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Boundary Value Problems

ξ̇ = F(ξ,ε), ξ(t−) ∈ A−(ε), ξ(t+) ∈ A+(ε),

A−(ε)
A+(ε)

To show existence of a solution: show that the manifold of solutions that start on
A−(ε) and the manifold of solutions that end on A+(ε) meet transversally.

Remarks

• The problem with ε = 0 may be degenerate in some major way .

• Such problems are called singularly perturbed.

• The geometric approach to these problems, which focuses on tracking mani-
folds of potential solutions rather than on asymptotic expansions of solutions,
is called geometric singular perturbation theory (Fenichel, Kopell, Jones, . . . ).
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Fitzhugh-Nagumo Equation

ut = uxx+ f (u)−w
wt = ε(u− γw)

f (u) = u(u−a)(1−u), 0< a<
1
2
, 0< γ, 0< ε << 1.

1
u

a

f(u)

u = voltage potential across nerve axon membrane.
w = negative feedback effects.
Is there a traveling wave (u,w)(ξ), ξ= x−ct for some velocity c, such that u(ξ)→ 0
as ξ →±∞?

−cuξ = uξξ+ f (u)−w
−cwξ = ε(u− γw)
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−cuξ = uξξ+ f (u)−w
−cwξ = ε(u− γw)

Write as a first-order system, make c a variable:

uξ = v
vξ =−cv− f (u)+w

wξ =
ε
c
(γw−u)

cξ = 0
Slow-fast system, 2 slow variables, 2 fast variables. Equilibria for ε > 0: v = 0,
w= f (u), w= 1

γu. For γ small there is just the origin for each c:

1
u

a

w=f(u)

v

w w=(1/γ)u

Origin has 1 negative eigenvalue and 2 eigenvalues with positive real part.
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Set ε = 0:

uξ = v
vξ =−cv− f (u)+w
wξ = 0
cξ = 0

Normally hyperbolic manifolds of equilibria, 1 positive eigenvalue, 1 negative eigen-
value:

1
u

a

f(u)

v

w

M N0 0

M0 and N0 are actually 2-dimensional. Both are given by

u= “ f−1(w)”, v= 0, c= arbitrary.



7

uξ = v
vξ =−cv− f (u)+w

wξ =
ε
c
(γw−u)

cξ = 0

For ε > 0, M0 and N0 persist as normally hyperbolic invariant manifolds. Differential
equation on them:

wξ =
ε
c
(γw− f−1(w))+O(ε2)

cξ = 0

For c< 0 and γ small:

1
u

a

f(u)

v

w

M Nε ε
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1
u

a

f(u)

v

w

M Nε ε

Let J = {(0,0,0,c) : c arbitrary}. J ⊂ Mε for all ε. Look for a solution that at time t−
is in Wu

ε (J) (dimension = 2) and at time t+ is in Ws(Mε) (dimension=3).

Wu
ε (J) exists and depends smoothly on ε from the theory of normally hyperbolic

invariant manifolds.



9

Back to ε = 0:

uξ = v
vξ =−cv− f (u)+w
wξ = 0
cξ = 0

Phase portrait for (w,c) = (0,0)

u

v

For (w,c) = (0,c∗), c∗ < 0, (0,0) connects to (1,0)

For (w,c) = (w∗,c∗), w∗ > 0, right equilibrium connects to left equilibrium.
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Slow and fast orbits, c= c∗:

u

v

w

w*

M

N

0

0

Is there a true homoclinic orbit nearby for ε > 0?
1. For ε = 0: Wu

0 (J) (dimension = 2) intersects Ws(N0) (dimension = 3) transver-
sally in an orbit with c= c∗.

2. Therefore for ε small, Wu
ε (J) intersects Ws(Nε) transversally in an orbit with

c= c(ε), c(0) = c∗.
3. For ε = 0: Wu(N0∩{c= c∗} (dimension = 2) intersects Ws(M0) (dimension =

3) transversally in an orbit with w= w∗.
4. Therefore for ε small, Wu(Nε∩{c= c(ε)} intersects Ws(Mε) transversally in an

orbit with “w near w∗.”
5. For ε small, does Wu

ε (J) become close to Wu(Nε ∩{c = c(ε)}? If so we are
done.



11

Exchange Lemma of Jones and Kopell

Slow-Fast Systems

ȧ= f (a,b,ε), ḃ= εg(a,b,ε), (a,b) ∈ R
n×R

m
.

