
Stability of Traveling Waves for a Class of Reaction-diffusi on
Systems that Arise in Chemical Reaction Models

Anna Ghazaryan
University of Kansas

Yuri Latushkin
University of Missouri

Steve Schecter
North Carolina State University

1



2

I. Combustion of a solid fuel in one space dimension

Model:

∂tu = ∂xxu+vρ(u),

∂tv = −βvρ(u),

where

ρ(u) =

{

0 if u≤ 0,

e−
1
u if u > 0.

.

u

1

Graph of ρ(u)

• u = temperature.
• v = concentration of unburned fuel.
• ρ = normalized reaction rate.
• β > 0 is the “exothermicity” parameter.
• u = 0 is a background temperature at which the reaction does not take place.
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We are interested in combustion fronts = (u∗,v∗)(ξ), ξ = x−ct.

ξ

u

ξ

v
1u− u*(ξ) v*(ξ)

• c > 0 is the speed of the front.
• Behind the front: (u∗,v∗) = (u−,0).
• u− > 0 is the temperature of combustion, which is to be determined.
• Ahead of the front: (u∗,v∗) = (0,u+).
• u+ = 1 is the concentration of fuel in the medium.

We assume (u∗,v∗)(ξ) approaches its end states exponentially.

To study stability of the traveling wave:

• Write system in ξt-coordinates.
• Linearize at the equilibrium (u∗,v∗)(ξ).
• Get a linear operator L0 on E0 = BUC(R) or H1(R) (spaces suited to study of

nonlinear stability because closed under multiplication), with norm ‖‖0.
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Linearize at the end states, get constant-coefficient operators with the following
spectra:

ξ=+∞ξ=−∞

Re λRe λ

Im λ Im λ

Facts:

(1) Spess(L0) ⊂ Reλ ≤ 0.
(2) Evans function has a simple zero at 0.
(3) Numerical study of the Evans function indicates no other zeros in Reλ ≥ 0 for

small β.

We would like to conclude stability of the combustion front for small β, but:

(1) L0 is not sectorial.
(2) Spess(L0) touches the imaginary axis.
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The essential spectrum can be moved to the left by using a norm with weight
function eαξ, α > 0.

ξ

eαξ

Eα = {u(ξ) : eαξu(ξ) ∈ E0}, ‖u‖α = ‖eαξu(ξ)‖0, α > 0 but not too big.

A perturbation of the combustion front that is small in this norm is exponentially
close to the front at the right but may be unbounded at the left.

The requirement that the perturbation be exponentially close at the right is natural:
there are other traveling waves that approach the right state more slowly!
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Unfortunately, the nonlinear terms in the PDE do not yield a map from Eα to itself.
Reason: consider

eαξṽ(ξ)ρ′(u∗(ξ))ũ(ξ), ṽ, ũ∈ Eα.

• ρ′(u∗(ξ)) is bounded.
• eαξṽ(ξ) is bounded.
• ũ(ξ) is not necessarily bounded.

Theorem on Combustion Fronts. Let (ũ, ṽ)(ξ) be small in both E0 and Eα. Con-
sider the solution with value (u∗+ ũ,v∗+ ṽ)(ξ) at t = 0, which we denote (u,v)(ξ, t).
Then there is a number q∗ such that

(1) ‖(u,v)(ξ, t)− (u∗,v∗)(ξ−q∗)‖α decays exponentially.
(2) ‖u(ξ, t)−u∗(ξ−q∗)‖0 stays small.
(3) ‖v(ξ, t)−v∗(ξ−q∗)‖0 decays exponentially.

In addition, suppose ‖(ũ, ṽ)(ξ)‖L1 is small. Then:

(4) ‖u(ξ, t)−u∗(ξ−q∗)‖L1 stays small.

(5) ‖u(ξ, t)−u∗(ξ−q∗)‖L∞ decays like t−
1
2.

A. de Souza and GLS, “Stability of gasless combustion fronts in one-dimensional
solids,” Arch. Ration. Mech. Anal., to appear.
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Explanation: (1) says that at the right the solution soon looks like the traveling wave.
Consider the following perturbed initial condition:

u

ξ

v

ξ

11/β

t = 0

u

ξ

v

ξ

11/β

t > 0

(3) says, for example, that if we add some fuel behind the front, it will rapidly burn.
Reason: behind the front the temperature is high!

