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The model

u
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+ u(1� u)� u
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v ,

v

t

= D

v

v

xx

+ �v

✓
1� �

u

v

◆
.

I
u= prey, v= predator.

I Both populations are subject to overcrowding.

I Predator carrying capacity is proportional to prey
population.

I For fixed predator population, prey is consumed at a
rate that stabilizes as its population increases.
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Traveling waves

Ghazaryan, Manukian, S., Proc. Roy. Soc. London Ser. A
471 (2015).

I Look for traveling waves with velocity c > 0, set
z = x � ct.

I Rescale space so c = 1.

I Set ✏ = D

u

c

2 , µ = D

v

D

u

. (Small ✏ > 0 means small
di↵usion.)

Traveling waves (u, v)(z) satisfy:

0 = ✏u
zz

+ u

z

+ u(1� u)� u

↵+ u

v ,

0 = ✏µ v

zz

+ v

z

+ �v

✓
1� �

u

v

◆
.

Rewrite as a first-order system.
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A slow-fast system in slow form

u

z

= U,

✏U
z

= �U � u(1� u) +
u

↵+ u

v ,

v

z

= V ,

✏µV
z

= �V � �v

✓
1� �

u

v

◆
.

Normally attracting critical manifold (set ✏ = 0):

U = �u(1� u) +
u

↵+ u

v , V = ��v

✓
1� �

u

v

◆
.

Slow system:

u

z

=
u

↵+ u

v � u(1� u), v

z

= �v

✓
�

u

v � 1

◆
.

Undefined for u = 0. Multiply by (↵+ u)u:
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Another slow-fast system, in fast form

u̇ = u

2
�
v � (1� u)(↵+ u)

�
,

v̇ = �v(↵+ u) (�v � u) .

Small � > 0 means slowly changing predator population.
u = 0 is now invariant. Note the factor u2.

v
1

u

δ=0 δ>0

α

1

α

*

u

vv

v
1
*

v
0
*

1

For small � > 0, numerical simulation shows a closed
orbit near a “singular orbit” with a certain value of v ⇤

0 .
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Classical analog

ẋ = ✏f (x , z),

ż = g(x , z)z ,

with x 2 R, z 2 R,

f (x , 0) > 0, g(x , 0) has the sign of x .

I Note the factor z.
I For ✏ = 0, the x-axis consists of equilibria.
I Normally attracting for x < 0, normally repelling for

x > 0. Loss of normal hyperbolicity at z = 0.

x

z

I For ✏ > 0, x-axis remains invariant, flow is to the right.
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Entry-exit function: attraction and repulsion
balance

x

z
z0

x0 p (x )ε     0

For small ✏ > 0, a solution that starts at (x0, z0), with x0

negative and z0 > 0 small, reintersects the line z = z0 at
(p✏(x0), z0).

Theorem
As ✏ ! 0, p✏(x0) ! p0(x0) given implicitly by

Z
p0(x0)

x0

g(x , 0)

f (x , 0)
dx = 0.

The solution leaves the x-axis when repulsion has built
up to balance the attraction that occurred before x = 0.
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If the theorem holds when z is replaced by z

2,
how to prove existence of the closed orbit

1

α

u

v

v
1
*

v
0
*

Σ
1

Σ
0

I Define v

⇤
0 by

R
v

⇤
1

v

⇤
0

v�↵
↵�v2 dv = 0.

I Follow the flow backwards for small � > 0.
I

p� : ⌃1 ! ⌃0 (entry-exit function) would be smooth.
I

q� : ⌃0 ! ⌃1 is an exponential contraction.
I

q� � p� : ⌃1 ! ⌃1 has a fixed point.
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Reformulation

ẋ = ✏f (x , z),

ż = g(x , z)z .

f (x , 0) > 0, g(x , 0) has the sign of x .

Divide by f (x , z) > 0, let h = g/f :

ẋ = ✏,

ż = h(x , z)z .

h(x , 0) has the sign of x .

Theorem
As ✏ ! 0, p✏(x0) ! p0(x0) given implicitly by

Z
p0(x0)

x0

h(x , 0) dx = 0.
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“Standard” proofs that p✏(x0) ! p0(x0)

I Asymptotic expansions: Haberman, SIAM J. Appl.
Math. 37 (1979), 69–106; Mishchenko, Kolesov,
Kolesov, and Rozov, Asymptotic methods in singularly

perturbed systems, 1994.

