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Abstract. Stability results are proved for traveling waves in a class of reaction-diffusion systems
that arise in chemical reaction models. The class includes systems in which there is no diffusion in
some equations. A weight function that decays exponentially at one end is required to stabilize the
essential spectrum. Perturbations of the wave in H1 or BUC that are small in both the weighted norm
and the unweighted norm are shown to stay small in the unweighted norm and to decay exponentially
to a shift of the traveling wave in the weighted norm. Perturbations that are in addition small in the
L1 norm decay algebraically to a shift of the wave in the L∞ norm. A decomposition of the variables
that yields a triangular structure for the linearization at one end of the wave is exploited to prove
the results. An application to exothermic-endothermic reactions is given.
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1. Introduction. Consider a reaction-diffusion system

(1.1) Yt = DYxx +R(Y ),

where Y ∈ Rn, x ∈ R, t ≥ 0, D = diag(d1, . . . , dn) with all di ≥ 0, and the function
R(Y ) is smooth.

In applications modeled by (1.1), coherent structures of interest include traveling
waves. These are solutions Y∗(ξ), ξ = x − ct, of (1.1), where c is the velocity of
the wave. We are concerned with traveling waves that approach constant states as
ξ → ±∞:

lim
ξ→−∞

Y∗(ξ) = Y−, lim
ξ→∞

Y∗(ξ) = Y+.

Such traveling waves are called pulses if Y− = Y+ and fronts if Y− �= Y+. We must have
R(Y−) = R(Y+) = 0. We shall always assume that traveling waves approach both end
states at an exponential rate; i.e., there exist numbers K > 0 and ω− < 0 < ω+ such
that for ξ ≤ 0, ‖Y∗(ξ)− Y−‖ ≤ Ke−ω−ξ, and for ξ ≥ 0, ‖Y∗(ξ)− Y+‖ ≤ Ke−ω+ξ.

There is an extensive literature on the stability of traveling waves in reaction-
diffusion systems. We mention [15] and references therein.

Replacing the spatial variable x by the moving variable ξ in (1.1), we obtain

(1.2) Yt = DYξξ + cYξ +R(Y ).
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STABILITY OF TRAVELING WAVES 2435

The traveling wave Y∗(ξ) is a stationary solution of (1.2). We shall say that the wave
Y∗ is stable in the space X if a small perturbation of Y∗ of the form Y = Y∗ + Ỹ
with Ỹ ∈ X decays to some shift of Y∗. (We shall use the word “stable” to mean
what is more precisely termed asymptotically stable with asymptotic phase.) Y∗ is
exponentially stable if the decay is exponential in time.

Information about the stability of the wave Y∗ is encoded in the spectrum of the
operator obtained by linearizing (1.2) about Y∗,

(1.3) Ỹt = DỸξξ + cỸξ +DR(Y∗)Ỹ =: LỸ .

Let L : X → X be the operator on X given by Ỹ → LỸ , with its natural domain. We
shall say that the wave Y∗ is spectrally stable in the space X if the spectrum of L is
contained in the half-plane Reλ < −ν < 0, with the exception of a simple eigenvalue
0. (A traveling wave has an eigenvalue 0, with eigenvector Y ′

∗(ξ), in any space that
contains Y ′∗ .) Y∗ is linearly exponentially stable in X if every solution of (1.3) decays
exponentially to a multiple of Y ′

∗ .
In [6] we studied a simple model for gasless combustion in a solid:

∂ty1 = ∂xxy1 + y2ρ(y1),(1.4)

∂ty2 = −βy2ρ(y1),(1.5)

with β > 0 and

(1.6) ρ(y1) =

{
e
− 1

y1 if y1 > 0,

0 if y1 ≤ 0.

In this system, y1 is temperature, y2 is concentration of unburned fuel, and ρ is the
unit reaction rate. The value y1 = 0 represents a background temperature at which
the reaction does not take place.

There is a number c > 0 for which (1.4)–(1.5) admits a traveling combustion front
(y1∗, y2∗)(ξ), ξ = x−ct, such that (y1∗, y2∗)(−∞) = (y1−, 0) (y1− > 0, the temperature
of combustion, must be determined); (y1∗, y2∗)(∞) = (0, 1) (the concentration of
fuel in the medium is normalized to 1); and (y1∗, y2∗)(ξ) approaches the end states
exponentially. If one attempts to prove stability of this traveling wave, one encounters
three difficulties.

1. The traveling wave is not spectrally stable: the essential spectrum of the lin-
earization of (1.4)–(1.5) at (y1∗, y2∗)(ξ) touches the imaginary axis. This can be cured
by working in a weighted space with weight function eαξ, α > 0 small. In such a space,
the traveling wave is spectrally stable. Such a space only includes functions that go to
zero exponentially at the right. This is actually a natural restriction: the system (1.4)–
(1.5) admits traveling waves other than (y1∗, y2∗)(ξ) that have the same end states but
approach the right end state more slowly than exponentially. The wave (y1∗, y2∗)(ξ)
would not be stable in a space that allowed such waves as small perturbations of it.

