Exchange Lemmas

(a)

(b)

(c)

Steve Schecter
North Carolina State University

Plan

(1) Boundary value problems
(2) Fitzhugh-Nagumo Equation
(3) Exchange Lemma of Jones and Kopell
(4) General Exchange Lemma
(5) Exchange Lemma of Jones and Tin
(6) Loss-of-stability turning points: Liu's Exchange Lemma
(7) Gain-of-stability turning points
(8) Basis of proof: Generalized Deng's Lemma

Boundary Value Problems

$$
\dot{\xi}=F(\xi, \varepsilon), \quad \xi\left(t_{-}\right) \in A_{-}(\varepsilon), \quad \xi\left(t_{+}\right) \in A_{+}(\varepsilon)
$$

To show existence of a solution: show that the manifold of solutions that start on $A_{-}(\varepsilon)$ and the manifold of solutions that end on $A_{+}(\varepsilon)$ meet transversally.

Remarks

- The problem with $\varepsilon=0$ may be degenerate in some major way .
- Such problems are called singularly perturbed.
- The geometric approach to these problems, which focuses on tracking manifolds of potential solutions rather than on asymptotic expansions of solutions, is called geometric singular perturbation theory (Fenichel, Kopell, Jones, ...).

Fitzhugh-Nagumo Equation

$$
\begin{gathered}
\begin{aligned}
& u_{t}=u_{x x}+f(u)-w \\
& w_{t}=\varepsilon(u-\gamma w) \\
& f(u)=u(u-a)(1-u), \quad 0<a<\frac{1}{2}, \quad 0<\gamma, \quad 0<\varepsilon \ll 1
\end{aligned}
\end{gathered}
$$

$u=$ voltage potential across nerve axon membrane.
$w=$ negative feedback effects.
Is there a traveling wave $(u, w)(\xi), \xi=x-c t$ for some velocity c, such that $u(\xi) \rightarrow 0$ as $\xi \rightarrow \pm \infty$?

$$
\begin{aligned}
-c u \xi & =u_{\xi \xi}+f(u)-w \\
-c w \xi & =\varepsilon(u-\gamma w)
\end{aligned}
$$

$$
\begin{aligned}
-c u_{\xi} & =u_{\xi \xi}+f(u)-w \\
-c w_{\xi} & =\varepsilon(u-\gamma w)
\end{aligned}
$$

Write as a first-order system, make c a variable:

$$
\begin{aligned}
u_{\xi} & =v \\
v_{\xi} & =-c v-f(u)+w \\
w_{\xi} & =\frac{\varepsilon}{c}(\gamma w-u) \\
c_{\xi} & =0
\end{aligned}
$$

Slow-fast system, 2 slow variables, 2 fast variables. Equilibria for $\varepsilon>0: v=0$, $w=f(u), w=\frac{1}{\gamma} u$. For γ small there is just the origin for each c :

Origin has 1 negative eigenvalue and 2 eigenvalues with positive real part.

Set $\varepsilon=0$:

$$
\begin{aligned}
u_{\xi} & =v \\
v \xi & =-c v-f(u)+w \\
w \xi & =0 \\
c \xi & =0
\end{aligned}
$$

Normally hyperbolic manifolds of equilibria, 1 positive eigenvalue, 1 negative eigenvalue:

M_{0} and N_{0} are actually 2-dimensional. Both are given by

$$
u=" f^{-1}(w) ", \quad v=0, \quad c=\text { arbitrary } .
$$

$$
\begin{aligned}
u_{\xi} & =v \\
v \xi & =-c v-f(u)+w \\
w_{\xi} & =\frac{\varepsilon}{c}(\gamma w-u) \\
c \xi & =0
\end{aligned}
$$

For $\varepsilon>0, M_{0}$ and N_{0} persist as normally hyperbolic invariant manifolds. Differential equation on them:

$$
\begin{aligned}
w_{\xi} & =\frac{\varepsilon}{c}\left(\gamma w-f^{-1}(w)\right)+O\left(\varepsilon^{2}\right) \\
c_{\xi} & =0
\end{aligned}
$$

For $c<0$ and γ small:

Let $J=\{(0,0,0, c): c$ arbitrary $\} . J \subset M_{\varepsilon}$ for all ε. Look for a solution that at time t_{-} is in $W_{\varepsilon}^{u}(J)($ dimension $=2)$ and at time t_{+}is in $W^{s}\left(M_{\varepsilon}\right)$ (dimension=3).
$W_{\varepsilon}^{u}(J)$ exists and depends smoothly on ε from the theory of normally hyperbolic invariant manifolds.