Set ε = 0:
ȧ= f (a,b,0), ḃ= 0.

Assume:

(1) f (â(b),b,0) = 0.

(2) Da f (â(b),b,0) has
• k eigenvalues with negative real part.
• l eigenvalues with positive real part.
• k+ l = n.

(3) g(â(b),b,0) 6= 0.

(1) and (2) say the m-dimensional manifold a= â(b) is a normally hyperbolic mani-
fold of equlibria for ε = 0.

a1

b

a=a(b)
a2
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After a change of coordinates:

ẋ= A(x,y,c,ε)x,
ẏ= B(x,y,c,ε)y,
ċ= ε((1,0, . . . ,0)+L(x,y,c,ε)xy),

(x,y,c) ∈ R
k×R

l ×R
m (contracting × expanding × center),

A(0,0,c,0) has eigenvalues with negative real part,

B(0,0,c,0) has eigenvalues with positive real part.

Note that on xc-space and yc-space, ċ depends on only on c and ε. Gives “fast
foliation.”

x

c

y

x

c

y

Flow with ε = 0. Flow with ε > 0.
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Exchange Lemma of Jones and Kopell

Assume:

(1) For each ε, Mε is a submanifold of xyc-space of dimension l .

(2) M = {(x,y,c,ε) : (x,y,c) ∈ Mε} is itself a manifold.

(3) For each ε, Mε meets xc-space transversally in a point (x(ε),0,0).

x

c

y

M0

ε = 0

Under the forward flow, each Mε becomes a manifold M∗
ε of dimension l +1.
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Theorem 1 (Exchange Lemma of Jones and Kopell, 1994). Let

c∗ = (c∗1,0, . . . ,0) ∈ R
m

with 0< c∗1. Let y∗ 6= 0. Let A be a small neighborhood of (y∗,c∗1) in yc1-space. Then
for small ε0 > 0 there are smooth functions x̃ : A× [0,ε0)→R

k and c̃ : A× [0,ε0)→
R

m−1such that:

(1) x̃(y,c1,0) = 0.

(2) c̃(y,c1,0) = c̃(0,c1,ε) = 0.

(3) As ε → 0, (x̃, c̃)→ 0 exponentially, along with its derivatives with respect to all
variables.

(4) For 0< ε < ε0, {(x,y,c1, . . . ,cm) : (y,c1)∈ A, x= x̃(y,c1,ε), and (c2, . . . ,cm) =
c̃(y,c1,ε)} is contained in M∗

ε .

Transversality to xc-space is “exchanged” for closeness to yc-space.
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Brunovsky’s Reformulation of Jones and Kopell’s Exchange L emma as an
Inclination Lemma

Theorem 2 (1999). Let c∗ = (c∗1,0, . . . ,0)∈R
m with 0< c∗1. Let A be a small neigh-

borhood of (0,c∗1) in yc1-space. Then for small ε0 > 0 there are smooth functions
x̃ : A× [0,ε0)→ R

k and c̃ : A× [0,ε0)→ R
m−1such that:

(1) x̃(y,c1,0) = 0.

(2) c̃(y,c1,0) = c̃(0,c1,ε) = 0.

(3) As ε → 0, (x̃, c̃)→ 0 exponentially, along with its derivatives with respect to all
variables.

(4) For 0< ε < ε0, {(x,y,c1, . . . ,cm) : (y,c1)∈ A, x= x̃(y,c1,ε), and (c2, . . . ,cm) =
c̃(y,c1,ε)} is contained in M∗

ε .
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Exchange Lemma of Jones and Tin

Consider again:

ẋ= A(x,y,c,ε)x,
ẏ= B(x,y,c,ε)y,
ċ= ε((1,0, . . . ,0)+L(x,y,c,ε)xy),

(x,y,c) ∈ R
k×R

l ×R
m (contracting × expanding × center),

A(0,0,c,0) has eigenvalues with negative real part,

B(0,0,c,0) has eigenvalues with positive real part.

Assume:

(1) For each ε, Mε is a submanifold of xyc-space of dimension l + p, 0≤ p≤m−1.

(2) M = {(x,y,c,ε) : (x,y,c) ∈ Mε} is itself a manifold.

(3) M0 meets xc-space transversally in a manifold N0 of dimension p.