(2), (4), and (5) say, for example, that if we add some heat behind the front, it will
diffuse.

Hence our result yields, from the spectral information commonly found about the
traveling wave, rather detailed information about the wave’s stability.
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II. General results (linear and nonlinear)

Reaction-diffusion system:

(1) Yt = DYxx+R(Y).

Y ∈ R
n, D = diag(d1, . . . ,dn) with all di ≥ 0, R(Y) is smooth.

Y∗(ξ), ξ = x−ct, is a traveling wave, limξ→±∞Y∗(ξ) = Y±.

There are numbers K > 0 and ω > 0 such that

for ξ ≤ 0, ‖Y∗(ξ)−Y−‖ ≤ Keωξ,

for ξ ≥ 0, ‖Y∗(ξ)−Y+‖ ≤ Ke−ωξ.

Replace x by ξ = x−ct in (1):

(2) Yt = DYξξ +cYξ +R(Y),

The traveling wave Y∗(ξ) is a stationary solution of (2). Y∗ is stable (more precisely:
exponentially stable with asymptotic phase) in the space X if a small perturbation
of Y∗ of the form Y = Y∗+Ỹ with Ỹ ∈ X decays exponentially in X to some shift of
Y∗.
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Linearize (2) about Y∗:

(3) Ỹt = DỸξξ +cỸξ +DR(Y∗)Ỹ = LỸ.

L : X → X is the operator on X given by Ỹ → LỸ, with its natural domain.

Y∗ is spectrally stable in the space X if the spectrum of L is contained in the half-
plane Reλ≤−µ< 0, with the exception of a simple eigenvalue 0. (A traveling wave
has an eigenvalue 0, with eigenvector Y′

∗(ξ), in any space that contains Y′
∗.) Y∗ is

linearly exponentially stable in X if every solution of (3) decays exponentially to a
multiple of Y′

∗.

Linear Theorem. Consider the linear PDE

Ỹt = DỸξξ +cỸξ +A(ξ)Ỹ = LỸ;
D = diag(d1, . . . ,dn) with all di ≥ 0, A(ξ) is smooth, and there are matrices A±

such that A(ξ) → A± exponentially as ξ →±∞. Let X denote one of the standard
Banach spaces L1(R), L2(R), H1(R), or BUC(R), and let L denote the operator
on X associated with L. Assume (1) sup{Reλ : λ ∈ Spess(L ) < 0} and (2) {λ :
Reλ ≥ 0} is contained in the resolvent set of L except possibly for an eigenvalue
0 with generalized null space N . Let P be the Riesz spectral projection for L
whose kernel is equal to N . Then there are positive numbers K and ν such that
‖etL P ‖ ≤ Ke−νt.
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Proofs:

• All di positive: L is sectorial, the result is in Henry.

• Some di = 0, A+ = A−: proved by Bates and Jones (Dynamics Reported 2,
1989).

• General case: proved in GLS, “Stability of traveling waves for degenerate sys-
tems of reaction diffusion equations,” Indiana Math. J., to appear., and by Jens
Rottmann-Matthes in his Bielefeld thesis.

Consequences:

• The Linear Theorem implies that if the traveling wave Y∗ is spectrally stable in
any of the spaces L1(R), L2(R), H1(R), or BUC(R), or in one of these spaces
with weight function bounded away from 0, then it is linearly exponentially stable
in that space.

• For X = H1(R) or BUC(R), or in one of these spaces with weight function
bounded away from 0, linearized exponential stability of the traveling wave Y∗

implies (nonlinear) stability (Bates and Jones).

Example: traveling fronts in Fitzhugh-Nagumo.
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Nonlinear results: Let E0 = H1(R) or BUC(R).

Assume: Y∗(ξ) is spectrally stable in Eα with 0 < α < ω.

Intuitively, this assumption is enough to prove stability at the right but not at the left.

We take Y− to be 0.

