenvalues with negative real part, B(0,0,0,c,0) has eigenvalues with positive real part,

$$h(0, (0, c_2, \dots, c_{m-1}), 0) = 0,$$

 $\frac{\partial h}{\partial c_1} > 0.$

Assume:

- (1) m = 2 (for simplicity, so c-space is one-dimensional).
- (2) For each ε , M_{ε} is a submanifold of xyzc-space of dimension l.
- (3) $M = \{(x, y, z, c, \varepsilon) : (x, y, z, c) \in M_{\varepsilon}\}$ is itself a manifold.
- (4) M_0 meets xzc-space transversally at a point $(x_*,0,\delta,c_*)$ with $\delta \neq 0$ and $c_* < 0$. We may assume that $M \subset \{(x,y,z,c,\epsilon) : z = \delta\}$.

Each M_{ϵ} meets xzc-space transversally at $(x,y,z,c)=(x(\epsilon),0,c(\epsilon),\delta)$ with $(x(0),c(0))=(x_*,c_*)$.

For $\varepsilon > 0$ define Poincaré maps on $z = \delta$ by $c \to \pi_{\varepsilon}(c)$.

Define π_0 implicitly by

$$\int_{c}^{\pi_0(c)} h(0, u, 0) \, du = 0.$$

 $\pi_\epsilon \to \pi_0,$ along with its derivatives, as $\epsilon \to 0$ (De Maesschalck, 2008).

Under the forward flow, each M_{ε} becomes a manifold M_{ε}^* of dimension l+1.

Theorem 4 (Liu's Exchange Lemma, 2000). In zc-space, consider a short integral curve C_{ϵ} through $(z,c)=(\delta,\pi_{\epsilon}(c(\epsilon)))$. Let

$$A_{\varepsilon} = \{(x, y, z, c) : x = 0, ||y|| \text{ is small, } (z, c) \in C_{\varepsilon}\}.$$

Then M_{ϵ}^* is close to A_{ϵ} . As $\epsilon \to 0$ the distance goes to 0 exponentially.

Gain-of-Stability Turning Points (Rarefactions in the Dafermos Regularization)

Consider the system

$$\dot{u} = v,
\dot{v} = (A(u) - xI)v,
\dot{x} = \varepsilon,$$

with $(u, v, x) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}$ and A(u) an $n \times n$ matrix.

Let n = k + l + 1. Assume that on an open set U in \mathbb{R}^n :

- ullet There are numbers $\lambda_1 < \lambda_2$ such that A(u) has
 - k eigenvalues with real part less than λ_1 ,
 - l eigenvalues with real part greater than λ_2 ,
 - a simple real eigenvalue $\lambda(u)$ with $\lambda_1 < \lambda(u) < \lambda_2$.
- A(u) has an eigenvector r(u) for the eigenvalue $\lambda(u)$ such that $D\lambda(u)r(u) = 1$.

Notice ux-space is invariant for every ε . For $\varepsilon = 0$ it consists of equilibria, but loses normal hyperbolicity along the surface $x = \lambda(u)$.

Choose
$$u_* \in U$$
, x_* , x^* such that $\lambda_1 < x_* < \lambda(u_*) < x^* < \lambda_2$. Let $U_* = \{(u,v,x) : u \in U, v = 0, |x-x_*| < \delta\},$ $U^* = \{(u,v,x) : u \in U, v = 0, |x-x^*| < \delta\}.$

For $\varepsilon=0$, U_* and U^* are normally hyperbolic manifolds of equilibria of dimension n+1. For U_* , the stable and unstable manifolds of each point have dimensions k and l+1 respectively; for U^* , the stable and unstable manifolds of each point have dimensions k+1 and l respectively.

For $\varepsilon > 0$, U_* and U^* are normally hyperbolic invariant manifolds on which the system reduces to $\dot{u} = 0$, $\dot{x} = \varepsilon$.

