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Boundary Value Problems

¢=F(g¢e), &(t)eA(g), &(ty)ecA(e)
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To show existence of a solution: show that the manifold of solutions that start on
A_(¢) and the manifold of solutions that end on A, (€) meet transversally.

Remarks

e The problem with € = 0 may be degenerate in some major way .
e Such problems are called singularly perturbed.

e The geometric approach to these problems, which focuses on tracking mani-
folds of potential solutions rather than on asymptotic expansions of solutions,
Is called geometric singular perturbation theory (Fenichel, Kopell, Jones, ...).



Exchange Lemma of Jones and Kopell

Slow-Fast Systems

a=f(ab,e), b=eg(ab,e), (ab)ecR"xR™
Sete=0: _
a= f(a,b,0), b=0.
Assume:
(1) f(a(b),b,0) =0.

(2) Daf(4(b),b,0) has
e Kk eigenvalues with negative real part.
e | eigenvalues with positive real part.
e k+1| =n.

(3) 9(a(b),b,0) # 0.



After a change of coordinates:
X =A(X,Y,C, €)X,

y — B(X7 Y, C, a)y,
C= 8((17 07 o 70) + L(X7y7 C, E)Xy)7

(x,y,€) € R*x R x R™,
A(0,0,c,0) has eigenvalues with negative real part,
B(0,0,c,0) has eigenvalues with positive real part.
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Flow with € = 0. Flow with € > 0.
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Exchange Lemma of Jones and Kopell with m=1

Assume:
(1) m= 1 (for simplicity).
(2) For each €, M; is a submanifold of XyGspace of dimension .
B)M = {(X,Y,C,€) : (X,Y,C) € M¢} is itself a manifold.
(4) Mo meets xC-space transversally at a point (X, 0,0).
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Under the forward flow, each Mg becomes a manifold M; of dimension | + 1.
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Theorem 1 (Exchange Lemma of Jones and Kopell with m=1, 1994). Consider
a point (0,y*,c*) with y* £ 0 and 0 < c*. Let A be a small neighborhood of (y*,c")
in yc-space. Then for small &5 > O there is a smooth function X : A x [0,€p) — RX
such that:

(1) X(y,c,0) =0.

(2) As € — 0, X — O exponentially, along with its derivatives with respect to all

variables.
() For0 < e < &g, {(X,Y,C) : (Y,€) € Aand x = X(Y,C,€)} is contained in M.

Transversality to XG-space is “exchanged” for closeness to yC-space.
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Brunovsky’'s Reformulation of Jones and Kopell's Exchange L emma as an
Inclination Lemma

Theorem 2 (1999). Let 0 < c*. Let Abe a small neighborhood of (0, c") in yc-space.
Then for small €5 > O there is a smooth function X : A x [0,&q) — RX such that:
(1) X(y,c,0) = 0.
(2) As € — 0, X — O exponentially, along with its derivatives with respect to all
variables.
() For0 < e < g, {(X,Y,C) : (Y,€) € Aand x = X(Y,C,€)} is contained in M.
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General Exchange Lemma
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Important Features of the Exchange Lemma

(1) There is a normally hyperbolic invariant manifold (C-space) and a small param-
eter €.

(2) There is a collection of submanifolds Mg of XyGspace such that M = {(X,y,C,€) :
(X,Y,C) € Mg} is itself a manifold. Mg meets XG-space transversally in a mani-
fold Np (here a point).

(3) Np projects along the stable fibration of Xc space to a submanifold P, of c-space
of the same dimension (here a point).

(4) For small € > 0O, the flow on c-space is followed for a long time.

(5) It takes P to a set P} of dimension one greater. As € — 0O, the limit of P} #
where the limiting DE takes Py. Nevertheless, the limit of P, exists and has the
same dimension. Call it Fj.