2. Because the reactant is a solid, there is no diffusion in (1.5); i.e., d2 = 0. As a
result the linearization of (1.4)–(1.5) at (y1∗, y2∗)(ξ) has a vertical line in its spectrum,
so it is not a sectorial operator. Hence one cannot use standard theorems to conclude
that in the weighted space, spectral stability implies linear exponential stability. In [6]
we dealt with this issue with the aid of some special properties of (1.4)–(1.5). Later,
in [5], we gave a more general result (see Theorem 1.1 below) that sometimes enables
one to pass from spectral stability to linear exponential stability in the presence of
vertical lines in the spectrum.
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2436 A. GHAZARYAN, Y. LATUSHKIN, AND S. SCHECTER

3. Unfortunately, in the weighted space, the nonlinear terms in (1.4)–(1.5) fail
to yield a locally Lipschitz mapping, so the fact that the linearization has desirable
properties is still not sufficient to prove stability of the traveling wave. Using an
approach from [4], which treats combustion fronts for the system (1.4)–(1.5) with
small diffusion added to the second equation (i.e., high Lewis number), we showed
that perturbations of the traveling wave that are small in both the weighted norm and
the unweighted norm decay exponentially to the traveling wave in the weighted norm,
and, in fact, have additional nice behavior that yields a physically natural stability
result.

It is the last paragraph that we will generalize in the present paper.
The following linear result will be key.
Theorem 1.1. Consider a linear PDE of the form

Ỹt = DỸξξ + cỸξ +A(ξ)Ỹ =: CỸ ;

D = diag(d1, . . . , dn) with all di ≥ 0, A(ξ) is smooth, and there exist matrices A±
such that A(ξ) → A± exponentially as ξ → ±∞. Let E0 denote one of the standard
Banach spaces L1(R), L2(R), H1(R), or BUC(R), and let C0 denote the operator on
En
0 associated with C. Assume (1) sup{Reλ : λ ∈ Spess(C0) < 0} and (2) {λ : Reλ ≥

0} is contained in the resolvent set of C0, except possibly for an eigenvalue 0 with
generalized null space N0. Let P0 be the Riesz spectral projection for C0 whose kernel
is equal to N0. (If 0 is not an eigenvalue, then P0 is the identity map.) Then there
are positive numbers K and μ such that ‖etC0P0‖En

0 →En
0
≤ Ke−μt.

If all di’s are positive, then the operator associated with C on each of these
spaces is sectorial, and this result is contained in [8]. If some di’s are 0, and E0 is
L2(R), H1(R), or BUC(R), it is proved in [5]. However, the proof in [5] also works
for any Lp(R), 1 ≤ p < ∞. The reason is that Palmer’s theorem (see, e.g., [15]),
which relates the Fredholm properties of first-order linear differential operators of
the form U → ∂ξU − A(ξ)U(ξ) to the spectra of the constant-coefficient operators
U → ∂ξU − A(±∞)U(ξ), is true not only in the spaces used in [5] but also in any
Lp(R), 1 ≤ p <∞; see [10].

Theorem 1.1 implies in particular that if the traveling wave Y∗ is spectrally stable
in any of the spaces L1(R), L2(R), H1(R), or BUC(R), then it is linearly exponentially
stable in that space.

For E0 equal to one of the spaces H1(R) or BUC(R), which are suited to the
study of nonlinear stability (because they are closed under multiplication), linearized
exponential stability of the traveling wave Y∗ implies (nonlinear) stability; again, see
[8] for the case in which all di’s are positive and [5] for the case in which some di’s
are 0. On the other hand, the wave is not stable in E0 if there is spectrum in the
half-plane Reλ > 0; see [8, section 5.1], for the case in which all di’s are positive and
[20] for the case in which some di’s are 0.

We remark that a weaker definition of spectral stability is sometimes used: in
work on viscous conservation laws and related equations, a traveling wave is called
spectrally stable in X if the spectrum of L is contained in {λ : Reλ < 0} ∪ {0}, and
0 is a simple eigenvalue of L [3]. If 0 is in the essential spectrum of L, the simple
eigenvalue condition means the following: the Evans function, an analytic function
defined to the right of the essential spectrum of L whose zeros are eigenvalues of
L, can be analytically extended to a neighborhood of 0 and has a simple zero at 0.
This weaker definition of spectral stability sometimes implies linear algebraic stability,
which, in turn, sometimes implies (nonlinear) stability [25, 11, 12].
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Let E0 be one of the spaces H1(R) or BUC(R). Suppose that on En
0 , the lin-

ear operator associated with L has essential spectrum in the half-plane Reλ ≥ 0.
(Actually, the essential spectrum of the operator on either of these spaces is equal to
its essential spectrum on L2(R)n.) As with the system (1.4)–(1.5), often one can intro-
duce a weight function that shifts the essential spectrum to the left. We shall limit our
attention to a class of weight functions of exponential type. Let α = (α−, α+) ∈ R2.
We shall say that γα : R → R is a weight function of class α if γα is C2, γα(ξ) > 0
for all ξ, γα(ξ) = eα−ξ for large negative ξ, and γα(ξ) = eα+ξ for large positive ξ.