For each $\varepsilon \geq 0$, let M_{ε} be a submanifold of uvx-space of dimension l+1+p, $0 \leq p \leq n-1$. Assume:

- $M = \{(u, v, x, \varepsilon) : (u, v, x) \in M_{\varepsilon}\}$ is itself a manifold.
- M_0 is transverse to $W_0^s(U_*)$ at a point in the stable fiber of $(u_*,0,x_*)$. The intersection of M_0 and $W_0^s(U_*)$ is a smooth manifold S_0 of dimension p.
- S_0 projects smoothly to a submanifold Q_0 of ux-space of dimension p.
- The vector $(\dot{u}, \dot{x}) = (0, 1)$ is not tangent to Q_0 . Therefore Q_0 projects smoothly to a submanifold R_0 of u-space of dimension p.
- $r(u_*)$ is not tangent to R_0 .

Under the flow, each M_{ε} becomes a manifold M_{ε}^* of dimension l+2+p.

Let $\phi(t,u)$ be the flow of $\dot{u}=r(u)$. Choose $t^*>0$ such that $\lambda(u_*)+t^*< x^*$. Let $R_0^*=\cup_{|t-t^*|<\delta}\phi(t,R_0),\quad P_0^*=\{(u,v,x):u\in R_0^*,v=0,|x-x^*|<\delta\}.$ R_0^* and P_0^* have dimensions p+1 and p+2 respectively.

Let $u^* = \phi(t^*, u_*)$.

Theorem 7. Near $(u^*, 0, x^*)$, M_{ε}^* is close to $W_0^u(P_0^*)$.

Generalized Deng's Lemma

In the literature, there are three ways to prove exchange lemmas:

- Jones and Kopell's approach, which is to follow the tangent space to M_{ϵ} forward using the extension of the linearized differential equation to differential forms.
- Brunovsky's approach, which is to locate M_{ϵ}^* by solving a boundary value problem in Silnikov variables.
- Krupa–Sandstede–Szmolyan approach (1997), using Lin's method.

We follow Brunovsky's approach, which is based on work of Bo Deng (1990). Brunovsky generalized a lemma of Deng that gives estimates on solutions of boundary value problems in Silnikov variables. Our proof of the Generalized Exchange Lemma is based on a further generalization of Deng's Lemma.

Let $(x, y, c) \in \mathbb{R}^k \times \mathbb{R}^l \times \mathbb{R}^m$. Let V be an open subset of \mathbb{R}^m . On a neighborhood of $\{0\} \times \{0\} \times V$, consider the C^{r+1} differential equation

$$\dot{x} = A(x, y, c)x,$$

$$\dot{y} = B(x, y, c)y,$$

$$\dot{c} = C(c) + E(x, y, c)xy.$$

Let $\phi(t,c)$ be the flow of $\dot{c}=C(c)$. For each $c\in V$ there is a maximal interval I_c containing 0 such that $\phi(t,c)\in V$ for all $t\in I_c$. Let the linearized solution operator of the system, with $\epsilon=0$, along the solution $(0,0,\phi(t,c^0))$ be

$$\begin{pmatrix} \bar{x}(t) \\ \bar{y}(t) \\ \bar{c}(t) \end{pmatrix} = \begin{pmatrix} \Phi^s(t, s, c^0) & 0 & 0 \\ 0 & \Phi^u(t, s, c^0) & 0 \\ 0 & 0 & \Phi^c(t, s, c^0) \end{pmatrix} \begin{pmatrix} \bar{x}(s) \\ \bar{y}(s) \\ \bar{c}(s) \end{pmatrix}$$

Assume:

(E1) There are numbers $\lambda_0 < 0 < \mu_0$, $\beta > 0$, and M > 0 such that for all $c^0 \in N$ and $s, t \in I_{c^0}$,

$$\|\Phi^{s}(t,s,c^{0})\| \leq Me^{\lambda_{0}(t-s)}$$
 if $t \geq s$,
 $\|\Phi^{u}(t,s,c^{0})\| \leq Me^{\mu_{0}(t-s)}$ if $t \leq s$,
 $\|\Phi^{c}(t,s,c^{0})\| \leq Me^{\beta|t-s|}$ for all t,s .

