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Boundary Value Problems

¢=F(g¢e), &(t)ecA(g), &(ty)ecA(e)

A_(e)/%> - "
S

Y V \ 4

A+(€)

To show existence of a solution: show that the manifold of solutions that start on
A_(¢) and the manifold of solutions that end on A, (€) meet transversally.

Remarks

e The problem with € = 0 may be degenerate in some major way .
e Such problems are called singularly perturbed.

e The geometric approach to these problems, which focuses on tracking mani-
folds of potential solutions rather than on asymptotic expansions of solutions,
Is called geometric singular perturbation theory (Fenichel, Kopell, Jones, ...).



Fitzhugh-Nagumo Equation

U = Uxx+ F(U) —wW
Wy = (U — yw)
1

f(u=uu—a)(l1—u), O<a<§, 0<y, O<e<<l

VA

u
Vil
U = voltage potential across nerve axon membrane.

W = negative feedback effects.
Is there a traveling wave (U, w)(¢), & = X— ct for some velocity ¢, such that u(¢) — 0

as & — F00?

—CUg = Ugg + f(U) —w
—CW = £(U—yw)



—CUs = Ugz + f(u) —w

—CWg = £(U—yw)
Write as a first-order system, make C a variable:
UE =V
Ve = —cv— f(u)+w
€
We = E(WV— u)
Ce — 0

Slow-fast system, 2 slow variables, 2 fast variables. Equilibria for € > 0: v =0,
w=f(u),w= \—1/u. For y small there is just the origin for each c:

Vo w=(Tiyu

Vv

Origin has 1 negative eigenvalue and 2 eigenvalues with positive real part.



Set e =0:

Us =V
Vi = —cv— f(u) +w
WE:O
CE:O

Normally hyperbolic manifolds of equilibria, 1 positive eigenvalue, 1 negative eigen-
value:

W

f(u)

I\/lO NOu
a 1

Vv

Mo and Np are actually 2-dimensional. Both are given by

u= “fY(w)", v=0, c= arbitrary.



Us =V

Vi = —cv—f(u)+w
£

WE:E(V\N—U)

CE:O

For € > 0, Mg and Ny persist as normally hyperbolic invariant manifolds. Differential
equation on them:

e = —(yw — f(w)) + O(e?)

OoOlm

C: =
For c < Oand ysmall:




\Y

Let J = {(0,0,0,c) : carbitrary}. J C Mg for all €. Look for a solution that at time t_
is in W(J) (dimension = 2) and at time t, is in W5(Mg) (dimension=3).

W (J) exists and depends smoothly on € from the theory of normally hyperbolic
invariant manifolds.



Back to € = 0:

Us =V
Vi = —cv— f(u) +w
WE:O
CE:O

Phase portrait for (w,c) = (0,0)
Vv

For (w,c) = (0,c*), c* <0, (0,0) connects to (1,0)

For (w,Cc) = (wW*,c*), w* > O, right equilibrium connects to left equilibrium.
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Slow and fast orbits, ¢ = C*;

Mo

V

Is there a true homoclinic orbit nearby for € > 0?

1. For € = 0: W5'(J) (dimension = 2) intersects \WW5(Np) (dimension = 3) transver-
sally in an orbit with ¢ = C”.

2. Therefore for € small, W(J) intersects W®(N;) transversally in an orbit with
c=c(g), c(0) =c".

3. For e =0: WY(Ngn {c = c*} (dimension = 2) intersects \W°(M) (dimension =
3) transversally in an orbit with w = w*,

4. Therefore for € small, WY(N; N {c = c(€) } intersects \W>(M;) transversally in an
orbit with “w near w*”

5. For € small, does WY(J) become close to WY(N " {c = c(g)}? If so we are
done.
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Exchange Lemma of Jones and Kopell

Slow-Fast Systems

a=f(ab,e), b=eg(ab,e), (ab)ecR"xR™
Sete=0: _
a=f(ab,0), b=0.

Assume:
(1) f(a(b),b,0) =0.

(2) Daf(4(b),b,0) has
e K eigenvalues with negative real part.
e | eigenvalues with positive real part.
e k+| =n.

(3) 9(a(b),b,0) # 0.

(1) and (2) say the m-dimensional manifold a = &(b) is a normally hyperbolic mani-
fold of equlibria for € = 0.

a=4(b)
b
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After a change of coordinates:
X =A(X,Y,C, €)X,

y — B(X7 Y, C, a)y,
C= 8((17 07 o 70) + L(X7y7 C, E)Xy)7

(X,y,C) € R¥ x R' x R™ (contracting x expanding x center),
A(0,0,c,0) has eigenvalues with negative real part,
B(0,0,c,0) has eigenvalues with positive real part.

