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Boundary Value Problems

ξ̇ = F(ξ,ε), ξ(t−) ∈ A−(ε), ξ(t+) ∈ A+(ε),

A−(ε)
A+(ε)

To show existence of a solution: show that the manifold of solutions that start on
A−(ε) and the manifold of solutions that end on A+(ε) meet transversally.

Remarks

• The problem with ε = 0 may be degenerate in some major way .

• Such problems are called singularly perturbed.

• The geometric approach to these problems, which focuses on tracking mani-
folds of potential solutions rather than on asymptotic expansions of solutions,
is called geometric singular perturbation theory (Fenichel, Kopell, Jones, . . . ).
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Exchange Lemma of Jones and Kopell

Slow-Fast Systems

ȧ = f (a,b,ε), ḃ = εg(a,b,ε), (a,b) ∈ R
n×R

m
.

Set ε = 0:
ȧ = f (a,b,0), ḃ = 0.

Assume:

(1) f (â(b),b,0) = 0.

(2) Da f (â(b),b,0) has
• k eigenvalues with negative real part.
• l eigenvalues with positive real part.
• k+ l = n.

(3) g(â(b),b,0) 6= 0.

a1

b

a=a(b)
a2
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After a change of coordinates:

ẋ = A(x,y,c,ε)x,
ẏ = B(x,y,c,ε)y,
ċ = ε((1,0, . . . ,0)+L(x,y,c,ε)xy),

(x,y,c) ∈ R
k×R

l ×R
m
,

A(0,0,c,0) has eigenvalues with negative real part,

B(0,0,c,0) has eigenvalues with positive real part.
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y
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y

Flow with ε = 0. Flow with ε > 0.
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Exchange Lemma of Jones and Kopell with m= 1

Assume:

(1) m= 1 (for simplicity).

(2) For each ε, Mε is a submanifold of xyc-space of dimension l .

(3) M = {(x,y,c,ε) : (x,y,c) ∈ Mε} is itself a manifold.

(4) M0 meets xc-space transversally at a point (x∗,0,0).

x

c

y

M0

ε = 0

Under the forward flow, each Mε becomes a manifold M∗
ε of dimension l +1.
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Theorem 1 (Exchange Lemma of Jones and Kopell with m= 1, 1994). Consider
a point (0,y∗,c∗) with y∗ 6= 0 and 0 < c∗. Let A be a small neighborhood of (y∗,c∗)
in yc-space. Then for small ε0 > 0 there is a smooth function x̃ : A× [0,ε0) → R

k

such that:
(1) x̃(y,c,0) = 0.
(2) As ε → 0, x̃ → 0 exponentially, along with its derivatives with respect to all

variables.
(3) For 0 < ε < ε0, {(x,y,c) : (y,c) ∈ A and x = x̃(y,c,ε)} is contained in M∗

ε .

Transversality to xc-space is “exchanged” for closeness to yc-space.
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Brunovsky’s Reformulation of Jones and Kopell’s Exchange L emma as an
Inclination Lemma

Theorem 2 (1999). Let 0< c∗. Let A be a small neighborhood of (0,c∗) in yc-space.
Then for small ε0 > 0 there is a smooth function x̃ : A× [0,ε0) → R

k such that:
(1) x̃(y,c,0) = 0.
(2) As ε → 0, x̃ → 0 exponentially, along with its derivatives with respect to all

variables.
(3) For 0 < ε < ε0, {(x,y,c) : (y,c) ∈ A and x = x̃(y,c,ε)} is contained in M∗

ε .
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General Exchange Lemma
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Important Features of the Exchange Lemma

(1) There is a normally hyperbolic invariant manifold (c-space) and a small param-
eter ε.

(2) There is a collection of submanifolds Mε of xyc-space such that M = {(x,y,c,ε) :
(x,y,c) ∈ Mε} is itself a manifold. M0 meets xc-space transversally in a mani-
fold N0 (here a point).

(3) N0 projects along the stable fibration of xcspace to a submanifold P0 of c-space
of the same dimension (here a point).

(4) For small ε > 0, the flow on c-space is followed for a long time.
(5) It takes Pε to a set P∗

ε of dimension one greater. As ε → 0, the limit of P∗
ε 6=

where the limiting DE takes P0. Nevertheless, the limit of P∗
ε exists and has the

same dimension. Call it P∗
0 .

(6) As ε → 0, M∗
ε →Wu(P∗

0).
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General Exchange Lemma (S., 2007). (1)–(5) plus technical assumptions imply
(6).
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What’s the point?