(E2)
$$\lambda_0 + r\beta < 0 < \lambda_0 + \mu_0 - r\beta$$
.

We wish to study solutions of Silnikov's boundary value problem on an interval $0 \le t \le \tau$:

$$x(0) = x^0$$
, $y(\tau) = y^1$, $c(0) = c^0$.

We denote the solution of Silnikov's boundary value problem

$$x(0) = x^0$$
, $y(\tau) = y^1$, $c(0) = c^0$.

by
$$(x, y, c)(t, \tau, x^0, y^1, c^0)$$
.

Theorem 9 (Generalized Deng's Lemma, S. 2008). Let V_0 and V_1 be compact subsets of V such that $V_0 \subset \operatorname{Int}(V_1)$. For each $c^0 \in V_0$ let J_{c^0} be the maximal interval such that $\phi(t,c^0) \in \operatorname{Int}(V_1)$ for all $t \in J_{c^0}$. Then for λ and μ a little closer to 0 than λ_0 and μ_0 , there is a number $\delta_0 > 0$ such that if $\|x^0\| \leq \delta_0$, $\|y^1\| \leq \delta_0$, $c^0 \in V_0$, and $\tau > 0$ is in J_{c^0} , then Silnikov's boundary value problem has a solution $(x,y,c)(t,\tau,x^0,y^1,c^0)$ on the interval $0 \leq t \leq \tau$. Moreover, there is a number K > 0 such that for all (t,τ,x^0,y^1,c^0) as above,

$$||x(t,\tau,x^{0},y^{1},c^{0})|| \leq Ke^{\lambda t},$$

$$||y(t,\tau,x^{0},y^{1},c^{0})|| \leq Ke^{\mu(t-\tau)},$$

$$||c(t,\tau,x^{0},y^{1},c^{0}) - \phi(t,c^{0})|| \leq Ke^{\lambda t + \mu(t-\tau)}.$$

In addition, if **i** is any $|\mathbf{i}|$ -tuple of integers between 1 and 2+k+l+m, with $1 \le |\mathbf{i}| \le r$, then

$$||D_{\mathbf{i}}x(t,\tau,x^{0},y^{1},c^{0})|| \leq Ke^{(\lambda+|\mathbf{i}|\beta)t},$$

$$||D_{\mathbf{i}}y(t,\tau,x^{0},y^{1},c^{0})|| \leq Ke^{(\mu-|\mathbf{i}|\beta)(t-\tau)},$$

$$||D_{\mathbf{i}}c(t,\tau,x^{0},y^{1},c^{0}) - D_{\mathbf{i}}\phi(t,c^{0})|| \leq Ke^{(\lambda+|\mathbf{i}|\beta)t+(\mu-|\mathbf{i}|\beta)(t-\tau)}.$$

Proof of Deng's Lemma

$$\dot{x} = A(x, y, c)x,$$

$$\dot{y} = B(x, y, c)y,$$

$$\dot{c} = C(c) + E(x, y, c)xy.$$

Let $c = \phi(t, c^0) + z$. Rewrite as

$$\dot{x} = A(t, c^{0})x + f(t, c^{0}, x, y, z),$$

$$\dot{y} = B(t, c^{0})y + g(t, c^{0}, x, y, z),$$

$$\dot{z} = C(t, c^{0})z + \theta(t, c^{0}, z) + h(t, c^{0}, x, y, z),$$

with $A(t,c^0)$, $B(t,c^0)$, $C(t,c^0)$ linear. Silnikov's problem:

$$x(0) = x^0$$
, $y(\tau) = y^1$, $c(0) = c^0$.