(6) As € — 0, M — WY (Fy).
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General Exchange Lemma (S., 2007). (1)—(5) plus technical assumptions imply

(6).
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What'’s the point?

e To understand the flow on the normally hyperbolic invariant manifold may re-
quire rectification, blowing-up, etc.

e Once you've done this work, the General Exchange Lemma helps deal with the
remaining dimensions.
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Exchange Lemma of Jones and Tin

Consider again:
X =A(X,Y,C, €)X,

y — B(X7 Y, C, a)y,
C= 8((17 07 o 70) + L(X7y7 C, E)Xy)7

(x,y,€) € R*x R x R™,
A(0,0,c,0) has eigenvalues with negative real part,
B(0,0,c,0) has eigenvalues with positive real part.
Assume:

(1) m> 1.

(2) For each €, M, is a submanifold of XyGspace of dimension | +p,0< p<m-—1
B) M ={(x,y,C,€) : (X,¥,C) € Mg} is itself a manifold.

(4) Mg meets Xc-space transversally in a manifold Ny of dimension p.

(5) Np projects smoothly to a submanifold Py of c-space of dimension p.

(6) The vector (1,0,...,0) is not tangent to Py.
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Then:
(1) Each M¢ meets Xc-space transversally in a manifold N of dimension p.
(2) Ng projects smoothly to a submanifold P; of c-space of dimension p.
(3) The vector (1,0,...,0) is not tangent to Px.

After a change of coordinates ¢ = (U,V,w) € R x RP x R™1-P that takes each P.
to v-space, the system can be put in the form

X =A(X,Y,U,V,W, €)X,

y = B(X,y,u,V,w, €)Y,
u=¢&(1+e(Xxy,u,V,wE)Xy),
v=©¢eF(X,y,U,V,W, €)Xy,

W = €G(X,Y, U, V, W, E)XY.

\
=




13

Under the forward flow, each M¢ becomes a manifold M; of dimension | + p+ 1.
Each P; becomes a manifold P; of dimension p+ 1, which in our coordinates is just
uv-space.

Theorem 3 (Exchange Lemma of Jones and Tin). Let O < uU*. Let A be a small
neighborhood of (O,u*,0) in yuwspace. Then for small €5 > O there are smooth
function X: Ax [0,€0) — RKand W: A x [0,&9) — R™ P~1such that:

(1) X(y,u,v,0) = 0.

(2) w(y,u,Vv,0) = w(0,u,v,g) = 0.
(3) As € — 0, (X,W) — 0 exponentially, along with its derivatives with respect to all
variables.
(4) For0< e < &, {(X,Y,u,v,W) : (Y,u,v) € Aand (X,w) = (X, W)(y, U,V,€) } is con-
tained in M;.
Remark

The theorem also applies to
X = A(X,Y,C, &)X,
y=B(X,Y,C €)Y,
c=¢(1,0,...,0) +L(XY,cC, &)Xy,

It is really about perturbations of systems with a family of normally hyperbolic equi-
libria, not about slow-fast systems.
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Loss-of-Stability Turning Points: Liu’'s Exchange Lemma

Liu considers a slow-fast system
a= f(ab,eg),

b=-¢g(a,b,e),
with a € RKH+1 and b € R™ 1, m > 2. Assume:

(1) f(0,b,e) = 0. (Hence for each g, b-space is invariant, and for € = O it consists
of equilibria.)

(2) Daf(0,b,0) has

e K eigenvalues with real part less than Ag < 0;

e | eigenvalues with greater than g > 0O;

e a last eigenvalue v(b) such that v(0) = 0.

(3) Dv(0)g(0,0,0) > O.



After a change of coordinates:

= A(X,Y,ZC, €)X,
— B(X,Y,2,C, )Y,
=h(zc a)z+ K(X,y,z C,€)xy,
c—e(( ,0)+1(z,c,£)z4+L(X,Y,ZC,€)XyY),

(X,y,z,¢) € REX R x R x R™ 2,
A(0,0,0,c,0) has eigenvalues with negative real part,
B(0,0,0,c,0) has eigenvalues with positive real part,
h(0,(0,¢cy,...,Cm-1),0) =0,
oh

— > 0.
601>

e=0 e>0

15
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Assume:
(1) m= 2 (for simplicity).
(2) For each €, M is a submanifold of Xyzespace of dimension |.
R)M ={(x,y,zc,g):(XV,zC) € M} is itself a manifold.