Note that on XC-space and yc-space, C depends on only on ¢ and €. Gives “fast
foliation.”

X X

y y

Flow with € = 0. Flow with € > 0.




Exchange Lemma of Jones and Kopell

Assume:
(1) For each €, M is a submanifold of XyGspace of dimension .
2) M = {(X,Y,C,€) : (X,Y,C) € M¢} is itself a manifold.
(3) For each €, M¢ meets XC-space transversally in a point (X(€),0,0).

X
Mo

Y Y VY VY Y
y

e=0

Under the forward flow, each Mg becomes a manifold M; of dimension | + 1.

13
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C*

y*

y

Theorem 1 (Exchange Lemma of Jones and Kopell, 1994). Let
c'=(c},0,...,0) e R"
with 0 < cj. Let y* = 0. Let Abe a small neighborhood of (y*,C}) in yci-space. Then

for small £y > O there are smooth functions X: Ax [0,&9) — R¥and &: Ax [0,&9) —
R™ such that:

(1) )’Z(ya Ca, ) =0.
(2) 6(yv Cy, ) (O Cy, ) —

(3) As € — 0, (X,€) — 0 exponentially, along with its derivatives with respect to all
variables.

(4) ForO< e < €, {(X,¥,C1,...,Cm) : (V,C1) € A, Xx=X(Y,C1,€), and (Cp,...,Cm) =
€(y,C1,€)} is contained in M.

Transversality to XC-space is “exchanged” for closeness to yC-space.



Brunovsky’'s Reformulation of Jones and Kopell's Exchange L emma as an
Inclination Lemma

Theorem 2 (1999). Letc* = (c3,0,...,0) € RMwith 0 < cj. Let Abe a small neigh-
borhood of (0,C;) in yci-space. Then for small € > O there are smooth functions
X:Ax[0,g0) — RKand €: Ax [0,&) — R™ Isuch that:

(1) )’Z(y, Ca, ) =0.
(2) 6(ya Cy, ) (O Cy, ) —

(3) As € — 0, (X,€) — 0 exponentially, along with its derivatives with respect to all
variables.

(4) ForO< e < €, {(X,¥,Cq1,...,Cm) : (V,C1) € A, x=X(Y,C1,€), and (Cp,...,Cn) =
€(y,C1,€)} is contained in M.

Mo, M M

X y £

(@) (b) (©)
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Exchange Lemma of Jones and Tin

Consider again:
X =A(X,Y,C, €)X,

y — B(X7 Y, C, a)y,
C= 8((17 07 o 70) + L(X7y7 C, E)Xy)7

(X,y,C) € R¥ x R' x R™ (contracting x expanding x center),
A(0,0,c,0) has eigenvalues with negative real part,
B(0,0,c,0) has eigenvalues with positive real part.
Assume:

(1) For each €, M is a submanifold of XyGspace of dimension |+ p,0< p<m-—1
2) M = {(X,Y,C,€) : (X,Y,C) € M¢} is itself a manifold.

(3) Mg meets Xc-space transversally in a manifold Ny of dimension p.

(4) Np projects smoothly to a submanifold P, of c-space of dimension p.

(5) The vector (1,0,...,0) is not tangent to P.
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Then:
(1) Each M¢ meets Xc-space transversally in a manifold N of dimension p.
(2) Ng projects smoothly to a submanifold P; of c-space of dimension p.
(3) The vector (1,0,...,0) is not tangent to P:.

After a change of coordinates ¢ = (U,V,w) € R x RP x R™1-P that takes each P.
to v-space, the system can be put in the form

X =A(X,Y,U,V,W, €)X,

y = B(X,y,u,V,w, €)Y,
u=¢&(1+e(Xxy,u,V,wE)Xy),
v=©¢eF(X,y,U,V,W, €)Xy,

W = €G(X,Y, U, V, W, E)XY.

\
=




18

Under the forward flow, each M¢ becomes a manifold M; of dimension | + p+ 1.
Each P; becomes a manifold P; of dimension p+ 1, which in our coordinates is just
uv-space.

Theorem 3 (Exchange Lemma of Jones and Tin, 2009). Let O < U*. Let A be
a small neighborhood of (0,u*,0) in yuwspace. Then for small €y > O there are
smooth function X: A x [0,€9) — RXand W: A x [0,&q) — R™ P~1sych that:

(1) X(y,u,v,0) = 0.