Suppose that α− ≤ 0 and α+ ≥ 0 so that γα(ξ) is bounded below by a posi-
tive number. If, in the space with weight function γα(ξ) satisfying these conditions,
the traveling wave is spectrally stable, then it is linearly exponentially stable and
nonlinearly exponentially stable in the weighted space. The results in [8, 5] already
mentioned imply this result; the proofs make essential use of the fact that in the
weighted space the nonlinearity is locally Lipschitz [18]. If, for example, α− = 0 and
α+ > 0, such a result shows that if a perturbation of the traveling wave is bounded
as ξ → −∞ and decays like e−α+ξ as ξ → ∞, then it decays in time, in the weighted
norm, to some shift of the wave.

Our interest in this paper is in weight functions γα(ξ) with α− > 0 so that
γα(ξ) → 0 as ξ → −∞. This is the type of weight function that was used in [6]. Such
weight functions are also used in the study of convective instability [16]. Suppose that
perturbations of a traveling wave with velocity c do not decay in the sup norm but
travel with velocity less than c. Then for the linearization of (1.2), if one uses a norm
with weight function γα(ξ) with α− > 0, perturbations of the traveling wave may well
decay.

In one sense there is no loss of generality in considering weight functions with
α− > 0 rather than weight functions with α+ < 0. Since D and R are independent of
x, we can always replace a traveling wave with velocity c by one with velocity −c, in
the process reversing Y− and Y+.

However, in the examples with which we are familiar, for c > 0, the spectrum of
the linearization of (1.2) at a zero of R moves left when one uses a weight function
eα−ξ with α− > 0 and vice versa. Since the weight function eα−ξ will be used to
move the spectrum of the linearization of (1.2) at Y− to the left, in these examples
we would need c > 0. Thus the traveling wave is moving to the right, and Y− is the
state behind the front. However, the hypothesis c > 0 is not directly needed for any
of our results, so we have not stated it. In Appendix B we give a sufficient condition
for the spectrum of the linearization of (1.2) at a zero of R to be moved to the left
by a weight function eα−ξ with α− > 0.

Without loss of generality we shall take Y− to be 0.
Unfortunately, if one uses a weight function with α− > 0, then, as we mentioned

for (1.4)–(1.5), in the weighted space, the nonlinear term typically is no longer a
locally Lipschitz mapping. Making use of such a weight function to prove some sort
of nonlinear stability of a traveling wave is therefore mathematically more difficult.
Nevertheless, by using both such a weight function and the unweighted norm, one can
sometimes obtain physically natural nonlinear stability results. This idea, which as
we noted was used in [4, 6], goes back to [14]; see [6] for additional references. In the
present paper we identify the key assumptions that make the nonlinear proofs in [4, 6]
work, and we are thereby able to generalize the results of those papers.

We shall always assume that 0 < α− < −ω− and 0 ≤ α+ < ω+; ω− and ω+ were
defined at the start of this introduction. The condition α+ < ω+ ensures that Y ′

∗ is in
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the weighted space. The conditions α− < −ω− and 0 ≤ α+ ensure that γ−1
α (ξ)Y∗(ξ)

is bounded, which is required in section 8.
We remark that for a pulse, one could ensure that γ−1

α (ξ)Y∗(ξ) is bounded by
the weaker condition −ω+ < α+. However, since a pulse has Y − = Y + = 0, and we
are assuming that a weight function eα−ξ with 0 < α− is required to stabilize the
linearization at Y −, we need 0 < α+ in order to stabilize the linearization at Y+.

We assume that the traveling wave is spectrally stable in the weighted space.
Since α+ ≥ 0, this assumption is enough to prove stability at the right, where the
weight function is bounded away from 0, but it is not enough to prove stability at the
left. Because of this difficulty, we also assume a special form for the nonlinearity and
some stability in the unweighted norm at the left state 0.

In appropriate variables Y = (U, V ), U ∈ Rn1 , V ∈ Rn2 , n1 + n2 = n, we assume
that for some constant n1 × n1 matrix A1, R(U, 0) = (A1U, 0). Then

(1.7) R(U, V ) =

(
A1U + R̃1(U, V )V

R̃2(U, V )V

)
,

where R̃1 and R̃2 are matrix-valued functions of size n1×n2 and n2×n2, respectively.
This form with A1 = 0 occurs in chemical reaction and combustion problems; see [6, 4]
and section 9 for examples. In a combustion problem with n−1 reactants, suppose the
left state of a combustion front with positive velocity has temperature y1 = y1− > 0
and reactant concentrations (y2, . . . , yn) = (0, . . . , 0). In order to move the left state
to the origin, let u = y1− y1− and let (v1, . . . , vn−1) = (y2, . . . , yn). Since the reaction
rate will be 0 when the reactant concentrations are all 0, the reaction term in the
system of PDEs will take the form (1.7) with n1 = 1, n2 = n − 1, and A1 = 0. We
allow A1 �= 0 in (1.7) because our proofs work for this generalization, but we do not
have an application in mind.