(4) Mo meets xzGspace transversally at a point (X, 0,9, c,) with d# 0 and ¢, < 0.
We may assume that M C {(X,Y,z,C,€) : z= d}.
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Each M¢ meets XzGspace transversally at (X,Y,z, ¢) = (X(€),0,c(€), d) with (x(0),c(0)) =
(X4, Ci).



Define Poincare maps on z= 0 by ¢ — T(C).

Z

| 6 I

C T(C)

Define TG implicitly by

To(c)
/ h(0,u,0)du=0.
C

T — Th, along with its derivatives, as € — 0 (De Maesschalck, 2008).

Under the forward flow, each Mg becomes a manifold M; of dimension | + 1.
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Theorem 4 (Liu's Exchange Lemma, 2000). In zGspace, consider a short integral
curve C; through (z,¢) = (9, Te(c(€))). Let

Ac ={(x,y,z,c) : x=0,]|y|| is small, (z,c) € C¢}.
Then M_ is close to A¢. As € — 0 the distance goes to 0 exponentially.

Z

_— | 6




Gain-of-Stability Turning Points

(Rarefactions in the Dafermos Regularization)

Consider the system

I
<

A(u) —xl)v,

with (u,v,X) € R" x R" x R and A(u) an n x n matrix.

|-
m —~

Let n= K+ + 1. Assume that on an open set U in R":
e There are numbers A1 < A, such that A(u) has
— k eigenvalues with real part less than A,
— | eigenvalues with real part greater than Ao,
— a simple real eigenvalue A(U) with A1 < A(U) < Aa.

19

e A(u) has an eigenvector r(u) for the eigenvalue A(u) such that DA(u)r(u) = 1.

Notice Ux-space is invariant for every €. For € = O it consists of equilibria, but loses

normal hyperbolicity along the surface x = A(u).
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Choose u, € U, X,, X" such that A1 < X, < A(U,) < X" < Ay. Let
U, ={(u,v,X):ueU,v=0, |x—x,| < d},
U*={(uv,x):ueU,v=0,|x—X"| < d}.

\Y;
X AU) \ X*
| X
7
! U, X=A(U) U

For € =0, U, and U™ are normally hyperbolic manifolds of equilibria of dimension
n+ 1. For U,, the stable and unstable manifolds of each point have dimensions K
and | + 1 respectively; for U*, the stable and unstable manifolds of each point have
dimensions k+ 1 and | respectively.

For € > 0, U, and U* are normally hyperbolic invariant manifolds on which the
system reducesto U=0, X=E€.
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Qo x=A(u)

For each € > 0, let M¢ be a submanifold of uvxspace of dimension | +1+ p, 0 <
p<n—1 Assume:

e M={(uV,Xxe): (uV,X) € M} is itself a manifold.

e My is transverse to W3(U,) at a point in the stable fiber of (u.,0,X.). The
intersection of Mg and W3(U..) is a smooth manifold & of dimension p.

e ) projects smoothly to a submanifold Qg of ux-space of dimension p.

e The vector (U,X) = (0,1) is not tangent to Qq. Therefore Qp projects smoothly
to a submanifold Ry of u-space of dimension p.

e r(U,) is not tangent to Ry.

Under the flow, each M¢ becomes a manifold M of dimension | 4+ 2+ p.
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Let @(t,u) be the flow of u=r(u). Choose t* > 0 such that A(u,) +t* < X*. Let

RES — U|t—t*|<5(p(t> RO)) F)(;< — {(U,V,X) VRS RS,V: Oa ‘X_X*l < 6}
R; and P have dimensions p+ 1 and p+ 2 respectively.