In appropriate variables Y = (U,V), we assume R(U,0) = 0, i.e.,

(4) R(U,V) =

(

R̃1(U,V)V
R̃2(U,V)V

)

.

Example: In a combustion problem with n−1 reactants, suppose the left state of a
combustion front with positive velocity has temperature y1 = y1− > 0 and reactant
concentrations (y2, . . . ,yn) = (0, . . . ,0). Let

u = y1−y1−, (v1, . . . ,vn−1) = (y2, . . . ,yn).

Since the reaction rate is 0 when the reactant concentrations are all 0, the reaction
term takes the form (4).
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Linearize (2) at (0,0):

Ũt = D1Ũξξ +cṼξ + R̃1(0,0)Ṽ = L(1)Ũ + R̃1(0,0)Ṽ,

Ṽt = D2Ṽξξ +cṼξ + R̃2(0,0)Ṽ = L(2)Ṽ.

Assume: in E0, the operator associated with L(2) has its spectrum in Reλ <−ρ < 0
for some ρ.

Note that in E0 the operator associated with L(1) generates a bounded semigroup.

Nonlinear Theorem 1. Perturbations of the traveling wave that are initially small
in E0∩ Eα decay exponentially in Eα to some shift of the wave. In addition, the
U -component of the perturbation stays small in E0, and the V-component of the
perturbation decays exponentially E0.

Notice:

• In E0 the U -component of the perturbation may travel with velocity less than c
without decay (convective instability).

• For E0 = BUC(R), as ξ → −∞, the perturbation of the traveling wave need
only be bounded.
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Nonlinear Theorem 2. Suppose the linear equation Ũt = L(1)Ũ is parabolic, i .e.,
the corresponding di ’s are all positive. If the perturbation of the traveling wave is
also small in L1, then the U -component of the perturbation stays small in the L1-
norm and decays decays like t−

1
2 in the L∞-norm.
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III. Proof of Linear Theorem

We consider a more general class of linear PDEs:

(5)

(

U
V

)

t

= L

(

U
V

)

, L =

(

d∂ξξ +a∂ξ +B11 B12

B21 b∂ξ +B22

)

=

(

A B12

B21 G

)

,

U(t,ξ) ∈ R
N1, V(t,ξ) ∈ R

N2, d = diag(d1, . . . ,dN1) with all dk > 0,

a = (akl) of size N1×N1, b = diag(b1, . . . ,bN2),

The matrices d, a, and b are constant.

Simplifying assumption:

• All bk are nonzero.

Assume:

• B = (Bi j ) is C1, there are matrices B± such that B(ξ) → B± as ξ →±∞, and
B′(ξ) → 0 exponentially as ξ →±∞.

Define L ±, A ±, G ± (constant coefficient operators).
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Let X be a Banach space, and let C : X → X be a closed, densely defined linear
operator. Define

• ρ(C ), the set of λ ∈ C such that C −λI has a bounded inverse.
• Sp(C ) = C \ρ(C ). Sp(C ) is the union of Spd(C ), which is the set of isolated

eigenvalues of C of finite algebraic multiplicity, and Spess(C ), which is the rest.
• s(C ) = sup{Reλ : λ ∈ Sp(C )}.
• sess(C ), the infimum of all real ω such that Sp(C )∩{λ : Reλ > ω} is a subset

of Spd(C ) and has only finitely many points.
• ρF(C ), the set of λ ∈ C such that C − λI is Fredholm of index zero. (C is

Fredholm if its range is closed, its kernel has finite dimension n, and its range
has finite codimension m. The index of a Fredholm operator C is n−m.)

• SpF(C ) = C\ρF(C ).
• sF(C ) = sup{Reλ : λ ∈ SpF(C )}.

For a bounded linear operator T : X → Y , we define:

• The spectral radius of T , the supremum of {|λ| : λ ∈ Sp(T )}.
• The essential spectral radius of T , the supremum of {|λ| : λ ∈ Spess(T )}.
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If C generates a C0-semigroup, we can define:

• The growth bound: the real number ω such that etω(C ) is the spectral radius of
etC .

• The essential growth bound: the real number ωess(C ) such that etωess(C ) is the
essential spectral radius of etC .