We write

D =

(
D1 0
0 D2

)
,

where each Di is a nonnegative diagonal matrix of size ni × ni.
If we linearize (1.2) at (0, 0), the constant-coefficient linear equation satisfied by

Ṽt depends only on Ṽ : Ṽt = D2Vξξ + cVξ + R̃2(0, 0)Ṽ = L(2)Ṽ . We assume that in the
unweighted norm the operator associated with L(2) has its spectrum in Reλ < −ρ < 0
for some ρ.

In addition, we assume that when we linearize (1.2) at (0, 0), the constant-
coefficient linear equation satisfied by Ũt for Ṽ = 0—namely, Ũt = D1Ũξξ + cŨξ +

A1Ũ = L(1)Ũ—is such that in the unweighted norm the associated operator generates
a bounded semigroup. This is the case when A1 = 0; in Appendix A we give some
other sufficient conditions for this assumption to hold.

With these assumptions we show that perturbations of the traveling wave that
are initially small in both the unweighted and weighted norms stay small in the
unweighted norm and decay exponentially in the weighted norm to some shift of
the wave. In addition, the V -component of the perturbation decays exponentially in
the unweighted norm.

Notice that in the unweighted norm the U -component of the perturbation may
travel with velocity less than c without decay. Our result therefore says that in the
unweighted norm, any instability of the traveling wave is eventually concentrated in
the U -component and is convected with velocity less than c.
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We remark that in the case E0 = BUC(R), as ξ → −∞, the allowed perturbations
of the traveling wave need only be bounded.

The assumption that the operator associated with L(1) on the unweighted space
generates a bounded semigroup implies that its spectrum is contained in the half-
plane Reλ ≤ 0 but does not imply that its spectrum is contained in some half-plane
Reλ < −ν < 0.

Suppose the linear equation Ũt = L(1)Ũ is parabolic; i.e., the corresponding di’s
are all positive. If A1 = 0, then on the space (E0 ∩ L1(R))n1 , the semigroup S(1)(t)
generated by the operator associated with L(1) satisfies an algebraic decay estimate
of the following type; see [9]. Let

(1.8) h(t) = min
(
1, t−

1
2

)
, t > 0.

Then there exists a constant K > 0 such that if Ũ0 ∈ (E0 ∩ L1(R))n1 , then

(1.9) ‖Ũ(t)‖L∞ = ‖S(1)(t)Ũ0‖L∞ ≤ Kh(t)max
(
‖Ũ0‖L∞ , ‖Ũ0‖L1

)
.

Moreover, by Theorem 1.1, the hypotheses already given imply that on the space
L1(R)n2 , the semigroup S(2)(t) generated by the operator associated with L(2) decays
exponentially.

Under the additional assumption, which is automatically satisfied when A1 = 0,
that on the space (E0 ∩ L1(R))n1 , the semigroup S(1)(t) generated by the operator
associated with L(1) satisfies the estimate (1.9), we show that for small perturbations
of the traveling wave in (E0 ∩ L1(R))n1 , the L∞ norm of the U -component of the
perturbation decays like h(t) to the U -component of a shift of the traveling wave.

Our results have a natural interpretation in the case of combustion problems.
Behind a combustion front moving to the right, temperature is high and there are no
remaining reactants. If one makes a perturbation behind the front by adding reactants
(the v-variables), they immediately burn because of the high temperature. On the
other hand, if one makes a perturbation behind the front by adding heat (the u-
variable), it simply diffuses. In a coordinate system moving at the velocity of the
front, the perturbation is also convected to the left. In a weighted space with weight
function that decays at the left, the perturbation will decay. In the unweighted space,
it will remain bounded. If the perturbation is in L1, then its L∞ norm will decay
algebraically.

After giving some definitions in section 2, we list our assumptions and precisely
state our results in section 3. In section 4 we convert (1.2) into a form more suitable
for study. Our main nonlinear stability result is proved in section 5, and results that
use the L1 norm are proved in section 6. Estimates needed for the proofs are deferred
to sections 7 and 8.

In section 9 we study a generalization from [22, 23, 24] of the model for gasless
combustion with diffusive reactant that was studied in [4]. In [22, 23, 24] Simon
et al. consider a model in which two chemical reactions occur at rates determined by
temperature. One reaction is exothermic (produces heat); the other is endothermic
(absorbs heat). Both reactants and heat can diffuse. In some parameter regimes the
authors show numerically that traveling waves exist, that the zero eigenvalue of the
linearization is simple, and that there are no other eigenvalues in the right half-plane.
We show that these results together with our theorem imply the sort of nonlinear
stability of the combustion front described above.