Back to $\varepsilon=0$:

$$
\begin{aligned}
u_{\xi} & =v \\
v_{\xi} & =-c v-f(u)+w \\
w_{\xi} & =0 \\
c_{\xi} & =0
\end{aligned}
$$

Phase portrait for $(w, c)=(0,0)$

For $(w, c)=\left(0, c^{*}\right), c^{*}<0,(0,0)$ connects to $(1,0)$
For $(w, c)=\left(w^{*}, c^{*}\right), w^{*}>0$, right equilibrium connects to left equilibrium.

Slow and fast orbits, $c=c^{*}$:

Is there a true homoclinic orbit nearby for $\varepsilon>0$?

1. For $\varepsilon=0$: $W_{0}^{u}(J)$ (dimension $=2$) intersects $W^{s}\left(N_{0}\right)$ (dimension $=3$) transversally in an orbit with $c=c^{*}$.
2. Therefore for ε small, $W_{\varepsilon}^{u}(J)$ intersects $W^{s}\left(N_{\varepsilon}\right)$ transversally in an orbit with $c=c(\varepsilon), c(0)=c^{*}$.
3. For $\varepsilon=0$: $W^{u}\left(N_{0} \cap\left\{c=c^{*}\right\}\right.$ (dimension $=2$) intersects $W^{s}\left(M_{0}\right)$ (dimension $=$ 3) transversally in an orbit with $w=w^{*}$.
4. Therefore for ε small, $W^{u}\left(N_{\varepsilon} \cap\{c=c(\varepsilon)\}\right.$ intersects $W^{s}\left(M_{\varepsilon}\right)$ transversally in an orbit with " w near w^{*}."
5. For ε small, does $W_{\varepsilon}^{u}(J)$ become close to $W^{u}\left(N_{\varepsilon} \cap\{c=c(\varepsilon)\}\right.$? If so we are done.

Exchange Lemma of Jones and Kopell

Slow-Fast Systems

$$
\dot{a}=f(a, b, \varepsilon), \quad \dot{b}=\varepsilon g(a, b, \varepsilon), \quad(a, b) \in \mathbb{R}^{n} \times \mathbb{R}^{m} .
$$

Set $\varepsilon=0$:

$$
\dot{a}=f(a, b, 0), \quad \dot{b}=0 .
$$

Assume:
(1) $f(\hat{a}(b), b, 0)=0$.
(2) $D_{a} f(\hat{a}(b), b, 0)$ has

- k eigenvalues with negative real part.
- l eigenvalues with positive real part.
- $k+l=n$.
(3) $g(\hat{a}(b), b, 0) \neq 0$.
(1) and (2) say the m-dimensional manifold $a=\hat{a}(b)$ is a normally hyperbolic manifold of equlibria for $\varepsilon=0$.

After a change of coordinates:

$$
\begin{aligned}
& \dot{x}=A(x, y, c, \varepsilon) x, \\
& \dot{y}=B(x, y, c, \varepsilon) y, \\
& \dot{c}=\varepsilon((1,0, \ldots, 0)+L(x, y, c, \varepsilon) x y),
\end{aligned}
$$

$$
\begin{aligned}
& \quad(x, y, c) \in \mathbb{R}^{k} \times \mathbb{R}^{l} \times \mathbb{R}^{m} \text { (contracting } \times \text { expanding } \times \text { center), } \\
& A(0,0, c, 0) \text { has eigenvalues with negative real part, } \\
& B(0,0, c, 0) \text { has eigenvalues with positive real part. }
\end{aligned}
$$

Note that on $x c$-space and $y c$-space, \dot{c} depends on only on c and ε. Gives "fast foliation."

Flow with $\varepsilon=0$.

Flow with $\varepsilon>0$.

Exchange Lemma of Jones and Kopell

Assume:
(1) For each $\varepsilon, M_{\varepsilon}$ is a submanifold of $x y c$-space of dimension l.
(2) $M=\left\{(x, y, c, \varepsilon):(x, y, c) \in M_{\varepsilon}\right\}$ is itself a manifold.
(3) For each $\varepsilon, M_{\varepsilon}$ meets $x c$-space transversally in a point $(x(\varepsilon), 0,0)$.

Under the forward flow, each M_{ε} becomes a manifold M_{ε}^{*} of dimension $l+1$.