(x(t),y(t),c(t)) is a solution of Silnikov's problem if and only if $c(t) = \phi(t,c^0) + z(t)$ and $\eta(t) = (x(t),y(t),z(t))$ satisfies

$$x(t) = \Phi^{s}(t, 0, c^{0})x^{0} + \int_{0}^{t} \Phi^{s}(t, s, c^{0})f(s, c^{0}, \eta(s)) ds,$$

$$y(t) = \Phi^{u}(t, \tau, c^{0})y^{1} + \int_{\tau}^{t} \Phi^{u}(t, s, c^{0})g(s, c^{0}, \eta(s)) ds,$$

$$z(t) = \int_{0}^{t} \Phi^{c}(t, s, c^{0})(\theta(s, c^{0}, z(s)) + h(s, c^{0}, \eta(s))) ds,$$

$$x(t) = \Phi^{s}(t, 0, c^{0})x^{0} + \int_{0}^{t} \Phi^{s}(t, s, c^{0})f(s, c^{0}, \eta(s)) ds,$$

$$y(t) = \Phi^{u}(t, \tau, c^{0})y^{1} + \int_{\tau}^{t} \Phi^{u}(t, s, c^{0})g(s, c^{0}, \eta(s)) ds,$$

$$z(t) = \int_{0}^{t} \Phi^{c}(t, s, c^{0})(\theta(s, c^{0}, z(s)) + h(s, c^{0}, \eta(s))) ds,$$

Regard the right-hand side as a map from a weighted space of functions on $[0,\tau]$ into itself. Show there is a fixed point and estimate derivatives (which are fixed points of inhomogeneous linear maps).

How Exchange Lemmas are proved

Consider the Jones-Kopell Exchange Lemma. Situation: $(x, y, u, v) \in \mathbb{R}^k \times \mathbb{R}^l \times \mathbb{R} \times \mathbb{R}^{m-1}$,

$$\dot{x} = Ax,$$

 $\dot{y} = By,$
 $\dot{u} = \varepsilon + Cxy,$
 $\dot{v} = Exy,$

with A, B, C, E functions of $(x, y, u, v, \varepsilon)$. Eigenvalues of A have negative real part, eigenvalues of B have positive real part.

M is given by

$$x = x(\varepsilon) + L(y, \varepsilon)y,$$

$$u = M(y, \varepsilon)y,$$

$$v = N(y, \varepsilon)y.$$

Given $\varepsilon > 0$ and (y^1, u^1) near (y, u^*) , let $\tau = \frac{u^1}{\varepsilon}$. Find y^0 such that if we set

(1)
$$x^0 = x(\varepsilon) + L(y^0, \varepsilon)y^0,$$

$$u^0 = M(y^0, \varepsilon)y^0,$$

$$(3) v^0 = N(y^0, \varepsilon)y^0,$$

then the solution of Silnikov's boundary value problem with

$$x(0) = x^0$$
, $y(\tau) = y^1$, $u(0) = u^0$, $v(0) = v^0$

has $z(0) = z_0$. Then M^* includes the graph of

$$(x(\tau,\tau,x^0,y^1,u^0,v^0),v(\tau,\tau,x^0,y^1,u^0,v^0)).$$

Note that the arguments depend on (y^1, u^1, ε) . Now estimate (x, v) and their derivatives using Deng's Lemma.

To find y^0 as a function of (y^1, u^1, ε) , consider the mapping $((x^0, u^0, v^0), (y^1, u^1, \varepsilon)) \rightarrow$ right hand side of (1)–(3), with

$$y^0 = y(0, \tau, x^0, y^1, u^0, v^0)$$
 and $\tau = \frac{u^1}{\varepsilon}$.

Show that for fixed (y^1, u^1, ε) , this mapping is a contraction of a closed ball in (x^0, u^0, v^0) -space. Find the fixed point, then define y^0 by the above formula.