Our point in discussing the work of Simon et al. is not to “make it rigorous.”
Instead, our point is that a numerical study of the Evans function of the type done by
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Simon et al., which takes considerable effort, can in some problems be coupled with
rather routine checks of the remaining hypotheses of our theorems to produce quite
detailed knowledge of the kind of nonlinear stability that the traveling wave enjoys.

2. Spaces and operators. Given U ⊂ Rl, let C0(U) denote the space of
bounded C0 functions m : U → R with the sup norm, which we denote ‖ · ‖L∞ .
More generally, let Ck(U) denote the space of Ck functions m : U → R such that m,
Dm, . . . , Dkm are all bounded continuous functions, with the following Ck norm:

‖m‖Ck = ‖m‖L∞ + ‖Dm‖L∞ + · · ·+ ‖Dkm‖L∞ .

Let BUC(R) denote the closed subspace of C0(R) consisting of uniformly continu-
ous functions. For k ≥ 1, let BUCk(R) denote the closed subspace of Ck(R) consisting
of functions m such that m(k) ∈ BUC(R).

Let E0 denote one of the standard Banach spaces L1(R), L2(R), H1(R), or
BUC(R). We denote the norm in E0 by ‖ ‖0. Recall the weight functions γα(ξ) defined
in the introduction. For a fixed weight function γα of type α, let Eα = {u : γα(ξ)u(ξ) ∈
E0}, with norm ‖u‖α = ‖γαu‖0.

If B is a system of n differential expressions in x or ξ, we shall denote by B0 :
En
0 → En

0 and Bα : En
α → En

α the linear operators given by the formula Y → BY , with
their natural domains.

For example, consider the system of n differential expressions L given by (1.3). For
E0 = L2(R), the domain of L0 is the set of (y1, . . . , yn) in En

0 such that yi ∈ H2(R)
if di > 0 and yi ∈ H1(R) if di = 0. For α ∈ R2, the domain of Lα is the set of
(y1, . . . , yn) in En

α such that γα(ξ)yi(ξ) ∈ H2(R) if di > 0 and γα(ξ)yi(ξ) ∈ H1(R)
if di = 0. If E0 = H1(R), then H2(R) and H1(R) should be replaced by H3(R) and
H2(R), respectively. If E0 = BUC(R), then H2(R) and H1(R) should be replaced
by BUC2(R) and BUC1(R), respectively. If E0 = L1(R), then H2(R) = W 2

2 (R)
and H1 = W 2

1 (R) should be replaced by the Sobolev spaces W 1
2 (R) and W 1

1 (R),
respectively.

Let X be a Banach space, and let B : X → X be a closed, densely defined linear
operator. Its resolvent set ρ(B) is the set of λ ∈ C such that B − λI has a bounded
inverse. The complement of ρ(B) is the spectrum Sp(B). It is the union of the discrete
spectrum Spd(B), which is the set of isolated points in Sp(B) that are eigenvalues of B
of finite algebraic multiplicity, and the essential spectrum Spess(B), which is the rest.

3. Assumptions and results.

3.1. The traveling wave and the linearized operator. We consider the
system (1.1).

Hypothesis 3.1. The function R is C3.
Hypothesis 3.2. The system (1.1) has a traveling wave solution Y∗(ξ), ξ = x− ct,

for which there exist numbers K > 0 and ω− < 0 < ω+ such that for ξ ≤ 0,
‖Y∗(ξ)‖ ≤ Ke−ω−ξ, and for ξ ≥ 0, ‖Y∗(ξ)− Y+‖ ≤ Ke−ω+ξ.

In other words, Y∗(ξ) → 0 exponentially as ξ → −∞ and Y∗(ξ) → Y+ exponen-
tially as ξ → ∞.

Hypotheses 3.1 and 3.2 imply the following.
Lemma 3.3. There exists K > 0 such that the following is true. For ξ ≤ 0,

‖Y (k)
∗ (ξ)‖ ≤ Ke−ω−ξ for k = 1, 2, 3, and for ξ ≥ 0, ‖Y (k)

∗ (ξ)‖ ≤ Ke−ω+ξ for k =
1, 2, 3.
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Let L− and L+ denote the constant-coefficient linear differential expressions ob-
tained by linearizing the right-hand side of (1.2) at 0 and Y+, respectively:

(3.1) L−Ỹ = DỸξξ + cỸξ +DR(0)Ỹ , L+Ỹ = DỸξξ + cỸξ +DR(Y +)Ỹ .