Theorem 1 (Exchange Lemma of Jones and Kopell, 1994). Let

$$
c^{*}=\left(c_{1}^{*}, 0, \ldots, 0\right) \in \mathbb{R}^{m}
$$

with $0<c_{1}^{*}$. Let $y^{*} \neq 0$. Let A be a small neighborhood of $\left(y^{*}, c_{1}^{*}\right)$ in $y c_{1}$-space. Then for small $\varepsilon_{0}>0$ there are smooth functions $\tilde{x}: A \times\left[0, \varepsilon_{0}\right) \rightarrow \mathbb{R}^{k}$ and $\tilde{c}: A \times\left[0, \varepsilon_{0}\right) \rightarrow$ \mathbb{R}^{m-1} such that:
(1) $\tilde{x}\left(y, c_{1}, 0\right)=0$.
(2) $\tilde{c}\left(y, c_{1}, 0\right)=\tilde{c}\left(0, c_{1}, \varepsilon\right)=0$.
(3) As $\varepsilon \rightarrow 0,(\tilde{x}, \tilde{c}) \rightarrow 0$ exponentially, along with its derivatives with respect to all variables.
(4) For $0<\varepsilon<\varepsilon_{0},\left\{\left(x, y, c_{1}, \ldots, c_{m}\right):\left(y, c_{1}\right) \in A, x=\tilde{x}\left(y, c_{1}, \varepsilon\right)\right.$, and $\left(c_{2}, \ldots, c_{m}\right)=$ $\left.\tilde{c}\left(y, c_{1}, \varepsilon\right)\right\}$ is contained in M_{ε}^{*}.

Transversality to $x c$-space is "exchanged" for closeness to $y c$-space.

Brunovsky's Reformulation of Jones and Kopell's Exchange Lemma as an Inclination Lemma

Theorem 2 (1999). Let $c^{*}=\left(c_{1}^{*}, 0, \ldots, 0\right) \in \mathbb{R}^{m}$ with $0<c_{1}^{*}$. Let A be a small neighborhood of $\left(0, c_{1}^{*}\right)$ in $y c_{1}$-space. Then for small $\varepsilon_{0}>0$ there are smooth functions $\tilde{x}: A \times\left[0, \varepsilon_{0}\right) \rightarrow \mathbb{R}^{k}$ and $\tilde{c}: A \times\left[0, \varepsilon_{0}\right) \rightarrow \mathbb{R}^{m-1}$ such that:
(1) $\tilde{x}\left(y, c_{1}, 0\right)=0$.
(2) $\tilde{c}\left(y, c_{1}, 0\right)=\tilde{c}\left(0, c_{1}, \varepsilon\right)=0$.
(3) As $\varepsilon \rightarrow 0,(\tilde{x}, \tilde{c}) \rightarrow 0$ exponentially, along with its derivatives with respect to all variables.
(4) For $0<\varepsilon<\varepsilon_{0},\left\{\left(x, y, c_{1}, \ldots, c_{m}\right):\left(y, c_{1}\right) \in A, x=\tilde{x}\left(y, c_{1}, \varepsilon\right)\right.$, and $\left(c_{2}, \ldots, c_{m}\right)=$ $\left.\tilde{c}\left(y, c_{1}, \varepsilon\right)\right\}$ is contained in M_{ε}^{*}.

(a)

(b)

(c)

Exchange Lemma of Jones and Tin

Consider again:

$$
\begin{aligned}
\dot{x} & =A(x, y, c, \varepsilon) x \\
\dot{y} & =B(x, y, c, \varepsilon) y \\
\dot{c} & =\varepsilon((1,0, \ldots, 0)+L(x, y, c, \varepsilon) x y)
\end{aligned}
$$

$(x, y, c) \in \mathbb{R}^{k} \times \mathbb{R}^{l} \times \mathbb{R}^{m}$ (contracting \times expanding \times center),
$A(0,0, c, 0)$ has eigenvalues with negative real part,
$B(0,0, c, 0)$ has eigenvalues with positive real part.
Assume:
(1) For each $\varepsilon, M_{\varepsilon}$ is a submanifold of $x y c$-space of dimension $l+p, 0 \leq p \leq m-1$.
(2) $M=\left\{(x, y, c, \varepsilon):(x, y, c) \in M_{\varepsilon}\right\}$ is itself a manifold.
(3) M_{0} meets $x c$-space transversally in a manifold N_{0} of dimension p.
(4) N_{0} projects smoothly to a submanifold P_{0} of c-space of dimension p.
(5) The vector $(1,0, \ldots, 0)$ is not tangent to P_{0}.

Then:
(1) Each M_{ε} meets $x c$-space transversally in a manifold N_{ε} of dimension p.
(2) N_{ε} projects smoothly to a submanifold P_{ε} of c-space of dimension p.
(3) The vector $(1,0, \ldots, 0)$ is not tangent to P_{ε}.

After a change of coordinates $c=(u, v, w) \in \mathbb{R} \times \mathbb{R}^{p} \times \mathbb{R}^{m-1-p}$ that takes each P_{ε} to v-space, the system can be put in the form

$$
\begin{aligned}
\dot{x} & =A(x, y, u, v, w, \varepsilon) x, \\
\dot{y} & =B(x, y, u, v, w, \varepsilon) y, \\
\dot{u} & =\varepsilon(1+e(x, y, u, v, w, \varepsilon) x y), \\
\dot{v} & =\varepsilon F(x, y, u, v, w, \varepsilon) x y, \\
\dot{w} & =\varepsilon G(x, y, u, v, w, \varepsilon) x y .
\end{aligned}
$$

Under the forward flow, each M_{ε} becomes a manifold M_{ε}^{*} of dimension $l+p+1$. Each P_{ε} becomes a manifold P_{ε}^{*} of dimension $p+1$, which in our coordinates is just $u v$-space.