Let U = @(t*, u,).

Theorem 7. Near (u*,0,X*), M; is close to W5'(F3).
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How the flow on the normally hyperbolic invariant manifold is analyzed

There is a normally hyperbolic invariant manifold with coordinates (U, z;, X, €) with
z; a coordinate along r(u) in v-space.

The equilibria z; = € = 0 lose normal hyperbolicity when X = A(u). We therefore
make the change of variables X = A(uU) + 0 and blow up the setzz =0 =€ =0:

u=u,
21 =17,
o=1I0,
£ =T,

with >+ 0% 42 = 1.

For the new system, the spherical cylinder r = O consists entirely of equilibria. Di-
vide by r to desingularize.
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Blown-up flow for fixed U. The g-axis points toward you.



25

Generalized Deng’s Lemma

In the literature, there are three ways to prove exchange lemmas:

e Jones and Kopell's approach, which is to follow the tangent space to M. forward
using the extension of the linearized differential equation to differential forms.

e Brunovsky’'s approach, which is to locate M¢ by solving a boundary value prob-
lem in Silnikov variables.

e Krupa—Sandstede—Szmolyan approach (1997), using Lin’'s method.

We follow Brunovsky’s approach, which is based on work of Bo Deng (1990).
Brunovsky generalized a lemma of Deng that gives estimates on solutions of bound-
ary value problems in Silnikov variables. Our proof of the Generalized Exchange
Lemma is based on a further generalization of Deng’s Lemma.
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Let (X,y,C) € RKx R x R™. LetV be an open subset of R™. On a neighborhood of
{0} x {0} xV, consider the C'™ differential equation

X = A(X,Y,C)X,

y=B(X,Y,C)y,
¢ =C(c) +E(X,y,c)xy.

Let @(t,C) be the flow of ¢ =C(c). For each c € V there is a maximal interval I
containing 0 such that @(t,c) € V for all t € I.. Let the linearized solution operator
of the system, with € = 0, along the solution (0,0, @(t,c°)) be

X(t) dS(t, s, ) 0 0 X(S)
y(t) | = 0  @tsc) 0 y(s)
c(t) 0 0  @%t,sc’)) \cls)

Assume:

(E1) There are numbers Ag < 0 < [o, B > 0, and M > 0 such that for all ¢® € N and

S telo,
|DS(t,s,C%) || < Metolt=9) ift>s,
|@U(t,s,c%)|| < Mgt ift<s,
|°(t,s,c%)| < MePts forallt, s.

(E2) Ao+ TB <0< Ag+Ho—rp.



We wish to study solutions of Silnikov’'s boundary value problem on an interval
o<t<rT:

x(0)=x’, y(1)=y", ¢c(0)=c".
We denote the solution by (X,y,c)(t,T,x% y, c?).

Theorem 9 (Generalized Deng’s Lemma, S. 2008). Let V[ and V; be compact
subsets of V such that Vj C Int V). For each c® e Ny let Jwo be the maximal interval
such that @(t,c®) € Int (Vy) for allt € Jo. Then for A and [ a little closer to 0 than Ag
and L, there is a number &y > 0 such that if [|X°|| < g, ||y}|| < 80, € Ng, and T >0
is in J.o, then Silnikov’s boundary value problem has a solution (X, Y, c)(t,T,x°,y*, c?)
on the interval 0 <t < T. Moreover, there is a number K > 0 such that for all
(t,7,x%,y1, %) as above,

Ix(t, T, 3%y, )| < KeM,
y(t,T,X°, v, ) || < KeHt=1),
||C(t,T, X07y1’ CO) L (p(-t7 CO) S Ké\t+“(t_T).

In addition, if I is any |i|-tuple of integers between 1 and 2+k+14+m, with 1 < |i| <
r, then

IDic(t, T,X°, y*, ) — Dig(t, %) || < KeA I =liBt=),