I Comparison to solutions constructed by separation of
variables: S., J. Di↵. Eq. 60 (1985), 131–141.

I Direct estimation of the solution and its derivatives
using the variational equation: De Maesschalck, J. Di↵.
Eq. 244 (2008), 1448–1466.

De Maesschalck: Let p(x0, ✏) = p✏(x0), ✏ � 0. If f and g are
C

r , r � 1, then p is C r .
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How to prove p✏(x0) ! p0(x0) in the C

0 sense

ẋ = ✏,

ż = h(x , z)z .

h(x , 0) has the sign of x .

Replace by

ẋ = ✏,

ż = (h(x , 0)± ↵)z .

dz

dx

=
(h(x , 0)± ↵)z

✏
) ✏

z

dz = (h(x , 0)± ↵)dx .

If a solution that starts on the line z = z0 at x = x0

reintersects it when x = x1, then

0 =

Z
x1

x0

(h(x , 0)± ↵) dx = 0.
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I De Maesschalck’s proof doesn’t seem to work for z
replaced by z

2.

I Proofs don’t use the blow-up method of Geometric
Singular Perturbation Theory, today the usual approach
to loss of normal hyperbolicity in slow-fast systems.

x

y

x = r cos θ

y = r sin θ
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De Maesschalck and S., J. Di↵. Eq. 260 (2016),
6697–6715

ẋ = ✏,

ż = h(x , z)z2.

h(x , 0) has the sign of x .

Using blow-up, we prove:

Theorem
If h is C

1
, then:

1. There is a C

1
function p̃ of three variables such that

p(x0, ✏) = p̃(x0, ✏, ✏ log ✏).

2. If h(x , z)� h(x , 0) is C1
flat in z , then p is a C

1

function of (x0, ✏).
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A change of variables and the classical situation

ẋ = ✏,

ż = h(x , z)z .

z = (w) =

(
e

� 1
w if w > 0,

0 if w = 0.

ẋ = ✏,

ẇ = h(x ,(w))w2,

because

ż = 0(w)ẇ = e

� 1
w

1

w

2
ẇ )

ẇ = e

1
w

żw

2 = e

1
w

h(x ,(w))e�
1
w

w

2.

Notice h(x ,(w))� h(x , 0) is C1 flat in w .
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Classical result recovered

ẋ = ✏,

ż = h(x , z)z .

h(x , 0) has the sign of x .

Theorem
If h is C

1
, then p(x0, ✏) is C1

.

This result is not new, but it follows from part 2 of the Main
Theorem.

Thus a linear result is a consequence of a quadratic
result.
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Proof of Main Theorem: Extension of the system

ẋ = ✏,

ż = h(x , z)z2,

✏̇ = 0.

h(x , 0) has the sign of x .

x

z
z0

ε

R0 R3

(x ,ε)0 (p (x ),ε)ε     0

Define P : R0 ! R3 by P(x0, ✏) = (p✏(x0), ✏), with p0

defined implicitly by
R

p0(x0)

x0
h(x , 0) dx = 0. Study P .
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Blow-up transformation

ẋ = ✏,

ż = h(x , z)z2,

✏̇ = 0.

Let (x , (z̄ , ✏̄), r) be a point of R⇥ S

1 ⇥ R+; z̄2 + ✏̄2 = 1.
Blow-up transformation:

x = x , z = r z̄ , ✏ = r ✏̄.

Our system pulls back to one on R⇥ S

1 ⇥ R+.

Division by r desingularizes the new system on the
cylinder r = 0 but leaves it invariant.
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Cylindrical coordinates

The blow-up can be visualized most completely in
cylindrical coordinates.

For (x , (z̄ , ✏̄), r) 2 R⇥ S

1 ⇥ R+, let z̄ = cos ✓ and ✏̄ = sin ✓.

x = x , z = r cos ✓, ✏ = r sin ✓.