Theorem 3 (Exchange Lemma of Jones and Tin, 2009). Let $0<u^{*}$. Let A be a small neighborhood of $\left(0, u^{*}, 0\right)$ in $y u v$-space. Then for small $\varepsilon_{0}>0$ there are smooth function $\tilde{x}: A \times\left[0, \varepsilon_{0}\right) \rightarrow \mathbb{R}^{k}$ and $\tilde{w}: A \times\left[0, \varepsilon_{0}\right) \rightarrow \mathbb{R}^{m-p-1}$ such that:
(1) $\tilde{x}(y, u, v, 0)=0$.
(2) $\tilde{w}(y, u, v, 0)=\tilde{w}(0, u, v, \varepsilon)=0$.
(3) As $\varepsilon \rightarrow 0,(\tilde{x}, \tilde{w}) \rightarrow 0$ exponentially, along with its derivatives with respect to all variables.
(4) For $0<\varepsilon<\varepsilon_{0},\{(x, y, u, v, w):(y, u, v) \in A$ and $(x, w)=(\tilde{x}, \tilde{w})(y, u, v, \varepsilon)\}$ is contained in M_{ε}^{*}.

Remark

The theorem also applies to

$$
\begin{aligned}
\dot{x} & =A(x, y, c, \varepsilon) x \\
\dot{y} & =B(x, y, c, \varepsilon) y \\
\dot{c} & =\varepsilon(1,0, \ldots, 0)+L(x, y, c, \varepsilon) x y
\end{aligned}
$$

It is really about perturbations of systems with a family of normally hyperbolic equilibria, not about slow-fast systems.

General Exchange Lemma

(a)

(b)

(c)

Important Features of the Exchange Lemma

(1) There is a normally hyperbolic invariant manifold (c-space) and a small parameter ε.
(2) There is a collection of submanifolds M_{ε} of $x y c$-space such that $M=\{(x, y, c, \varepsilon)$: $\left.(x, y, c) \in M_{\varepsilon}\right\}$ is itself a manifold. M_{ε} meets $x c$-space transversally in a manifold N_{ε} (in picture, a point).
(3) N_{ε} projects along the stable fibration of $x c$ space to a submanifold P_{ε} of c-space of the same dimension (in picture, a point).
(4) For $\varepsilon>0$, the vector field is not tangent to P_{ε}.
(5) For small $\varepsilon>0$, the flow on c-space is followed for a long time.
(6) It takes P_{ε} to a set P_{ε}^{*} of dimension one greater. As $\varepsilon \rightarrow 0$, the limit of $P_{\varepsilon}^{*} \neq$ where the limiting DE takes P_{0}. Nevertheless, the limit of P_{ε}^{*} exists and has the same dimension. Call it P_{0}^{*}.
(7) As $\varepsilon \rightarrow 0, M_{\varepsilon}^{*} \rightarrow W^{u}\left(P_{0}^{*}\right)$.

General Exchange Lemma (S., 2007). (1)-(6) plus technical assumptions imply (7).

(a)

(b)

(c)

What's the point?

- To understand the flow on the normally hyperbolic invariant manifold for $\varepsilon>0$ may require rectification, blowing-up, etc.
- Once you've done this work, the General Exchange Lemma deals with the remaining dimensions.

Loss-of-Stability Turning Points: Liu’s Exchange Lemma

Liu considers a slow-fast system

$$
\begin{aligned}
& \dot{a}=f(a, b, \varepsilon) \\
& \dot{b}=\varepsilon g(a, b, \varepsilon)
\end{aligned}
$$

with $a \in \mathbb{R}^{k+l+1}$ and $b \in \mathbb{R}^{m-1}, m \geq 2$. Assume:
(1) $f(0, b, \varepsilon)=0$. (Hence for each ε, b-space is invariant, and for $\varepsilon=0$ it consists of equilibria.)
(2) $D_{a} f(0, b, 0)$ has

- k eigenvalues with negative real part;
- l eigenvalues with positive real part;
- a last eigenvalue $v(b)$ such that $v(0)=0$.
(3) $D v(0) g(0,0,0)>0$.