(4) N0 projects smoothly to a submanifold P0 of c-space of dimension p.

(5) The vector (1,0, . . . ,0) is not tangent to P0.
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Then:

(1) Each Mε meets xc-space transversally in a manifold Nε of dimension p.

(2) Nε projects smoothly to a submanifold Pε of c-space of dimension p.

(3) The vector (1,0, . . . ,0) is not tangent to Pε.

After a change of coordinates c= (u,v,w) ∈ R×R
p×R

m−1−p that takes each Pε
to v-space, the system can be put in the form

ẋ= A(x,y,u,v,w,ε)x,
ẏ= B(x,y,u,v,w,ε)y,
u̇= ε(1+e(x,y,u,v,w,ε)xy),
v̇= εF(x,y,u,v,w,ε)xy,
ẇ= εG(x,y,u,v,w,ε)xy.

u

w

v

x

c

y

M0 N0

P0
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Under the forward flow, each Mε becomes a manifold M∗
ε of dimension l + p+1.

Each Pε becomes a manifold P∗
ε of dimension p+1, which in our coordinates is just

uv-space.

Theorem 3 (Exchange Lemma of Jones and Tin, 2009). Let 0 < u∗. Let A be
a small neighborhood of (0,u∗,0) in yuv-space. Then for small ε0 > 0 there are
smooth function x̃ : A× [0,ε0)→ R

k and w̃ : A× [0,ε0)→ R
m−p−1such that:

(1) x̃(y,u,v,0) = 0.
(2) w̃(y,u,v,0) = w̃(0,u,v,ε) = 0.
(3) As ε → 0, (x̃, w̃)→ 0 exponentially, along with its derivatives with respect to all

variables.
(4) For 0< ε< ε0, {(x,y,u,v,w) : (y,u,v)∈A and (x,w) = (x̃, w̃)(y,u,v,ε)} is con-

tained in M∗
ε .

Remark

The theorem also applies to

ẋ= A(x,y,c,ε)x,
ẏ= B(x,y,c,ε)y,
ċ= ε(1,0, . . . ,0)+L(x,y,c,ε)xy,

It is really about perturbations of systems with a family of normally hyperbolic equi-
libria, not about slow-fast systems.
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General Exchange Lemma
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Important Features of the Exchange Lemma

(1) There is a normally hyperbolic invariant manifold (c-space) and a small param-
eter ε.

(2) There is a collection of submanifolds Mε of xyc-space such that M = {(x,y,c,ε) :
(x,y,c) ∈ Mε} is itself a manifold. Mε meets xc-space transversally in a mani-
fold Nε (in picture, a point).

(3) Nε projects along the stable fibration of xcspace to a submanifold Pε of c-space
of the same dimension (in picture, a point).

(4) For ε > 0, the vector field is not tangent to Pε.
(5) For small ε > 0, the flow on c-space is followed for a long time.
(6) It takes Pε to a set P∗

ε of dimension one greater. As ε → 0, the limit of P∗
ε 6=

where the limiting DE takes P0. Nevertheless, the limit of P∗
ε exists and has the

same dimension. Call it P∗
0 .

(7) As ε → 0, M∗
ε →Wu(P∗

0).
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General Exchange Lemma (S., 2007). (1)–(6) plus technical assumptions imply
(7).

y*

c*

A

x

c

y

A

(a) (b) (c)

M0 Mε Mε

M*
0 M*ε M*ε

What’s the point?

• To understand the flow on the normally hyperbolic invariant manifold for ε > 0
may require rectification, blowing-up, etc.

• Once you’ve done this work, the General Exchange Lemma deals with the
remaining dimensions.
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Loss-of-Stability Turning Points: Liu’s Exchange Lemma

Liu considers a slow-fast system

ȧ= f (a,b,ε),
ḃ= εg(a,b,ε),

with a∈ R
k+l+1 and b∈ R

m−1, m≥ 2. Assume:

(1) f (0,b,ε) = 0. (Hence for each ε, b-space is invariant, and for ε = 0 it consists
of equilibria.)

(2) Da f (0,b,0) has

• k eigenvalues with negative real part;

• l eigenvalues with positive real part;

• a last eigenvalue ν(b) such that ν(0) = 0.