• To understand the flow on the normally hyperbolic invariant manifold may re-
quire rectification, blowing-up, etc.

• Once you’ve done this work, the General Exchange Lemma helps deal with the
remaining dimensions.
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Exchange Lemma of Jones and Tin

Consider again:

ẋ = A(x,y,c,ε)x,
ẏ = B(x,y,c,ε)y,
ċ = ε((1,0, . . . ,0)+L(x,y,c,ε)xy),

(x,y,c) ∈ R
k×R

l ×R
m
,

A(0,0,c,0) has eigenvalues with negative real part,

B(0,0,c,0) has eigenvalues with positive real part.

Assume:

(1) m≥ 1.

(2) For each ε, Mε is a submanifold of xyc-space of dimension l + p, 0≤ p≤m−1.

(3) M = {(x,y,c,ε) : (x,y,c) ∈ Mε} is itself a manifold.

(4) M0 meets xc-space transversally in a manifold N0 of dimension p.

(5) N0 projects smoothly to a submanifold P0 of c-space of dimension p.

(6) The vector (1,0, . . . ,0) is not tangent to P0.
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Then:

(1) Each Mε meets xc-space transversally in a manifold Nε of dimension p.

(2) Nε projects smoothly to a submanifold Pε of c-space of dimension p.

(3) The vector (1,0, . . . ,0) is not tangent to Pε.

After a change of coordinates c = (u,v,w) ∈ R×R
p×R

m−1−p that takes each Pε
to v-space, the system can be put in the form

ẋ = A(x,y,u,v,w,ε)x,
ẏ = B(x,y,u,v,w,ε)y,
u̇ = ε(1+e(x,y,u,v,w,ε)xy),
v̇ = εF(x,y,u,v,w,ε)xy,
ẇ = εG(x,y,u,v,w,ε)xy.

u

w

v

x

c

y
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Under the forward flow, each Mε becomes a manifold M∗
ε of dimension l + p+ 1.

Each Pε becomes a manifold P∗
ε of dimension p+1, which in our coordinates is just

uv-space.

Theorem 3 (Exchange Lemma of Jones and Tin). Let 0 < u∗. Let A be a small
neighborhood of (0,u∗,0) in yuv-space. Then for small ε0 > 0 there are smooth
function x̃ : A× [0,ε0) → R

k and w̃ : A× [0,ε0) → R
m−p−1such that:

(1) x̃(y,u,v,0) = 0.
(2) w̃(y,u,v,0) = w̃(0,u,v,ε) = 0.
(3) As ε → 0, (x̃, w̃) → 0 exponentially, along with its derivatives with respect to all

variables.
(4) For 0< ε < ε0, {(x,y,u,v,w) : (y,u,v)∈A and (x,w) = (x̃, w̃)(y,u,v,ε)} is con-

tained in M∗
ε .

Remark

The theorem also applies to

ẋ = A(x,y,c,ε)x,
ẏ = B(x,y,c,ε)y,
ċ = ε(1,0, . . . ,0)+L(x,y,c,ε)xy,

It is really about perturbations of systems with a family of normally hyperbolic equi-
libria, not about slow-fast systems.
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Loss-of-Stability Turning Points: Liu’s Exchange Lemma

Liu considers a slow-fast system

ȧ = f (a,b,ε),
ḃ = εg(a,b,ε),

with a∈ R
k+l+1 and b∈ R

m−1, m≥ 2. Assume:

(1) f (0,b,ε) = 0. (Hence for each ε, b-space is invariant, and for ε = 0 it consists
of equilibria.)

(2) Da f (0,b,0) has

• k eigenvalues with real part less than λ0 < 0;

• l eigenvalues with greater than µ0 > 0;

• a last eigenvalue ν(b) such that ν(0) = 0.

(3) Dν(0)g(0,0,0) > 0.
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After a change of coordinates:

ẋ = A(x,y,z,c,ε)x,
ẏ = B(x,y,z,c,ε)y,
ż= h(z,c,ε)z+k(x,y,z,c,ε)xy,
ċ = ε((1,0, . . . ,0)+ l(z,c,ε)z+L(x,y,z,c,ε)xy),

(x,y,z,c) ∈ R
k×R

l ×R×R
m−1

,

A(0,0,0,c,0) has eigenvalues with negative real part,

B(0,0,0,c,0) has eigenvalues with positive real part,

h(0,(0,c2, . . . ,cm−1),0) = 0,

∂h
∂c1

> 0.

z

c1

ε=0 ε>0
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Assume:

(1) m= 2 (for simplicity).