$$
k+l=0, m=2
$$

After a change of coordinates:

$$
\begin{aligned}
& \dot{x}=A(x, y, z, c, \varepsilon) x \\
& \dot{y}=B(x, y, z, c, \varepsilon) y \\
& \dot{z}=h(z, c, \varepsilon) z+k(x, y, z, c, \varepsilon) x y \\
& \dot{c}=\varepsilon((1,0, \ldots, 0)+l(z, c, \varepsilon) z+L(x, y, z, c, \varepsilon) x y)
\end{aligned}
$$

$$
(x, y, z, c) \in \mathbb{R}^{k} \times \mathbb{R}^{l} \times \mathbb{R} \times \mathbb{R}^{m-1}
$$

$$
A(0,0,0, c, 0) \text { has eigenvalues with negative real part, }
$$

$$
B(0,0,0, c, 0) \text { has eigenvalues with positive real part, }
$$

$$
\begin{aligned}
h\left(0,\left(0, c_{2}, \ldots, c_{m-1}\right), 0\right) & =0 \\
\frac{\partial h}{\partial c_{1}} & >0
\end{aligned}
$$

Assume:
(1) $m=2$ (for simplicity, so c-space is one-dimensional).
(2) For each $\varepsilon, M_{\varepsilon}$ is a submanifold of $x y z c$-space of dimension l.
(3) $M=\left\{(x, y, z, c, \varepsilon):(x, y, z, c) \in M_{\varepsilon}\right\}$ is itself a manifold.
(4) M_{0} meets $x z c$-space transversally at a point $\left(x_{*}, 0, \delta, c_{*}\right)$ with $\delta \neq 0$ and $c_{*}<0$. We may assume that $M \subset\{(x, y, z, c, \varepsilon): z=\delta\}$.

Each M_{ε} meets $x z c$-space transversally at $(x, y, z, c)=(x(\varepsilon), 0, c(\varepsilon), \delta)$ with $(x(0), c(0))=$ $\left(x_{*}, c_{*}\right)$.

For $\varepsilon>0$ define Poincaré maps on $z=\delta$ by $c \rightarrow \pi_{\varepsilon}(c)$.

Define π_{0} implicitly by

$$
\int_{c}^{\pi_{0}(c)} h(0, u, 0) d u=0 .
$$

$\pi_{\varepsilon} \rightarrow \pi_{0}$, along with its derivatives, as $\varepsilon \rightarrow 0$ (De Maesschalck, 2008).
Under the forward flow, each M_{ε} becomes a manifold M_{ε}^{*} of dimension $l+1$.

Theorem 4 (Liu's Exchange Lemma, 2000). In $z c$-space, consider a short integral curve C_{ε} through $(z, c)=\left(\delta, \pi_{\varepsilon}(c(\varepsilon))\right)$. Let

$$
A_{\varepsilon}=\left\{(x, y, z, c): x=0,\|y\| \text { is small, }(z, c) \in C_{\varepsilon}\right\} .
$$

Then M_{ε}^{*} is close to A_{ε}. As $\varepsilon \rightarrow 0$ the distance goes to 0 exponentially.

Gain-of-Stability Turning Points

(Rarefactions in the Dafermos Regularization)

Consider the system

$$
\begin{aligned}
\dot{u} & =v, \\
\dot{v} & =(A(u)-x I) v, \\
\dot{x} & =\varepsilon,
\end{aligned}
$$

with $(u, v, x) \in \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}$ and $A(u)$ an $n \times n$ matrix.
Let $n=k+l+1$. Assume that on an open set U in \mathbb{R}^{n} :

- There are numbers $\lambda_{1}<\lambda_{2}$ such that $A(u)$ has
$-k$ eigenvalues with real part less than λ_{1},
$-l$ eigenvalues with real part greater than λ_{2},
- a simple real eigenvalue $\lambda(u)$ with $\lambda_{1}<\lambda(u)<\lambda_{2}$.
- $A(u)$ has an eigenvector $r(u)$ for the eigenvalue $\lambda(u)$ such that $D \lambda(u) r(u)=1$.

Notice $u x$-space is invariant for every ε. For $\varepsilon=0$ it consists of equilibria, but loses normal hyperbolicity along the surface $x=\lambda(u)$.

Choose $u_{*} \in U, x_{*}, x^{*}$ such that $\lambda_{1}<x_{*}<\lambda\left(u_{*}\right)<x^{*}<\lambda_{2}$. Let

$$
\begin{aligned}
U_{*} & =\left\{(u, v, x): u \in U, v=0,\left|x-x_{*}\right|<\delta\right\}, \\
U^{*} & =\left\{(u, v, x): u \in U, v=0,\left|x-x^{*}\right|<\delta\right\} .
\end{aligned}
$$

For $\varepsilon=0, U_{*}$ and U^{*} are normally hyperbolic manifolds of equilibria of dimension $n+1$. For U_{*}, the stable and unstable manifolds of each point have dimensions k and $l+1$ respectively; for U^{*}, the stable and unstable manifolds of each point have dimensions $k+1$ and l respectively.