(3) Dν(0)g(0,0,0)> 0.

a

bε=0: ε>0:

k+l=0, m=2



22

After a change of coordinates:

ẋ= A(x,y,z,c,ε)x,
ẏ= B(x,y,z,c,ε)y,
ż= h(z,c,ε)z+k(x,y,z,c,ε)xy,
ċ= ε((1,0, . . . ,0)+ l(z,c,ε)z+L(x,y,z,c,ε)xy),

(x,y,z,c) ∈ R
k×R

l ×R×R
m−1

,

A(0,0,0,c,0) has eigenvalues with negative real part,

B(0,0,0,c,0) has eigenvalues with positive real part,

h(0,(0,c2, . . . ,cm−1),0) = 0,
∂h
∂c1

> 0.

z

c1ε=0: ε>0:
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Assume:

(1) m= 2 (for simplicity, so c-space is one-dimensional).

(2) For each ε, Mε is a submanifold of xyzc-space of dimension l .

(3) M = {(x,y,z,c,ε) : (x,y,z,c) ∈ Mε} is itself a manifold.

(4) M0 meets xzc-space transversally at a point (x∗,0,δ,c∗) with δ 6= 0 and c∗ < 0.
We may assume that M ⊂ {(x,y,z,c,ε) : z= δ}.

z

c

δ
c*

M0

y

Each Mε meets xzc-space transversally at (x,y,z,c)= (x(ε),0,c(ε),δ)with (x(0),c(0))=
(x∗,c∗).
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For ε > 0 define Poincaré maps on z= δ by c→ πε(c).

z

c πε(c)

δ

Define π0 implicitly by

∫ π0(c)

c
h(0,u,0)du= 0.

πε → π0, along with its derivatives, as ε → 0 (De Maesschalck, 2008).

Under the forward flow, each Mε becomes a manifold M∗
ε of dimension l +1.
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Theorem 4 (Liu’s Exchange Lemma, 2000). In zc-space, consider a short integral
curve Cε through (z,c) = (δ,πε(c(ε))). Let

Aε = {(x,y,z,c) : x= 0,‖y‖ is small, (z,c) ∈Cε}.

Then M∗
ε is close to Aε. As ε → 0 the distance goes to 0 exponentially.

z

c

δ
c*

M0

y
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Gain-of-Stability Turning Points

(Rarefactions in the Dafermos Regularization)

Consider the system

u̇= v,
v̇= (A(u)−xI)v,
ẋ= ε,

with (u,v,x) ∈ R
n×R

n×R and A(u) an n×n matrix.

Let n= k+ l +1. Assume that on an open set U in R
n:

• There are numbers λ1 < λ2 such that A(u) has
– k eigenvalues with real part less than λ1,
– l eigenvalues with real part greater than λ2,
– a simple real eigenvalue λ(u) with λ1 < λ(u)< λ2.

• A(u) has an eigenvector r(u) for the eigenvalue λ(u) such that Dλ(u)r(u) = 1.

Notice ux-space is invariant for every ε. For ε = 0 it consists of equilibria, but loses
normal hyperbolicity along the surface x= λ(u).
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Choose u∗ ∈U , x∗, x∗ such that λ1 < x∗ < λ(u∗)< x∗ < λ2. Let

U∗ = {(u,v,x) : u∈U,v= 0, |x−x∗|< δ},
U∗ = {(u,v,x) : u∈U,v= 0, |x−x∗|< δ}.

x

u

v

u
*

λ(u
*

)

x=λ(u)

x
*

x*

U*U
*

For ε = 0, U∗ and U∗ are normally hyperbolic manifolds of equilibria of dimension
n+1. For U∗, the stable and unstable manifolds of each point have dimensions k
and l +1 respectively; for U∗, the stable and unstable manifolds of each point have
dimensions k+1 and l respectively.

For ε > 0, U∗ and U∗ are normally hyperbolic invariant manifolds on which the
system reduces to u̇= 0, ẋ= ε.
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x

v

u
*

λ(u
*
)

x=λ(u)

x
*

x*

Q0

R0

r(u
*
)

For each ε ≥ 0, let Mε be a submanifold of uvx-space of dimension l +1+ p, 0≤
p≤ n−1. Assume:

• M = {(u,v,x,ε) : (u,v,x) ∈ Mε} is itself a manifold.
• M0 is transverse to Ws

0(U∗) at a point in the stable fiber of (u∗,0,x∗). The
intersection of M0 and Ws

0(U∗) is a smooth manifold S0 of dimension p.
• S0 projects smoothly to a submanifold Q0 of ux-space of dimension p.
• The vector (u̇, ẋ) = (0,1) is not tangent to Q0. Therefore Q0 projects smoothly

to a submanifold R0 of u-space of dimension p.
• r(u∗) is not tangent to R0.