After making the coordinate change and dividing by r , the
system becomes

ẋ = sin ✓,

ṙ = r cos3 ✓ h(x , r cos ✓),

✓̇ = � cos2 ✓ sin ✓ h(x , r cos ✓).
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Flow in cylindrical coordinates

ẋ = sin ✓,

ṙ = r cos3 ✓ h(x , r cos ✓),

✓̇ = � cos2 ✓ sin ✓ h(x , r cos ✓).

x0 x3

S2S1

S0 S3

θ=0

θ=π/2

z

z0

θ=θ1
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A�ne coordinates

ẋ = ✏,

ż = h(x , z)z2,

✏̇ = 0.

New coordinates that blow up the x-axis to a plane:

x = x , z = z , ✏ = zE .

The plane z = 0 in xzE -space corresponds to the line
z = ✏ = 0 in xz✏-space

Change variables, divide by z (otherwise the plane z = 0 is
all equilibria):

ẋ = E ,

ż = h(x , z)z ,

Ė = �h(x , z)E
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Flow in a�ne coordinates

ẋ = E ,

ż = h(x , z)z ,

Ė = �h(x , z)E

Notice ✏ = zE is a first integral.

S
0

S
3z

z
0

x

E

x
0 x

3

S
1

S
2

E
1

x
1 x

2

0 =

Z
x3

x0

dE

dx

dx =

Z
x3

x0

�h(x , 0) dx ) x3 = p0(x0).
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Return map as a composition

S
0

S
3z

z
0

x

E

x
0 x

3

S
1

S
2

E
1

x
1 x

2

P = P3 � P2 � P1.

P2 is clearly C

1.

It remains to study the smoothness of P1 and P3.
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Simplification

ẋ = E ,

ż = h(x , z)z ,

Ė = �h(x , z)E

At the left, divide by �h(x , z) > 0, let k = � 1
h

> 0:

ẋ = k(x , z)E ,

ż = �z ,

Ė = E .

Note that zE = ✏ is constant on solutions.
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Normal form step 1

ẋ = k(x , z)E ,

ż = �z ,

Ė = E .

Straighten flow on z = 0:

x

z

E

x

z

E

Then ˙̄
x = k̃(x̄ , z ,E )zE = ✏k̃(x̄ , z ,E ).
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Normal form step 2

Proposition
Let N � 1. Then after a C

1
coordinate change

x̄ = ⌘(x , z ,E ),

˙̄
x = ✏a(x̄ , ✏) + ✏Nb(x̄ , z ,E ),

ż = �z ,

Ė = E ,

with a and b of class C

1
.

Proof: The case N = 1 was step 1 (with a = 0). If the
proposition is true for some N, let

x̂ = x̄ + ✏N
�
�(x̄ , z) + �(x̄ ,E )

�
,

and choose � and � to eliminate terms of order ✏N .
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Integration change of variables

˙̄
x = ✏a(x̄ , ✏) + ✏N+2

b(x̄ , z ,E ),

ż = �z ,

Ė = E ,

Integrate from (x̄0, 1, ✏) to (x̄1,
✏
E1
,E1). Change of variables:

z̄ = zE log z = ✏ log z , Ē = zE log E = ✏ log E , ⌧ =
t

✏
.

Use ˙̄
z = ✏

z

ż = �✏, etc.:

x̄

0 = a(x̄ , ✏) + ✏N+1
b(x̄ , e z̄/✏, eĒ/✏),

z̄

0 = �1,

Ē

0 = 1.

Integrate from (x̄0, 0, ✏ log ✏) to (x̄1, ✏ log
✏
E1
, ✏ log E1).
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Region of integration

x̄

0 = a(x̄ , ✏) + ✏N+1
b(x̄ , e z̄/✏, eĒ/✏),

z̄

0 = �1,

Ē

0 = 1.

Regard ✏ as a parameter. Integrate from (x̄0, 0, ✏ log ✏) to
(x̄1, ✏ log

✏
E1
, ✏ log E1).

ε

z-

z=ε log (ε/E )1
-

ε

E

E=ε log ε
1

–

–
E=ε log E
–

Within the region of integration D, the system is CN .
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Smoothness

x̄

0 = a(x̄ , ✏) + ✏N+1
b(x̄ , e z̄/✏, eĒ/✏)

ε

z-

z=ε log (ε/E )1
-

ε

E

E=ε log ε
1

–

–
E=ε log E
–

@N

@✏N
✏N+1

b(x̄ , e z̄/✏, eĒ/✏)

= ✏N+1
D3b(x̄ , e

z̄/✏, eĒ/✏)

✓
� Ē

✏2

◆
N

+ . . .