Fact. If C : X → X generates a C0-semigroup, then:

sF(C ) ≤ sess(C ) ≤ ωess(C ).

||(C-λI)−1|| unbounded

SpF(C) Spess(etC)

1

Spd(C)

sF(C)
sess(C)

ωess(C)
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Fact. Let C be any of the constant-coefficient operators A ±, G ±, L ±. In L2(R),
Sp(C ), and hence s(C ) can be computed by Fourier transform; Sp(C ) and hence
s(C ) are the same in L1(R), H1(R), and BUC(R). Morover, s(C ) = sF(C ) =
sess(C ).

Fact. Suppose C : X → X generates the C0-semigroup etC , t ≥ 0. Let ω > ωess(C )
be a number such that no element of Sp(C ) has real part ω. Then there is a finite
set {λ1, . . . ,λk} ⊂ C such that

Sp(C )∩{λ : Reλ > ω} = Spd(C )∩{λ : Reλ > ω} = {λ1, . . . ,λk}.

Let E1, . . . ,Ek be the generalized eigenspaces of λ1, . . . ,λk respectively; they are
finite-dimensional. Then there is a closed subspace E0 of X such that X = E0×
E1×·· ·×Ek and E0 is invariant under C . Moreover, there is a number K > 0 such
that ‖etC |E0‖ ≤ Keωt.

Linear Lemma. sF(L ) = sess(L ) = ωess(L ).

Linear Theorem Again. Assume (1) sF(L ) < 0 and (2) {λ : Reλ ≥ 0} is contained
in the resolvent set of L except possibly for an eigenvalue 0 with generalized null
space N . Let P be the Riesz spectral projection for L whose kernel is equal to N .
Then there are positive numbers K and ν such that ‖etL P ‖ ≤ Ke−νt.

Proof. Choose ν > 0 such that sF(L ) < −ν and the only element of Spd(C ) with
real part ≥−ν is 0.
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Proof of the Linear Lemma is based on:

(1) Palmer’s Theorem
(2) properties of A and G
(3) a triangular factorization of L
(4) Gearhart-Prüss or Greiner Spectral Mapping Theorem

Proposition. Let C be any of A , G , or L . Then sF(C ) = max{sF(C
−),sF(C

+)}.

Follows from Palmer’s Theorem and an argument of Sandstede and Scheel.

Fact.
(1) A is sectorial.
(2) There is a constant c and a sector Σ such that σ(A ) ⊂ Σ, and, for each z=

x+ iy /∈ Σ,

‖(A −zI)−1‖ ≤
c
|y|

.

(3) sF(A ) = sess(A ) = ωess(A ).

Fact.
(1) Sp(G ) consists of vertical lines.
(2) If z∈ ρ(G ), then z+ iα ∈ ρ(G ) for all α ∈ R, and, moreover,

‖(G −zI)−1‖ = ‖(G − (z+ iα)I)−1‖ = ‖(G −RezI)−1‖.

(3) s(G ) = sF(G ) = sess(G ) = ωess(G ) = ω(G ).
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SpF(G)

Sp(A)
Re λ

Im λ

Lemma.

(1) sF(G
±) ≤ sF(L

±) and sF(G ) ≤ sF(L ).

(2) There is a continuous nonnegative function r(x) defined for x> sF(G ) such that
if |y| ≥ r(x) then z= x+ iy∈ρ(L ). Moreover, for each x> sF(G ), sup|y|≥r(x)‖(L −

(x+ iy)I)−1‖ < ∞.

Proof is by triangular factorizations. Let

H (z) = G −zI−B21(A −zI)−1B12.

Then

L −zI =

(

A −zI 0
B21 I

)(

I (A −zI)−1B12

0 H (z)

)

Moreover, G −zI = H (z)(I −F (z)) with F (z) = −H (z)−1B21(A −zI)−1B12.

Corollary. sF(L ) = sess(L ).