(2) w(y,u,Vv,0) = w(0,u,v,g) = 0.
(3) As € — 0, (X, W) — O exponentially, along with its derivatives with respect to all
variables.
(4) For0< e < &, {(X,Y,u,V,W) : (Y,u,v) € Aand (X,w) = (X, W)(y, U,V,€) } is con-
tained in M;.
Remark

The theorem also applies to
X = A(X,Y,C, &)X,
y=B(X,Y,C €)Y,
c=¢(1,0,...,0)+L(XY,cC, &)Xy,

It is really about perturbations of systems with a family of normally hyperbolic equi-
libria, not about slow-fast systems.
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General Exchange Lemma

leIO ME Ms

y
(@) (b) (©

Important Features of the Exchange Lemma

(1) There is a normally hyperbolic invariant manifold (C-space) and a small param-
eter €.

(2) There is a collection of submanifolds M of XyGspace such that M = {(X,y,C,€) :
(X,Y,C) € Mg} is itself a manifold. M meets XG-space transversally in a mani-
fold Ng (in picture, a point).

(3) N¢ projects along the stable fibration of Xc space to a submanifold P; of c-space
of the same dimension (in picture, a point).

(4) For € > 0O, the vector field is not tangent to P.

(5) For small € > O, the flow on c-space is followed for a long time.

(6) It takes P; to a set P} of dimension one greater. As € — 0, the limit of P} #
where the limiting DE takes Py. Nevertheless, the limit of P, exists and has the
same dimension. Call it Fj.

(7) As € — 0, M — WY (F}).
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General Exchange Lemma (S., 2007). (1)—(6) plus technical assumptions imply

(7).

X >/ Ms>/\

*
Ile

A

(@) (b) (€)

What'’s the point?

e To understand the flow on the normally hyperbolic invariant manifold for € > 0
may require rectification, blowing-up, etc.

e Once you've done this work, the General Exchange Lemma deals with the
remaining dimensions.
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Loss-of-Stability Turning Points: Liu’'s Exchange Lemma

Liu considers a slow-fast system

a= f(ab,eg),

b=¢g(ab,e),
with a € Rl and b e R™1 m> 2. Assume:

(1) f(0,b,e) = 0. (Hence for each g, b-space is invariant, and for € = O it consists
of equilibria.)

(2) Daf(0,b,0) has
e K eigenvalues with negative real part;
e | eigenvalues with positive real part;
e a last eigenvalue v(b) such that v(0) = 0.

(3) Dv(0)g(0,0,0) > O.

k+1=0, m=2

e=0: b e>0: %
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After a change of coordinates:

X =A(X,Y,ZC, €)X,

y=B(X,Y,ZC.¢)y,

z=h(zc a)z+ K(X,y,z C,€)xy,
c=¢((1,0,...,0)+1(z c,e)z+ L(X,y,ZC,E)XY),

(X,¥,2,¢) e RKx R x R x R™ 1,
A(0,0,0,c,0) has eigenvalues with negative real part,
B(0,0,0,c,0) has eigenvalues with positive real part,
h(0,(0,¢cy,...,Cm-1),0) =0,
oh

— > 0.
601>

Z

€=0: {oeeetorseteeecteeeet C e>0: -~
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Assume:
(1) m= 2 (for simplicity, so c-space is one-dimensional).
(2) For each €, M is a submanifold of Xyzespace of dimension |.
R)M ={(x,y,zc.g):(XYV,zC) € M} is itself a manifold.

(4) Mo meets xzGspace transversally at a point (X,,0,d,c,) with d# 0 and ¢, < 0.
We may assume that M C {(X,Y,z,C,€) : z= d}.

Z

M/v Y 6A A

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[

¢

O
O

y

Each M¢ meets XzGspace transversally at (X,Y,z, ¢) = (X(€),0,c(€), d) with (x(0),c(0)) =
(X4, Ci).
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For € > O define Poincaré maps on z= & by ¢ — T(C).

Z

| 6 I

C T(C)

Define TG implicitly by

To(c)
/ h(0,u,0)du=0.
C

T — Th, along with its derivatives, as € — 0 (De Maesschalck, 2008).

Under the forward flow, each Mg becomes a manifold M; of dimension | + 1.



Theorem 4 (Liu’'s Exchange Lemma, 2000). In zGspace, consider a short integral
curve C; through (z,¢) = (9, Te(c(€))). Let

Ac ={(x,y,z,c) : x=0,]|y|| is small, (z,c) € C¢}.
Then M_ is close to A¢. As € — 0 the distance goes to 0 exponentially.