(2) For each ε, Mε is a submanifold of xyzc-space of dimension l .

(3) M = {(x,y,z,c,ε) : (x,y,z,c) ∈ Mε} is itself a manifold.

(4) M0 meets xzc-space transversally at a point (x∗,0,δ,c∗) with δ 6= 0 and c∗ < 0.
We may assume that M ⊂ {(x,y,z,c,ε) : z= δ}.

z

c

δ
c*

M0

y

Each Mε meets xzc-space transversally at (x,y,z,c)= (x(ε),0,c(ε),δ) with (x(0),c(0))=
(x∗,c∗).
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Define Poincare maps on z= δ by c→ πε(c).

z

c πε(c)

δ

Define π0 implicitly by

Z π0(c)

c
h(0,u,0)du= 0.

πε → π0, along with its derivatives, as ε → 0 (De Maesschalck, 2008).

Under the forward flow, each Mε becomes a manifold M∗
ε of dimension l +1.
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Theorem 4 (Liu’s Exchange Lemma, 2000). In zc-space, consider a short integral
curve Cε through (z,c) = (δ,πε(c(ε))). Let

Aε = {(x,y,z,c) : x = 0,‖y‖ is small, (z,c) ∈Cε}.

Then M∗
ε is close to Aε. As ε → 0 the distance goes to 0 exponentially.
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Gain-of-Stability Turning Points

(Rarefactions in the Dafermos Regularization)

Consider the system

u̇ = v,
v̇ = (A(u)−xI)v,
ẋ = ε,

with (u,v,x) ∈ R
n×R

n×R and A(u) an n×n matrix.

Let n = k+ l +1. Assume that on an open set U in R
n:

• There are numbers λ1 < λ2 such that A(u) has
– k eigenvalues with real part less than λ1,
– l eigenvalues with real part greater than λ2,
– a simple real eigenvalue λ(u) with λ1 < λ(u) < λ2.

• A(u) has an eigenvector r(u) for the eigenvalue λ(u) such that Dλ(u)r(u) = 1.

Notice ux-space is invariant for every ε. For ε = 0 it consists of equilibria, but loses
normal hyperbolicity along the surface x = λ(u).
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Choose u∗ ∈U , x∗, x∗ such that λ1 < x∗ < λ(u∗) < x∗ < λ2. Let

U∗ = {(u,v,x) : u∈U,v = 0, |x−x∗| < δ},
U∗ = {(u,v,x) : u∈U,v = 0, |x−x∗| < δ}.

x

u

v

u
*

λ(u
*

)

x=λ(u)

x
*

x*

U*U
*

For ε = 0, U∗ and U∗ are normally hyperbolic manifolds of equilibria of dimension
n+ 1. For U∗, the stable and unstable manifolds of each point have dimensions k
and l +1 respectively; for U∗, the stable and unstable manifolds of each point have
dimensions k+1 and l respectively.

For ε > 0, U∗ and U∗ are normally hyperbolic invariant manifolds on which the
system reduces to u̇ = 0, ẋ = ε.
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For each ε ≥ 0, let Mε be a submanifold of uvx-space of dimension l +1+ p, 0≤
p≤ n−1. Assume:

• M = {(u,v,x,ε) : (u,v,x) ∈ Mε} is itself a manifold.
• M0 is transverse to Ws

0(U∗) at a point in the stable fiber of (u∗,0,x∗). The
intersection of M0 and Ws

0(U∗) is a smooth manifold S0 of dimension p.
• S0 projects smoothly to a submanifold Q0 of ux-space of dimension p.
• The vector (u̇, ẋ) = (0,1) is not tangent to Q0. Therefore Q0 projects smoothly

to a submanifold R0 of u-space of dimension p.
• r(u∗) is not tangent to R0.

Under the flow, each Mε becomes a manifold M∗
ε of dimension l +2+ p.
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Let φ(t,u) be the flow of u̇ = r(u). Choose t∗ > 0 such that λ(u∗)+ t∗ < x∗. Let

R∗
0 = ∪|t−t∗|<δφ(t,R0), P∗

0 = {(u,v,x) : u∈ R∗
0,v = 0, |x−x∗| < δ}.

R∗
0 and P∗

0 have dimensions p+1 and p+2 respectively.

Let u∗ = φ(t∗,u∗).

Theorem 7. Near (u∗,0,x∗), M∗
ε is close to Wu

0 (P∗
0).
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How the flow on the normally hyperbolic invariant manifold is analyzed

There is a normally hyperbolic invariant manifold with coordinates (u,z1,x,ε) with
z1 a coordinate along r(u) in v-space.