20

To relate to ωess(L ), the tools are:

Gearhart-Prüss Spectral Mapping Theorem. Suppose C is the generator of a C0-
semigroup on a Hilbert space X , and let z∈ C. Then the following are equivalent:

(i) ez∈ ρ(eC ).
(ii) z+2πik ∈ ρ(C ) for all k∈ Z and supk∈Z‖(C − (z+2πik)I)−1‖ < ∞,

Greiner’s Spectral Mapping Theorem. Suppose C is the generator of a C0-
semigroup {etC }t≥0 on a Banach space X , and let z∈ C. Then the following are
equivalent:

(i) ez∈ ρ(eC ).
(ii) z+ 2πik ∈ ρ(C ) for all k ∈ Z, and for each w ∈ X the series ∑k∈Z(C − (z+

2πik)I)−1w is Cesaro summable.

A series ∑k∈Z wk, with wk ∈ X , is called Cesaro summable if the following limit exists
in X :

(C,1) ∑
k∈Z

wk := lim
n→∞

1
n

n

∑
m=1

∑
|k|≤m

wk = lim
n→∞

n

∑
k=−n

(

1−
|k|

n+1

)

wk.(6)

Also need a generalization where for a finite number of k, z+2πik ∈ Spd(C ).
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Lemma. For each zwith Rez> sF(G ), there is an integer K ≥ 0 such that z+2πik∈
ρ(L ) for all k∈ Z with |k| ≥ K. Moreover,

for each w∈ X , the series ∑
|k|≥K

(L − (z+2πik)I)−1w is Cesaro summable.

Proof uses (1) the expression for (L −zI)−1 we get from the triangular factorization
of L −zI and (2) Fejer’s summability kernel

Kn(t) =
n

∑
k=−n

(

1−
|k|

n+1

)

eikt, t ∈ T,

whose convolution property is

‖Kn∗ f − f‖L1(T;X ) → 0 as n→ ∞ for every f ∈ L1(T;X ).
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IV. Proof of Nonlinear Theorem

Yt = DYξξ +cYξ +R(Y).

Work in E0∩Eα, ‖Y‖ = max(‖Y‖0,‖Y‖α) = norm with respect to weight function

ξ

eαξ

1

For Y ∈ E0∩Eα near Y∗ write

Y(ξ) = Y∗(ξ−q)+Ỹ(ξ), Ỹ ∈ R(Lα)∩E0,

Y* (ξ−q)

R(Lα)

or
(

U(ξ)
V(ξ)

)

=

(

U∗(ξ−q)
V∗(ξ−q)

)

+

(

Ũ(ξ)
Ṽ(ξ)

)

.
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Let

Yq = Y∗(ξ−q).

Then

−Y′
∗(ξ−q(t))q′(t)+Ỹt = DỸξξ +cỸξ +R(Yq+Ỹ)−R(Yq).

Write R(Y +Ỹ)−R(Y)−DR(Y)Ỹ = N(Y,Ỹ)Ỹ and rewrite the equation as

Ỹt = LỸ +(DR(Yq)−DR(Y∗))Ỹ +N(Yq,Ỹ)Ỹ+Y′
∗(ξ−q(t))q′(t).

Apply P s
α and P c

α = I −P s
α:

Ỹt = LỸ+P s
α
(

DR(Yq)−DR(Y∗))Ỹ +N(Yq,Ỹ)Ỹ +Y′
∗(ξ−q(t))q′(t)

)

,

−q′(t)P c
αY′

∗(ξ−q(t)) = P c
α
(

(DR(Yq)−DR(Y∗))Ỹ+N(Yq,Ỹ)Ỹ
)

.

Rewrite the second equation as

−q′(t)παY′
∗(ξ−q(t)) = πα

(

(DR(Yq)−DR(Y∗))Ỹ+N(Yq,Ỹ)Ỹ
)

where πα(·) is a number.

Then for q(t) small, q′(t)=−
(

παY′
∗(ξ−q(t))

)−1πα
(

(DR(Yq)−DR(Y∗))Ỹ+N(Yq,Ỹ)Ỹ
)

.
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Ỹt = LỸ+DR(Yq)−DR(Y∗))Ỹ+N(Yq,Ỹ)Ỹ +Y′
∗(ξ−q(t))q′(t)),

q′(t) = −
(

παY′
∗(ξ−q(t))

)−1πα
(

(DR(Yq)−DR(Y∗))Ỹ +N(Yq,Ỹ)Ỹ
)

Let

G(Ỹ,q) = (DR(Yq)−DR(Y∗))Ỹ +N(Yq,Ỹ)Ỹ,

κ(Ỹ,q) = −(παY′
∗(ξ−q))−1παG(Ỹ,q).