Under the flow, each Mε becomes a manifold M∗
ε of dimension l +2+ p.
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x

v

u
*

λ(u
*

)

x=λ(u)

x
*

x*

Q0

R0

λ(u
*

)+t*

R0*
P0*

u*

Let φ(t,u) be the flow of u̇= r(u). Choose t∗ > 0 such that λ(u∗)+ t∗ < x∗. Let

R∗
0 = ∪|t−t∗|<δφ(t,R0), P∗

0 = {(u,v,x) : u∈ R∗
0,v= 0, |x−x∗|< δ}.

R∗
0 and P∗

0 have dimensions p+1 and p+2 respectively.

Let u∗ = φ(t∗,u∗).

Theorem 7. Near (u∗,0,x∗), M∗
ε is close to Wu

0 (P
∗
0).
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Generalized Deng’s Lemma

In the literature, there are three ways to prove exchange lemmas:

• Jones and Kopell’s approach, which is to follow the tangent space to Mε forward
using the extension of the linearized differential equation to differential forms.

• Brunovsky’s approach, which is to locate M∗
ε by solving a boundary value prob-

lem in Silnikov variables.

• Krupa–Sandstede–Szmolyan approach (1997), using Lin’s method.

We follow Brunovsky’s approach, which is based on work of Bo Deng (1990).
Brunovsky generalized a lemma of Deng that gives estimates on solutions of bound-
ary value problems in Silnikov variables. Our proof of the Generalized Exchange
Lemma is based on a further generalization of Deng’s Lemma.
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Let (x,y,c) ∈R
k×R

l ×R
m. Let V be an open subset of Rm. On a neighborhood of

{0}×{0}×V , consider the Cr+1 differential equation

ẋ= A(x,y,c)x,
ẏ= B(x,y,c)y,
ċ=C(c)+E(x,y,c)xy.

Let φ(t,c) be the flow of ċ = C(c). For each c ∈ V there is a maximal interval Ic
containing 0 such that φ(t,c) ∈V for all t ∈ Ic. Let the linearized solution operator
of the system, with ε = 0, along the solution (0,0,φ(t,c0)) be





x̄(t)
ȳ(t)
c̄(t)



=





Φs(t,s,c0) 0 0
0 Φu(t,s,c0) 0
0 0 Φc(t,s,c0)









x̄(s)
ȳ(s)
c̄(s)





Assume:

(E1) There are numbers λ0 < 0< µ0, β > 0, and M > 0 such that for all c0 ∈ N and
s, t ∈ Ic0,

‖Φs(t,s,c0)‖ ≤ Meλ0(t−s) if t ≥ s,

‖Φu(t,s,c0)‖ ≤ Meµ0(t−s) if t ≤ s,

‖Φc(t,s,c0)‖ ≤ Meβ|t−s| for all t, s.

(E2) λ0+ rβ < 0< λ0+µ0− rβ.
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We wish to study solutions of Silnikov’s boundary value problem on an interval
0≤ t ≤ τ:

x(0) = x0
, y(τ) = y1

, c(0) = c0
.

x
x0

c0 c

y
y1
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We denote the solution of Silnikov’s boundary value problem

x(0) = x0
, y(τ) = y1

, c(0) = c0
.

by (x,y,c)(t,τ,x0,y1,c0).

Theorem 9 (Generalized Deng’s Lemma, S. 2008). Let V0 and V1 be compact
subsets of V such that V0 ⊂ Int (V1). For each c0 ∈V0 let Jc0 be the maximal interval
such that φ(t,c0)∈ Int (V1) for all t ∈ Jc0. Then for λ and µ a little closer to 0 than λ0

and µ0, there is a number δ0> 0 such that if ‖x0‖≤ δ0, ‖y1‖≤ δ0, c0∈V0, and τ> 0
is in Jc0, then Silnikov’s boundary value problem has a solution (x,y,c)(t,τ,x0,y1,c0)
on the interval 0 ≤ t ≤ τ. Moreover, there is a number K > 0 such that for all
(t,τ,x0,y1,c0) as above,

‖x(t,τ,x0
,y1

,c0)‖ ≤ Keλt
,

‖y(t,τ,x0
,y1

,c0)‖ ≤ Keµ(t−τ)
,

‖c(t,τ,x0
,y1

,c0)−φ(t,c0)‖ ≤ Keλt+µ(t−τ)
.