To find Sp(L−
0 ) (respectively, Sp(L+

0 )) on En
0 for E0 = L2(R), one uses the

Fourier transform. The operator L−
0 (respectively, L+

0 ) on L2(R)n is similar to
the operator of multiplication on L2(R)n by the matrix-valued function M−(θ) =
−θ2D + iθcI + DR(0) (respectively, M+(θ) = −θ2D + iθcI + DR(Y+)). The spec-
trum of L−

0 (respectively, L+
0 ) on En

0 for E0 = L2(R) is the closure of the union
over θ ∈ R of the spectra of the matrices M−(θ) (respectively, M+(θ)). Hence
the spectrum of L−

0 (respectively, L+
0 ) is equal to the set of λ ∈ C for which

there exists θ ∈ R such that det(−θ2D + (iθc − λ)I + DR(0)) = 0 (respectively,
det(−θ2D + (iθc − λ)I + DR(Y+)) = 0). It is a collection of curves of the form
λ = λ−k (θ) (respectively, λ = λ+k (θ)), where λ

−
k (θ) (respectively, λ

+
k (θ)) are the eigen-

values of the matrices M−(θ) (respectively, M+(θ)).
Actually, this calculation yields the spectrum of L−

0 (respectively, L+
0 ) on En

0 for
E0 equal to any of L1(R), L2(R), H1(R), or BUC(R); see Lemma 2 in [8, Chapter 5,
Appendix] and the proof of Lemma 3.11(1) below. It also yields important information
about Spess(L0) for E0 equal to any of these spaces. We summarize as follows.

Lemma 3.4.

(1) The linear differential operators associated with L− (respectively, L+) on En
0

for E0 equal to any of L1(R), L2(R), H1(R), or BUC(R) have the same
spectra.

(2) If E0 is any of L1(R), L2(R), H1(R), or BUC(R), on En
0 the right-hand

boundary of Spess(L0) is exactly the right-hand boundary of the set Sp(L−
0 )∪

Sp(L+
0 ). Therefore the right-hand boundary of Spess(L0) is the same for E0

equal to any of L1(R), L2(R), H1(R), or BUC(R).
We will also need Spess(Lα), which is most conveniently found as follows. The

linear map M : En
α → En

0 defined by MỸ = γαỸ is an isomorphism. The linear map
L̂0 = MLαM−1 on En

0 is therefore similar to Lα and hence has the same spectrum.
L̂0 is given by the differential expression

(3.2) L̂W = γαLγ
−1
α W.

Setting ξ = ±∞ in (3.2) yields constant-coefficient linear differential expressions L̂±

given by

L̂±W = DWξξ + (c− 2α±)Wξ + (α2
±D − cα±I +DR(0))W,

with corresponding linear maps L̂±
0 on En

0 . Via the Fourier transform, the operator L̂−
0

(respectively, L̂+
0 ) on L2(R)n is similar to the operator of multiplication on L2(R)n

by the matrix-valued function N−(θ) = −θ2D+ iθ(c− 2α−)I+α2−D− cα−I+DR(0)
(respectively, N+(θ) = −θ2D + iθ(c − 2α+)I + α2

+D − cα+I +DR(Y+)). Hence the

essential spectrum of L̂±
0 on L2(R)n equals that of multiplication by N± on L2(R)n.

We, of course, have the following analogue of Lemma 3.4.
Lemma 3.5.

(1) The linear differential operators associated with L̂− (respectively, L̂+) on En
0

for E0 equal to any of L1(R), L2(R), H1(R), or BUC(R) have the same
spectra.
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(2) If E0 is any of L1(R), L2(R), H1(R), or BUC(R), on En
0 the right-hand bound-

ary of Spess(L̂0) = Spess(Lα) is exactly the right-hand boundary of the set
Sp(L̂−

0 )∪Sp(L̂+
0 ). Therefore the right-hand boundary of Spess(L̂0) = Spess(Lα)

is the same for E0 equal to any of L1(R), L2(R), H1(R), or BUC(R).
We are now ready to state the following.
Hypothesis 3.6. There exists α = (α−, α+) ∈ R2 such that the following are true.
(1) 0 < α− < −ω−.
(2) 0 ≤ α+ < ω+.
(3) For the differential expression L given by (1.3) and E0 = L2(R),

(a) sup{Reλ : λ ∈ Spess(Lα)} < 0,
(b) the only element of Sp(Lα) in {λ : Reλ ≥ 0} is a simple eigenvalue 0.

Hypothesis 3.2, Lemma 3.3, and Hypothesis 3.6(1) and (2) imply the following.
Lemma 3.7.

(1) γ−1
α Y∗ ∈ C1(R)n.

(2) As ξ → ±∞, γα(ξ)Y
(k)
∗ (ξ) and γ−1

α (ξ)Y
(k)
∗ (ξ) approach 0 exponentially for

k = 1, 2, 3.
Lemma 3.8.

(1) Statements (3a) and (3b) of Hypothesis 3.6 are also true for E0 = L1(R),
H1(R), and BUC(R).