Then

∂tỸ = LỸ+G(Ỹ,q)+κ(Ỹ,q)Y′
∗(ξ−q),(7)

q̇ = κ(Ỹ,q).(8)

Proposition. The formulas for G(Ỹ,q) and κ(Ỹ,q) define mappings from (E0∩
Eα)×R to E0∩Eα and to R respectively. On any bounded neighborhood of (0,0)
in (E0∩Eα)×R, the mappings are Lipschitz, and there is a constant C such that:

(1) ‖G(Ỹ,q)‖α ≤C(|q|+‖V‖0)‖V‖α.

(2) |κ(Ỹ,q)| ≤C(|q|+‖V‖0)‖V‖α.
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Study of the system on (R(Lα)∩E0)×R

1. Existence of solutions on (R(Lα)∩E0)×R and a priori bound

∂tỸ = LỸ+G(Ỹ,q)+κ(Ỹ,q)Y′
∗(ξ−q),

q̇ = κ(Ỹ,q).

Proposition 1. For each δ > 0, if 0 < γ < δ, then there exists T, with 0 < T ≤ ∞,
such that the following is true: if (Ỹ0,q0) ∈ (R(Lα)∩E0)×R satisfies

(9) ‖(Ỹ0,q0)‖ = ‖Ỹ0‖+ |q0| ≤ γ

and 0≤ t < T, then (Ỹ,q)(t,Ỹ0,q0) ∈ R(Lα)∩E0 is defined and satisfies

(10) ‖Ỹ(t,Ỹ0,q0)‖+ |q(t,Ỹ0,q0)| ≤ δ.

Let Tmax(δ,γ) denote the supremum of all T such that (10) holds for all 0≤ t < T
whenever (9) is satisfied.
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2.Decay of ‖Ỹ(t)‖α

Proposition 2. Consider the solution given by Proposition 1. Then there are num-
bers ν > 0, C > 0, and Kα > 0 such, that if δ > 0 is sufficiently small and 0< γ < δ,
then following is true. Let (Ỹ0,q0) ∈ R(Lα)∩E0 satisfy (9), so that (Ỹ,q)(t,Ỹ0,q0)
satisfies (10) for 0≤ t < Tmax(δ,γ). Then:

(11) ‖Ỹ(t)‖α ≤ Kαe−νt‖Ỹ0‖α and |q(t)−q0| ≤C‖Ỹ0‖α for 0≤ t < Tmax(δ,γ).

Moreover, if Tmax(δ,γ) = ∞, then there is q∗ ∈ R such that

(12) |q(t)−q∗| ≤Ce−νt‖Ỹ0‖α for all t ≥ 0.

• Idea–bound the solution in a uniform norm in order to prove converg ence
in a weighted norm –comes from R. Pego and M. Weinstein, Asymptotic sta-
bility of solitary waves, Comm. Math. Phys. 164 (1994), 305–349.

• In Pego and Weinstein, boundedness in the uniform norm follows from a Hamil-
tonian structure.

• In other papers, it is related to the stability of the bifurcating patterns that are
connected by the front.
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3. Bounds for ‖Ỹ(t)‖0

Proposition 3. Consider the solution given by Proposition 1. Then there is a num-
ber C > 0 such that if (1) δ is sufficiently small and (2) 0 < γ < δ, then the following
is true. Let (Ỹ0,q0) ∈ R(Lα)∩E0 satisfy (9), so that (Ỹ,q)(t,Ỹ0,q0) satisfies (10)
for 0≤ t < Tmax(δ,γ), and:

‖Ũ(t)‖0 ≤C‖Ỹ0‖,(13)

‖Ṽ(t)‖0 ≤C‖Ỹ0‖e−ρt.(14)

Proof is completed by bootstrapping.