For $\varepsilon>0, U_{*}$ and U^{*} are normally hyperbolic invariant manifolds on which the system reduces to $\dot{u}=0, \dot{x}=\varepsilon$.

For each $\varepsilon \geq 0$, let M_{ε} be a submanifold of $u v x$-space of dimension $l+1+p, 0 \leq$ $p \leq n-1$. Assume:

- $M=\left\{(u, v, x, \varepsilon):(u, v, x) \in M_{\varepsilon}\right\}$ is itself a manifold.
- M_{0} is transverse to $W_{0}^{s}\left(U_{*}\right)$ at a point in the stable fiber of $\left(u_{*}, 0, x_{*}\right)$. The intersection of M_{0} and $W_{0}^{s}\left(U_{*}\right)$ is a smooth manifold S_{0} of dimension p.
- S_{0} projects smoothly to a submanifold Q_{0} of $u x$-space of dimension p.
- The vector $(\dot{u}, \dot{x})=(0,1)$ is not tangent to Q_{0}. Therefore Q_{0} projects smoothly to a submanifold R_{0} of u-space of dimension p.
- $r\left(u_{*}\right)$ is not tangent to R_{0}.

Under the flow, each M_{ε} becomes a manifold M_{ε}^{*} of dimension $l+2+p$.

Let $\phi(t, u)$ be the flow of $\dot{u}=r(u)$. Choose $t^{*}>0$ such that $\lambda\left(u_{*}\right)+t^{*}<x^{*}$. Let

$$
R_{0}^{*}=\cup_{\left|t-t^{*}\right|<\delta} \phi\left(t, R_{0}\right), \quad P_{0}^{*}=\left\{(u, v, x): u \in R_{0}^{*}, v=0,\left|x-x^{*}\right|<\delta\right\} .
$$

R_{0}^{*} and P_{0}^{*} have dimensions $p+1$ and $p+2$ respectively.
Let $u^{*}=\phi\left(t^{*}, u_{*}\right)$.
Theorem 7. Near $\left(u^{*}, 0, x^{*}\right), M_{\varepsilon}^{*}$ is close to $W_{0}^{u}\left(P_{0}^{*}\right)$.

Generalized Deng's Lemma

In the literature, there are three ways to prove exchange lemmas:

- Jones and Kopell's approach, which is to follow the tangent space to M_{ε} forward using the extension of the linearized differential equation to differential forms.
- Brunovsky's approach, which is to locate M_{ε}^{*} by solving a boundary value problem in Silnikov variables.
- Krupa-Sandstede-Szmolyan approach (1997), using Lin's method.

We follow Brunovsky's approach, which is based on work of Bo Deng (1990). Brunovsky generalized a lemma of Deng that gives estimates on solutions of boundary value problems in Silnikov variables. Our proof of the Generalized Exchange Lemma is based on a further generalization of Deng's Lemma.

Let $(x, y, c) \in \mathbb{R}^{k} \times \mathbb{R}^{l} \times \mathbb{R}^{m}$. Let V be an open subset of \mathbb{R}^{m}. On a neighborhood of $\{0\} \times\{0\} \times V$, consider the C^{r+1} differential equation

$$
\begin{aligned}
\dot{x} & =A(x, y, c) x, \\
\dot{y} & =B(x, y, c) y \\
\dot{c} & =C(c)+E(x, y, c) x y .
\end{aligned}
$$

Let $\phi(t, c)$ be the flow of $\dot{c}=C(c)$. For each $c \in V$ there is a maximal interval I_{c} containing 0 such that $\phi(t, c) \in V$ for all $t \in I_{c}$. Let the linearized solution operator of the system, with $\varepsilon=0$, along the solution $\left(0,0, \phi\left(t, c^{0}\right)\right.$ be

$$
\left(\begin{array}{l}
\bar{x}(t) \\
\bar{y}(t) \\
\bar{c}(t)
\end{array}\right)=\left(\begin{array}{ccc}
\Phi^{s}\left(t, s, c^{0}\right) & 0 & 0 \\
0 & \Phi^{u}\left(t, s, c^{0}\right) & 0 \\
0 & 0 & \Phi^{c}\left(t, s, c^{0}\right)
\end{array}\right)\left(\begin{array}{l}
\bar{x}(s) \\
\bar{y}(s) \\
\bar{c}(s)
\end{array}\right)
$$

Assume:
(E1) There are numbers $\lambda_{0}<0<\mu_{0}, \beta>0$, and $M>0$ such that for all $c^{0} \in N$ and $s, t \in I_{c}$,

$$
\begin{array}{rr}
\left\|\Phi^{s}\left(t, s, c^{0}\right)\right\| \leq M e^{\lambda_{0}(t-s)} & \text { if } t \geq s, \\
\left\|\Phi^{u}\left(t, s, c^{0}\right)\right\| \leq M e^{\mu_{0}(t-s)} & \text { if } t \leq s, \\
\left\|\Phi^{c}\left(t, s, c^{0}\right)\right\| \leq M e^{\beta \beta|t-s|} & \text { for all } t, s .
\end{array}
$$

(E2) $\lambda_{0}+r \beta<0<\lambda_{0}+\mu_{0}-r \beta$.