(2) For E0 = L1(R), L2(R), H1(R), or BUC(R), the kernel of Lα in En
α is

spanned by Y ′∗ .
Proof. Lemma 3.5(2) implies that statement (3a) of Hypothesis 3.6 is also true

for E0 = L1(R), H1(R), and BUC(R).
We will now show that statement (3b) of Hypothesis 3.6 is also true for E0 =

L1(R), H1(R), and BUC(R), and at the same time we will show the second statement
of the lemma. The eigenvalue equation λỸ = LỸ can be written as a first-order linear
system of the form

(3.3) Zξ = (B(ξ) + λC)Z,

with Z ∈ Rn+n0 ; n0 is the number of di’s in (1.1) that are positive. Statement
(3a) of Hypothesis 3.6 and Palmer’s theorem (see, e.g., [15] for n = n0 and [5]
for n > n0) imply that there is a number k such that for each λ with Reλ ≥ 0,
there is a k-dimensional space of solutions E−(λ) of (3.3) such that if Z ∈ E−(λ),
then eα−ξZ(ξ) → 0 exponentially as ξ → −∞; if Z /∈ E−(λ) is any other solu-
tion of (3.3), then eα−ξZ(ξ) grows exponentially as ξ → −∞. Similarly, there is an
(n − k)-dimensional space of solutions E+(λ) of (3.3) such that if Z ∈ E+(λ), then
eα+ξZ(ξ) → 0 exponentially as ξ → ∞; if Z /∈ E+(λ) is any other solution of (3.3),
then eα+ξZ(ξ) grows exponentially as ξ → −∞. For E0 equal to any of L1(R), L2(R),
H1(R), or BUC(R), Z(ξ) is a solution of (3.3) that corresponds to an eigenfunction
of Lα if and only if Z is a nonzero element of E−(λ)∩E+(λ). The result follows.

3.2. Product structure. Let Y = (U, V ), U ∈ Rn1 , V ∈ Rn2 , and n1+n2 = n.
We write

R(Y ) =

(
R1(U, V )
R2(U, V )

)
, Ri : R

n1 × R
n2 → R

ni , i = 1, 2,

D =

(
D1 0
0 D2

)
, Di = diag(dik), dik ≥ 0, i = 1, 2, k = 1, 2, . . . , ni.
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Equation (1.1) now reads

Ut = D1Uxx +R1(U, V ),(3.4)

Vt = D2Vxx +R2(U, V ).(3.5)

Equation (1.2) reads

Ut = D1Uξξ + cUξ +R1(U, V ),(3.6)

Vt = D2Vξξ + cVξ +R2(U, V ).(3.7)

We write Y∗(ξ) = (U∗(ξ), V∗(ξ)) and Y+ = (U+, V+).
Hypothesis 3.2 implies that R(0, 0) = 0. We assume in addition the following.
Hypothesis 3.9. There is an n1 × n1 matrix A1 such that R(U, 0) = (A1U, 0).
As mentioned in the introduction, Hypothesis 3.9 implies that R has the form

(1.7). Hypothesis 3.9 is required to prove a key estimate, Lemma 8.3.
Let

L(1) = D1∂ξξ + c∂ξ +DUR1(0, 0) = D1∂ξξ + c∂ξ +A1,(3.8)

L(2) = D2∂ξξ + c∂ξ +DVR2(0, 0).(3.9)

For i = 1, 2, L(i) is a constant-coefficient linear differential expression on R
ni . By

Hypothesis 3.9,

(3.10) L− =

(
L(1) DVR1(0, 0)

0 L(2)

)
.

For future reference, we note that from (1.3) and (3.1),

(3.11) LỸ = L−Ỹ + (DR(Y∗)−DR(0))Ỹ ,

and then from (3.10),

(3.12) L

(
Ũ

Ṽ

)
=

(
L(1) DVR1(0, 0)

0 L(2)

)(
Ũ

Ṽ

)
+ (DR(Y∗)−DR(0))

(
Ũ

Ṽ

)
.

Our next hypothesis gives a degree of stability in the unweighted norm at the
state (0, 0) at one end of the traveling wave.

Hypothesis 3.10.

(1) For E0 = L2(R) or BUC(R), the operator L(1)
0 on En1

0 generates a bounded
semigroup.

(2) For E0 = L2(R), the operator L(2)
0 on En2

0 satisfies sup{Reλ : λ ∈
Sp(L(2)

0 )} < 0.
If the matrix A1 is dissipative (that is, if Re〈A1U,U〉Cn1 ≤ 0), then the operator

L(1)
0 is dissipative on L2(R)n1 and thus generates a contraction semigroup. In partic-

ular, if A1 = 0, then Hypothesis 3.10(1) holds. In Appendix A we give another easily
checked sufficient condition for Hypothesis 3.10(1) to hold in the case E0 = L2(R).
Also, in Appendix A we give more sophisticated sufficient conditions for Hypothe-
sis 3.10(1) to hold in the cases E0 = L1(R), L2(R), or BUC(R); they are based on
general abstract conditions under which C0-semigroups are bounded [7, 21].

Hypothesis 3.10 implies the following.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2444 A. GHAZARYAN, Y. LATUSHKIN, AND S. SCHECTER

Lemma 3.11.

(1) For E0 = H1(R), it is again true that L(1)
0 generates a bounded semigroup.

(2) For E0 = L1(R), H1(R), or BUC(R), it again true that sup{Reλ : λ ∈
Sp(L(2)

0 )} < 0.
(3) For E0 = L1(R), L2(R), H1(R), or BUC(R), the following are true:

(a) sup{Reλ : λ ∈ Sp(L(1)
0 )} ≤ 0.