Z

_— | 6
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Gain-of-Stability Turning Points

(Rarefactions in the Dafermos Regularization)

Consider the system

I
<

A(u) —xl)v,

with (u,v,X) € R" x R" x R and A(u) an n x n matrix.

|-
m —~

Let n= K+ + 1. Assume that on an open set U in R":
e There are numbers A1 < A such that A(u) has
— Kk eigenvalues with real part less than A1,
— | eigenvalues with real part greater than Ao,
— a simple real eigenvalue A(U) with A1 < A(U) < Aa.
e A(u) has an eigenvector r(u) for the eigenvalue A(u) such that DA(u)r(u) = 1.

Notice Ux-space is invariant for every €. For € = O it consists of equilibria, but loses
normal hyperbolicity along the surface x = A(u).
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Choose u, € U, X,, X" such that A1 < X, < A(U,) < X" < Ay. Let
U, ={(uv,x):ueU,v=0, |x—x,| < d},
U*={(uv,x):ueU,v=0,|x—X"| < d}.

\Y;
X AU) \ X*
| X
7
! U, X=A(U) U

For € =0, U, and U™ are normally hyperbolic manifolds of equilibria of dimension
n+ 1. For U,, the stable and unstable manifolds of each point have dimensions K
and | + 1 respectively; for U*, the stable and unstable manifolds of each point have
dimensions k+ 1 and | respectively.

For € > 0, U, and U* are normally hyperbolic invariant manifolds on which the
system reducesto U=0, X =€.
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Ro Au,) \

u, '
Y SV 4
Qo x=A(u)

For each € > 0, let M¢ be a submanifold of uvxspace of dimension | +1+p, 0 <
p<n—1 Assume:

o M= {(uV,Xxe): (uV,X) € M} is itself a manifold.

e My is transverse to W3(U,) at a point in the stable fiber of (u.,0,X,). The
intersection of Mg and W3(U..) is a smooth manifold & of dimension p.

e ) projects smoothly to a submanifold Qg of ux-space of dimension p.

e The vector (U,X) = (0,1) is not tangent to Qq. Therefore Qp projects smoothly
to a submanifold Ry of u-space of dimension p.

e r(U,) is not tangent to Ry.

Under the flow, each M¢ becomes a manifold M; of dimension | 4+ 2+ p.
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“ AU, )+t* \
Ro| [ % AW x*

\ | : X
u*
SRS Qp xoa(

Po

Let @(t,u) be the flow of u=r(u). Choose t* > 0 such that A(u,) +t* < X*. Let

RES — U|t—t*|<5(p(t> RO)) F)(>)I< — {(U,V,X) VRS RE;)VZ Oa ‘X_X*l < 6}
R; and Py have dimensions p+ 1 and p+ 2 respectively.

Let Uu* = @(t*, u,).

Theorem 7. Near (u*,0,X*), M; is close to W5'(F3).
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Generalized Deng’s Lemma

In the literature, there are three ways to prove exchange lemmas:

e Jones and Kopell's approach, which is to follow the tangent space to M, forward
using the extension of the linearized differential equation to differential forms.

e Brunovsky’'s approach, which is to locate M¢ by solving a boundary value prob-
lem in Silnikov variables.

e Krupa—Sandstede—Szmolyan approach (1997), using Lin’'s method.

We follow Brunovsky’s approach, which is based on work of Bo Deng (1990).
Brunovsky generalized a lemma of Deng that gives estimates on solutions of bound-
ary value problems in Silnikov variables. Our proof of the Generalized Exchange
Lemma is based on a further generalization of Deng’s Lemma.
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Let (X,y,C) € RKx R x R™. LetV be an open subset of R™. On a neighborhood of
{0} x {0} xV, consider the C'™ differential equation

X = A(X,Y,C)X,
y = B(X,y,c)y,
¢ =C(c) +E(x,y,c)xy.

Let @(t,C) be the flow of ¢ =C(c). For each c € V there is a maximal interval I
containing 0 such that @(t,c) € V for all t € I.. Let the linearized solution operator
of the system, with € = 0, along the solution (0,0, @(t,c°)) be

X(t) dS(t, s, ) 0 0 X(S)
y(t) | = 0  ®tsc) 0 y(s)
c(t) 0 0  @%t,sc’)) \c(s)

Assume:

(E1) There are numbers Ag < 0 < lo, B > 0, and M > 0 such that for all ¢® € N and

S telo,
|@5(t,s,¢%)]| < Mgt ift>s,
|@U(t,s,c%)|| < Mgt~ ift<s,
|°(t,s,c%)| < MePts forallt, s.