= (�1)N
Ē

N

✏N�1
D3b(x̄ , e

z̄/✏, eĒ/✏) + . . . .

Within D, Ē

N

✏N�1 ! 0 as (z̄ , Ē , ✏) ! (0, 0, 0).
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Output depends on (x̄0, ✏, ✏ log ✏)

ε

z-

z=ε log (ε/E )1
-

ε

E

E=ε log ε
1

–

–
E=ε log E
–

The solution with initial condition (x̄ , z̄ , Ē ) = (x̄0, 0, Ē0) at
⌧ = 0 has x̄-coordinate x̄ = �(x̄0, Ē0, ✏, ⌧), where � is CN as
long as the solution remains in D. Thus

x̄1 = �(x̄0, Ē0, ✏, ⌧) = �(x̄0, ✏ log ✏, ✏, ✏ log E1 � ✏ log ✏).

More compactly, x̄1 is a C

N function of (x̄0, ✏, ✏ log ✏).
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Exchange Lemma

ẋ = ✏f (x , z , ✏),

ż = g(x , z , ✏)z ,

(x , z) 2 Rn ⇥ R, f (x , 0, 0) 6= 0, g(x , 0, 0) < 0.

z

x2

N0

P0

x1

P0
*

z

x2

x1

Nε

Nε
*

ε=0 ε>0

Theorem
If N0 and the N✏ (✏ > 0) fit together to form a smooth

manifold of xz✏-space, then, away from P0, P
⇤
0 and the N

⇤
✏

(✏ > 0) do too.
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Ting-Hao Hsu, preprint, 2016

Slow-fast system #1

ẋ = ✏,

ż = h(x , z)z ,

h(x , 0) has the sign of x .

Dot indicates derivative with respect to fast time t.
Introduce the slow time ⌧ = ✏t as a new dependent variable.

Slow-fast system #2

ẋ = ✏,

ż = h(x , z)z ,

⌧̇ = ✏.
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Slow-fast system #2

ẋ = ✏,

ż = h(x , z)z ,

⌧̇ = ✏.

For x0 < 0:

I Define x1 by
R
x1

x0
h(x , 0) dx = 0.

I Define ⌧1 = x1 � x0.

x

z

x

z
z0

x0 x1

ε=0 ε>0
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Slow-fast system #2

ẋ = ✏,

ż = h(x , z)z ,

⌧̇ = ✏.

Start and end 1-dimensional manifolds:
I Define N✏: (x , z , ⌧) = (x0, z0,�) : |�| < �.
I Define Q✏: (x , z , ⌧) = (x1 + �, z0, ⌧1) : |�| < �.

Idea: For ✏ > 0, start at (x , z) = (x0, z0), return to z = z0:
will have x ' x1 and �⌧ ' ⌧1.

z

τ

x
x0

z0

x1

τ1

N0

P0
Q0

R0
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x
x0

z0

x1

τ1

N0

P0
Q0
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I Project N0 and Q0 along the fast flow to z = 0. Get P0

and R0.
I Follow P0 and R0 using the slow system on z = 0:.
I Obtain P

⇤
0 and R

⇤
0 , both open subsets of x⌧ -space.

This does not help us study the intersection of N⇤
✏ and

Q

⇤
✏ , which are near P⇤

0 and R

⇤
0 .
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Introduce an “extra variable” using z = e

� ⇣
✏ or:

⇣ = �✏ ln z , so ⇣̇ = �✏
ż

z

= �✏h(x , z).

Slow-fast system #3 (equivalent to original system on
the invariant manifold ⇣ = �✏ ln z)

ẋ = ✏,

ż = h(x , z)z ,

⇣̇ = �✏h(x , z),

⌧̇ = ✏.

New start and end 1-dimensional manifolds:

I
N✏: (x , z , ⌧) = (x0, z0,�) : |�| < � �!
Ñ✏: (x , z , ⇣, ⌧) = (x0, z0,�✏ ln z0,�) : |�| < �

I
Q✏: (x , z , ⌧) = (x1 + �, z0, ⌧1) : |�| < � �!
Q̃✏: (x , z , ⇣, ⌧) = (x1 + �, z0,�✏ ln z0, ⌧1) : |�| < �
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Project Ñ0 and Q̃0 along the fast flow to z = 0, i.e., to
x⇣⌧ -space:

I
P̃0: (x , ⇣, ⌧) = (x0, 0,�) : |�| < �.