The equilibria z1 = ε = 0 lose normal hyperbolicity when x = λ(u). We therefore
make the change of variables x = λ(u)+σ and blow up the set z1 = σ = ε = 0:

u = u,

z1 = r̄2z̄1,

σ = r̄σ̄,

ε = r̄2ε̄,
with z̄1

2+ σ̄2+ ε̄2 = 1.

For the new system, the spherical cylinder r̄ = 0 consists entirely of equilibria. Di-
vide by r̄ to desingularize.
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z1

Blown-up flow for fixed u. The ε-axis points toward you.
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Generalized Deng’s Lemma

In the literature, there are three ways to prove exchange lemmas:

• Jones and Kopell’s approach, which is to follow the tangent space to Mε forward
using the extension of the linearized differential equation to differential forms.

• Brunovsky’s approach, which is to locate M∗
ε by solving a boundary value prob-

lem in Silnikov variables.

• Krupa–Sandstede–Szmolyan approach (1997), using Lin’s method.

We follow Brunovsky’s approach, which is based on work of Bo Deng (1990).
Brunovsky generalized a lemma of Deng that gives estimates on solutions of bound-
ary value problems in Silnikov variables. Our proof of the Generalized Exchange
Lemma is based on a further generalization of Deng’s Lemma.
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Let (x,y,c) ∈ R
k×R

l ×R
m. Let V be an open subset of R

m. On a neighborhood of
{0}×{0}×V , consider the Cr+1 differential equation

ẋ = A(x,y,c)x,
ẏ = B(x,y,c)y,
ċ = C(c)+E(x,y,c)xy.

Let φ(t,c) be the flow of ċ = C(c). For each c ∈ V there is a maximal interval Ic
containing 0 such that φ(t,c) ∈V for all t ∈ Ic. Let the linearized solution operator
of the system, with ε = 0, along the solution (0,0,φ(t,c0)) be





x̄(t)
ȳ(t)
c̄(t)



 =





Φs(t,s,c0) 0 0
0 Φu(t,s,c0) 0
0 0 Φc(t,s,c0)









x̄(s)
ȳ(s)
c̄(s)





Assume:

(E1) There are numbers λ0 < 0 < µ0, β > 0, and M > 0 such that for all c0 ∈ N and
s, t ∈ Ic0,

‖Φs(t,s,c0)‖ ≤ Meλ0(t−s) if t ≥ s,

‖Φu(t,s,c0)‖ ≤ Meµ0(t−s) if t ≤ s,

‖Φc(t,s,c0)‖ ≤ Meβ|t−s| for all t, s.

(E2) λ0+ rβ < 0 < λ0+µ0− rβ.
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We wish to study solutions of Silnikov’s boundary value problem on an interval
0≤ t ≤ τ:

x(0) = x0
, y(τ) = y1

, c(0) = c0
.

We denote the solution by (x,y,c)(t,τ,x0,y1,c0).

Theorem 9 (Generalized Deng’s Lemma, S. 2008). Let V0 and V1 be compact
subsets of V such that V0 ⊂ Int V1). For each c0 ∈ N0 let Jc0 be the maximal interval
such that φ(t,c0)∈ Int (V1) for all t ∈ Jc0. Then for λ and µ a little closer to 0 than λ0

and µ0, there is a number δ0 > 0 such that if ‖x0‖≤ δ0, ‖y1‖≤ δ0, c0∈N0, and τ > 0
is in Jc0, then Silnikov’s boundary value problem has a solution (x,y,c)(t,τ,x0,y1,c0)
on the interval 0 ≤ t ≤ τ. Moreover, there is a number K > 0 such that for all
(t,τ,x0,y1,c0) as above,

‖x(t,τ,x0
,y1

,c0)‖ ≤ Keλt
,

‖y(t,τ,x0
,y1

,c0)‖ ≤ Keµ(t−τ)
,

‖c(t,τ,x0
,y1

,c0)−φ(t,c0)‖ ≤ Keλt+µ(t−τ)
.

In addition, if i is any |i|-tuple of integers between 1 and 2+k+ l +m, with 1≤ |i| ≤
r , then

‖Dix(t,τ,x0
,y1

,c0)‖ ≤ Ke(λ+|i|β)t
,

‖Diy(t,τ,x0
,y1

,c0)‖ ≤ Ke(µ−|i|β)(t−τ)
,

‖Dic(t,τ,x0
,y1

,c0)−Diφ(t,c0)‖ ≤ Ke(λ+|i|β)t+(µ−|i|β)(t−τ)
.