(E2) Ao+ 1B <0< Ag+ Ho—rp.



We wish to study solutions of Silnikov’'s boundary value problem on an interval
o<t<rT:
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We denote the solution of Silnikov’s boundary value problem
X(0)=x°, y(y)=y', c(0)=c"
by (X7 y7 C) (t7 T? XO7 y17 CO) .

Theorem 9 (Generalized Deng’s Lemma, S. 2008). Let V[ and V; be compact
subsets of V such that \p C Int (V). For each c® €\ let Jo be the maximal interval
such that @(t,c®) € Int (Vy) for allt € Jo. Then for A and [ a little closer to 0 than Ag
and L, there is a number 8g > 0 such that if ||x°|| < o, ||y}|| < 80, ° € Vo, and T >0
is in J.o, then Silnikov’s boundary value problem has a solution (X, Y, c)(t,T,x°,y*, c?)
on the interval 0 <t < T. Moreover, there is a number K > 0 such that for all
(t,7,x%,y1, %) as above,

1x(t,T,x° y! %) || < KeM,
IV Ty )| < K,
||C(t,T,XO,y1, Co) —@(t, CO) < K @MHHt=T)

In addition, if i is any |i|-tuple of integers between 1 and 2+ k+14+m, with 1 < |i| <
r, then

IDic(t, T,x°, v, %) — Dig(t, ) || < KeA Bt (=liB)t=1)
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Proof of Deng’s Lemma

— (X Y, )
y = B(xy;c)y.
c=C(c)+E(x,y,c)xy.

Let c = @(t,c®) + z Rewrite as
X = At,c))x+ f(t,c°,x,y,2),

y=B(t,c’)y+g(t,c’,xy,2),
z=C(t,c%)z+0(t,c°,2) + h(t,c, x,y,2),

with A(t,c?), B(t,c?),C(t,c?) linear. Silnikov’s problem:
K0) =2, Y1) =y c0)=c

(X(t),y(t),c(t)) is a solution of Silnikov’s problem if and only if ¢(t) = @(t, %) + z(t)
and n(t) = (x(t),y(t),z(t)) satisfies

X(t) = d3(t,0,c°) 0+/tCDSt s,c”)f(s,c%n(s))ds
y(t) = Ot T, )y +/CD“tsc)g(sc n(s))ds

/CDCtsc (s,c% z(s)) +h(s,c n(s)))ds
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X(t) = d3(t, 0, x0+/tCDSt s,c”) f(s,c%n(s))ds
y(t) = Bt T+ [ @t g(sn(s)ds

/CDCtsc (s,c°,z(s)) +h(s,c,n(s)))ds

Regard the right-hand side as a map from a weighted space of functions on |0, T|
into itself. Show there is a fixed point and estimate derivatives (which are fixed
points of inhomogeneous linear maps).
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How Exchange Lemmas are proved

Consider the Jones-Kopell Exchange Lemma. Situation: (X,Yy,U,V) € RKx R! x R x
Rm_l,

X = AX,
y =By,
u=¢ec+Cxy,
v=EXxy,

with A, B, C, E functions of (X,Yy,u,V,€). Eigenvalues of A have negative real part,
eigenvalues of B have positive real part.

M is given by
X =X(g) +L(y, )y,
u=M(y,e)y,
v=N(y,e)y
Given € > 0and (y', ut) near (y,u*), let T = “?1 Find y° such that if we set
(1) X’ =x(g) +L(y"e)y”,
e L =M(y’e)y”

(3) V= N(yO’S)yO’
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then the solution of Silnikov’s boundary value problem with

X(0) =X, y(1)=y", u(0)=u’, v(0)=\
has z(0) = z5. Then M* includes the graph of

(X(T7 T? XO? y17 uo7 VO) Y V(T7 T? XO? y17 uo7 VO))‘

Note that the arguments depend on (y!, ul,€). Now estimate (X, V) and their deriva-
tives using Deng’s Lemma.

To find y° as a function of (y!, ut, €), consider the mapping ((x%,u’, V), (y},ut,€)) —
right hand side of (1)—(3), with
ul
YO =y(0,7,X°, v}, U’ \P) and T = -
Show that for fixed (yl,ul,e), this mapping is a contraction of a closed ball in

(x°,u%,W)-space. Find the fixed point, then define y° by the above formula.