In addition, if i is any |i|-tuple of integers between 1 and 2+k+ l +m, with 1≤ |i| ≤
r , then

‖Dix(t,τ,x0
,y1

,c0)‖ ≤ Ke(λ+|i|β)t
,

‖Diy(t,τ,x0
,y1

,c0)‖ ≤ Ke(µ−|i|β)(t−τ)
,

‖Dic(t,τ,x0
,y1

,c0)−Diφ(t,c0)‖ ≤ Ke(λ+|i|β)t+(µ−|i|β)(t−τ)
.
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Proof of Deng’s Lemma

ẋ= A(x,y,c)x,
ẏ= B(x,y,c)y,
ċ=C(c)+E(x,y,c)xy.

Let c= φ(t,c0)+z. Rewrite as

ẋ= A(t,c0)x+ f (t,c0
,x,y,z),

ẏ= B(t,c0)y+g(t,c0
,x,y,z),

ż=C(t,c0)z+θ(t,c0
,z)+h(t,c0

,x,y,z),

with A(t,c0), B(t,c0),C(t,c0) linear. Silnikov’s problem:

x(0) = x0
, y(τ) = y1

, c(0) = c0
.

(x(t),y(t),c(t)) is a solution of Silnikov’s problem if and only if c(t) = φ(t,c0)+z(t)
and η(t) = (x(t),y(t),z(t)) satisfies

x(t) = Φs(t,0,c0)x0+
∫ t

0
Φs(t,s,c0) f (s,c0

,η(s))ds,

y(t) = Φu(t,τ,c0)y1+
∫ t

τ
Φu(t,s,c0)g(s,c0

,η(s))ds,

z(t) =
∫ t

0
Φc(t,s,c0)(θ(s,c0

,z(s))+h(s,c0
,η(s)))ds,
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x(t) = Φs(t,0,c0)x0+
∫ t

0
Φs(t,s,c0) f (s,c0

,η(s))ds,

y(t) = Φu(t,τ,c0)y1+
∫ t

τ
Φu(t,s,c0)g(s,c0

,η(s))ds,

z(t) =
∫ t

0
Φc(t,s,c0)(θ(s,c0

,z(s))+h(s,c0
,η(s)))ds,

Regard the right-hand side as a map from a weighted space of functions on [0,τ]
into itself. Show there is a fixed point and estimate derivatives (which are fixed
points of inhomogeneous linear maps).
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How Exchange Lemmas are proved

Consider the Jones-Kopell Exchange Lemma. Situation: (x,y,u,v)∈R
k×R

l ×R×
R

m−1,

ẋ= Ax,
ẏ= By,
u̇= ε+Cxy,
v̇= Exy,

with A, B, C, E functions of (x,y,u,v,ε). Eigenvalues of A have negative real part,
eigenvalues of B have positive real part.

M is given by

x= x(ε)+L(y,ε)y,
u= M(y,ε)y,
v= N(y,ε)y.

Given ε > 0 and (y1,u1) near (y,u∗), let τ = u1

ε . Find y0 such that if we set

x0 = x(ε)+L(y0
,ε)y0

,(1)

u0 = M(y0
,ε)y0

,(2)

v0 = N(y0
,ε)y0

,(3)
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then the solution of Silnikov’s boundary value problem with

x(0) = x0
, y(τ) = y1

, u(0) = u0
, v(0) = v0

has z(0) = z0. Then M∗ includes the graph of

(x(τ,τ,x0
,y1

,u0
,v0),v(τ,τ,x0

,y1
,u0

,v0)).

Note that the arguments depend on (y1,u1,ε). Now estimate (x,v) and their deriva-
tives using Deng’s Lemma.

To find y0 as a function of (y1,u1,ε), consider the mapping ((x0,u0,v0),(y1,u1,ε))→
right hand side of (1)–(3), with

y0 = y(0,τ,x0
,y1

,u0
,v0) and τ =

u1

ε
.

Show that for fixed (y1,u1,ε), this mapping is a contraction of a closed ball in
(x0,u0,v0)-space. Find the fixed point, then define y0 by the above formula.