I
R̃0: (x , ⇣, ⌧) = (x1 + �, 0, ⌧1) : |�| < �.

ζ

τ

x
x0 x1

τ =x -x1

P0

R0

-x0

1 0

~

~

Follow using the slow system on z = 0:

x

0 = 1,

⇣ 0 = �h(x , 0),

⌧ 0 = 1.
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ζ

τ

x
x0 x1

τ =x -x1

P0

R0

-x0

1 0

~

~

We easily obtain: P̃⇤
0 and R̃

⇤
0 meet transversally at

(x , ⇣, ⌧) = (0,

Z 0

x0

�h(⇠, 0) d⇠,�x0)

= (0,

Z 0

x1

�h(⇠, 0) d⇠,�x0).

Equality follows from
R
x1

x0
h(⇠, 0) d⇠ = 0.
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Summary for Slow-Fast System #3 in xz⇣⌧ -space

ζ

τ

x
x0 x1

τ =x -x1

P0

R0

-x0

1 0

~

~

I Start and end 1-dimensional manifolds Ñ✏ and Q̃✏.
I Project Ñ0 and Q̃0 along the fast flow to P̃0 and R̃0 in

z = 0, i.e., in x⇣⌧ -space.
I

P̃

⇤
0 and R̃

⇤
0 meet transversally (2-dimensional manifolds

in R3).
I By the Exchange Lemma, away from P̃0 and R̃0, Ñ⇤

✏

and Q̃

⇤
✏ are close to P̃

⇤
0 and R̃

⇤
0 respectively.

I But we cannot conclude that Ñ

⇤
✏ and Q̃

⇤
✏ meet

transversally.
1. Two-dimensional manifolds in R4.
2. Exchange Lemma can’t follow Ñ

⇤
✏ and Q̃

⇤
✏ to x = 0.
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Objection 1: Ñ⇤
✏ and Q̃

⇤
✏ are 2-dimensional manifolds in R4.

ζ

τ

x
x0 x1

τ =x -x1

P0

R0

-x0

1 0

~

~

I
Ñ

⇤
✏ and Q̃

⇤
✏ are close to P̃

⇤
0 and R̃

⇤
0 , which meet

transversally in x⇣⌧ -space.

I Project Ñ⇤
✏ and Q̃

⇤
✏ to x⇣⌧ -space (ignore small

z-coordinate). The projections meet transversally there.

I But then Ñ

⇤
✏ and Q̃

⇤
✏ intersect, because on these

manifolds, ⇣ = �✏ ln z .
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Objection 2: Exchange Lemma can’t follow Ñ

⇤
✏ and Q̃

⇤
✏ to

x = 0.
Slow-fast system #3

ẋ = ✏,

ż = h(x , z)z ,

⇣̇ = �✏h(x , z),

⌧̇ = ✏.

Within the manifold ⇣ = �✏ ln z , in which both Ñ

⇤
✏ and Q̃

⇤
✏

lie,

ẋ = ✏,

⇣̇ = �✏h(x , e�
⇣
✏ ),

⌧̇ = ✏.

In the slow time ⌧ = ✏t:
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Within the manifold ⇣ = �✏ ln z , in which both Ñ

⇤
✏ and Q̃

⇤
✏

lie,

x

0 = 1,

⇣ 0 = �h(x , e�
⇣
✏ ),

⌧ 0 = 1

Use this to follow Ñ

⇤
✏ and Q̃

⇤
✏ to x = 0.
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Recent work that uses an “extra variable” to
study exponential loss of normal hyperbolicity in
geometric singular perturbation problems

K. U. Kristiansen, “Blowup for flat slow manifolds with
applications to regularization of piecewise smooth systems
using tanh and a model of aircraft ground dynamics,”
preprint, 2016.

ẋ = ✏e�z

�1
,

ż = z

2
⇣
x � e

�z

�1
⌘
.

q = e

�z

�1 ) q̇ = e

�z

�1
z

�2
ż = q(x � q).

ẋ = ✏q, ż = z

2(x � q), q̇ = q(x � q).
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