We wish to study solutions of Silnikov's boundary value problem on an interval $0 \leq t \leq \tau$:

$$
x(0)=x^{0}, \quad y(\tau)=y^{1}, \quad c(0)=c^{0}
$$

We denote the solution of Silnikov's boundary value problem

$$
x(0)=x^{0}, \quad y(\tau)=y^{1}, \quad c(0)=c^{0} .
$$

by $(x, y, c)\left(t, \tau, x^{0}, y^{1}, c^{0}\right)$.
Theorem 9 (Generalized Deng's Lemma, S. 2008). Let V_{0} and V_{1} be compact subsets of V such that $V_{0} \subset \operatorname{lnt}\left(V_{1}\right)$. For each $c^{0} \in V_{0}$ let $J_{c^{0}}$ be the maximal interval such that $\phi\left(t, c^{0}\right) \in \operatorname{Int}\left(V_{1}\right)$ for all $t \in J_{c^{0}}$. Then for λ and μ a little closer to 0 than λ_{0} and μ_{0}, there is a number $\delta_{0}>0$ such that if $\left\|x^{0}\right\| \leq \delta_{0},\left\|y^{1}\right\| \leq \delta_{0}, c^{0} \in V_{0}$, and $\tau>0$ is in $J_{c^{0}}$, then Silnikov's boundary value problem has a solution $(x, y, c)\left(t, \tau, x^{0}, y^{1}, c^{0}\right)$ on the interval $0 \leq t \leq \tau$. Moreover, there is a number $K>0$ such that for all $\left(t, \tau, x^{0}, y^{1}, c^{0}\right)$ as above,

$$
\begin{aligned}
\left\|x\left(t, \tau, x^{0}, y^{1}, c^{0}\right)\right\| & \leq K e^{\lambda t} \\
\left\|y\left(t, \tau, x^{0}, y^{1}, c^{0}\right)\right\| & \leq K e^{\mu(t-\tau)}, \\
\left\|c\left(t, \tau, x^{0}, y^{1}, c^{0}\right)-\phi\left(t, c^{0}\right)\right\| & \leq K e^{\lambda t+\mu(t-\tau)} .
\end{aligned}
$$

In addition, if \mathbf{i} is any $|\mathbf{i}|$-tuple of integers between 1 and $2+k+l+m$, with $1 \leq|\mathbf{i}| \leq$ r, then

$$
\begin{aligned}
\left\|D_{\mathbf{i}} x\left(t, \tau, x^{0}, y^{1}, c^{0}\right)\right\| & \leq K e^{(\lambda+|\mathbf{i}| \beta) t} \\
\left\|D_{\mathbf{i}} y\left(t, \tau, x^{0}, y^{1}, c^{0}\right)\right\| & \leq K e^{(\mu-|\mathbf{i}| \beta)(t-\tau)} \\
\left\|D_{\mathbf{i}} c\left(t, \tau, x^{0}, y^{1}, c^{0}\right)-D_{\mathbf{i}} \phi\left(t, c^{0}\right)\right\| & \leq K e^{(\lambda+|\mathbf{i}| \beta) t+(\mu-|\mathbf{i}| \beta)(t-\tau)} .
\end{aligned}
$$

Proof of Deng's Lemma

$$
\begin{aligned}
& \dot{x}=A(x, y, c) x, \\
& \dot{y}=B(x, y, c) y, \\
& \dot{c}=C(c)+E(x, y, c) x y .
\end{aligned}
$$

Let $c=\phi\left(t, c^{0}\right)+z$. Rewrite as

$$
\begin{aligned}
& \dot{x}=A\left(t, c^{0}\right) x+f\left(t, c^{0}, x, y, z\right) \\
& \dot{y}=B\left(t, c^{0}\right) y+g\left(t, c^{0}, x, y, z\right) \\
& \dot{z}=C\left(t, c^{0}\right) z+\theta\left(t, c^{0}, z\right)+h\left(t, c^{0}, x, y, z\right)
\end{aligned}
$$

with $A\left(t, c^{0}\right), B\left(t, c^{0}\right), C\left(t, c^{0}\right)$ linear. Silnikov's problem:

$$
x(0)=x^{0}, \quad y(\tau)=y^{1}, \quad c(0)=c^{0}
$$

$(x(t), y(t), c(t))$ is a solution of Silnikov's problem if and only if $c(t)=\phi\left(t, c^{0}\right)+z(t)$ and $\eta(t)=(x(t), y(t), z(t))$ satisfies

$$
\begin{aligned}
& x(t)=\Phi^{s}\left(t, 0, c^{0}\right) x^{0}+\int_{0}^{t} \Phi^{s}\left(t, s, c^{0}\right) f\left(s, c^{0}, \eta(s)\right) d s \\
& y(t)=\Phi^{u}\left(t, \tau, c^{0}\right) y^{1}+\int_{\tau}^{t} \Phi^{u}\left(t, s, c^{0}\right) g\left(s, c^{0}, \eta(s)\right) d s \\
& z(t)=\int_{0}^{t} \Phi^{c}\left(t, s, c^{0}\right)\left(\theta\left(s, c^{0}, z(s)\right)+h\left(s, c^{0}, \eta(s)\right)\right) d s
\end{aligned}
$$

$$
\begin{aligned}
& x(t)=\Phi^{s}\left(t, 0, c^{0}\right) x^{0}+\int_{0}^{t} \Phi^{s}\left(t, s, c^{0}\right) f\left(s, c^{0}, \eta(s)\right) d s \\
& y(t)=\Phi^{u}\left(t, \tau, c^{0}\right) y^{1}+\int_{\tau}^{t} \Phi^{u}\left(t, s, c^{0}\right) g\left(s, c^{0}, \eta(s)\right) d s \\
& z(t)=\int_{0}^{t} \Phi^{c}\left(t, s, c^{0}\right)\left(\theta\left(s, c^{0}, z(s)\right)+h\left(s, c^{0}, \eta(s)\right)\right) d s
\end{aligned}
$$

Regard the right-hand side as a map from a weighted space of functions on $[0, \tau]$ into itself. Show there is a fixed point and estimate derivatives (which are fixed points of inhomogeneous linear maps).

How Exchange Lemmas are proved

Consider the Jones-Kopell Exchange Lemma. Situation: $(x, y, u, v) \in \mathbb{R}^{k} \times \mathbb{R}^{l} \times \mathbb{R} \times$ \mathbb{R}^{m-1},

$$
\begin{aligned}
\dot{x} & =A x, \\
\dot{y} & =B y, \\
\dot{u} & =\varepsilon+C x y, \\
\dot{v} & =E x y,
\end{aligned}
$$

with A, B, C, E functions of $(x, y, u, v, \varepsilon)$. Eigenvalues of A have negative real part, eigenvalues of B have positive real part.
M is given by

$$
\begin{aligned}
& x=x(\varepsilon)+L(y, \varepsilon) y, \\
& u=M(y, \varepsilon) y, \\
& v=N(y, \varepsilon) y .
\end{aligned}
$$

Given $\varepsilon>0$ and $\left(y^{1}, u^{1}\right)$ near $\left(y, u^{*}\right)$, let $\tau=\frac{u^{1}}{\varepsilon}$. Find y^{0} such that if we set

$$
\begin{align*}
x^{0} & =x(\varepsilon)+L\left(y^{0}, \varepsilon\right) y^{0}, \tag{1}\\
u^{0} & =M\left(y^{0}, \varepsilon\right) y^{0} \tag{2}\\
v^{0} & =N\left(y^{0}, \varepsilon\right) y^{0}, \tag{3}
\end{align*}
$$

then the solution of Silnikov's boundary value problem with

$$
x(0)=x^{0}, \quad y(\tau)=y^{1}, \quad u(0)=u^{0}, \quad v(0)=v^{0}
$$

has $z(0)=z_{0}$. Then M^{*} includes the graph of

$$
\left(x\left(\tau, \tau, x^{0}, y^{1}, u^{0}, v^{0}\right), v\left(\tau, \tau, x^{0}, y^{1}, u^{0}, v^{0}\right)\right)
$$

Note that the arguments depend on $\left(y^{1}, u^{1}, \varepsilon\right)$. Now estimate (x, v) and their derivatives using Deng's Lemma.

To find y^{0} as a function of $\left(y^{1}, u^{1}, \varepsilon\right)$, consider the mapping $\left(\left(x^{0}, u^{0}, v^{0}\right),\left(y^{1}, u^{1}, \varepsilon\right)\right) \rightarrow$ right hand side of (1)-(3), with

$$
y^{0}=y\left(0, \tau, x^{0}, y^{1}, u^{0}, v^{0}\right) \text { and } \tau=\frac{u^{1}}{\varepsilon}
$$

Show that for fixed $\left(y^{1}, u^{1}, \varepsilon\right)$, this mapping is a contraction of a closed ball in $\left(x^{0}, u^{0}, v^{0}\right)$-space. Find the fixed point, then define y^{0} by the above formula.