(b) sup{Reλ : λ ∈ Sp(L−
0 )} ≤ 0.

(c) Choose ρ > 0 such that sup{Reλ : λ ∈ Sp(L(2)
0 )} < −ρ. Then there

exists K > 0 such that for t ≥ 0, ‖etL(2)
0 ‖En2

0 →En2
0

≤ Ke−ρt.

Proof. Statement (1) follows from Hypothesis 3.10(1) for E0 = L2(R). Indeed, we
recall that the Fourier transform is an isomorphism of H1(R) onto L2

m(R), where the
weight function is m(θ) = (1 + |θ|)1/2, θ ∈ R. The operator of multiplication by the
function m(θ) is an isomorphism of L2

m(R) onto L2(R). Under the Fourier transform
followed by this isomorphism, the operator of differentiation on H1(R) is similar to
the operator of multiplication by iθ on L2(R). The latter is in turn similar via the
Fourier transform to the operator of differentiation on L2(R). It follows that operators
on H1(R)n1 and L2(R)n1 associated with the same constant-coefficient differential
expression are similar. Therefore the semigroups they generate are similar, so (1) is
proved.

Statement (2) follows from Hypothesis 3.10(2) and the analogue of Lemma 3.4(1)
for L(1) and L(2). Statement (3a) follows from Hypothesis 3.10(1). Statement (3b)

follows from the analogous facts for L(1)
0 and L(2)

0 , and (3c) follows from Theorem
1.1.

3.3. Nonlinear stability. Let

(3.13) β = (min(0, α−),max(0, α+)) = (0, α+).

Let γβ be a fixed weight function of class β chosen so that for all ξ, max(1, γα(ξ)) ≤
γβ(ξ).

For E0 = L1(R), L2(R), H1(R), or BUC(R), let Eβ = {u : γβ(ξ)u(ξ) ∈ E0},
with norm ‖u‖β = ‖γβu‖0. We shall frequently use the facts in the following lemma
without explicit mention.

Lemma 3.12.

(1) As vector spaces, Eβ = E0 ∩ Eα.
(2) On Eβ = E0∩Eα, the norms ‖u‖β and ‖u‖ = max(‖u‖0, ‖u‖α) are equivalent.
(3) Eβ ↪→ Eα and Eβ ↪→ E0; that is, if u ∈ Eβ, then

(3.14) ‖u‖0 ≤ ‖u‖β and ‖u‖α ≤ ‖u‖β.
Since 0 is isolated in the spectrum of Lα by Hypothesis 3.6(3) and Lemma 3.8,

we can define the Riesz spectral projection Pc
α of En

α onto the one-dimensional space
N(Lα). Pc

α commutes with etLα for all t > 0. Since Lα is the Fredholm of index zero [5]
and 0 is a simple eigenvalue of Lα, En

α = R(Lα)⊕N(Lα), and N(Pc
α) = R(Lα). Since

R(Pc
α) = N(Lα) is spanned by Y ′∗ , we write Pc

αY = πα(Y )Y ′∗ , where πα : En
α → R is a

bounded linear functional such that πα(Y
′
∗) = 1.

Let Ps
α = I − Pc

α. Ps
α is projection onto R(Lα), with kernel N(Lα). It also com-

mutes with etLα for all t > 0.
From Theorem 1.1 we have the following.
Lemma 3.13. Let E0 = L1(R), L2(R), H1(R), or BUC(R). Choose ν, 0 < ν < ρ,

such that sup{Reλ : λ ∈ Sp(Lα) and λ �= 0} < −ν. Then there exists K > 0 such
that for t ≥ 0, ‖etLαP

s
α‖En

α→En
α
≤ Ke−νt.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABILITY OF TRAVELING WAVES 2445

Lemmas 3.3 and 3.7(2) imply that Y ′
∗ ∈ En

β . Therefore if Ỹ ∈ En
β ⊂ En

α , then

Pc
αỸ ∈ En

β , and therefore Ps
αỸ = Ỹ − Pc

αỸ ∈ En
β . Hence we can define Pc

β and Ps
β

to be operators from En
β to itself given by restricting Pc

α and Ps
α, respectively, to En

β .
Since Eβ ↪→ Eα, the one-dimensional operator Pc

β is a bounded operator on En
β , so

Ps
β = I − Pc

β is also bounded. It is easy to see that Pc
β and Ps

β are projections and
that the range of one is the kernel of the other. It follows that R(Ps

β) is a closed
subspace of En

β , and En
β = R(Ps

β)⊕ R(Pc
β). In particular, R(Ps

β) = R(Lα) ∩ En
β .

Given Y 0 ∈ Y∗ + En
β , let Y (t) = Y (t, Y 0) be the solution of (1.2) in Y∗ + En

β with

Y (0) = Y 0, which we shall show exists. We shall show that there is a neighborhood
U of Y∗ in Y∗ + En

β such that if Y 0 ∈ U , we can write

(3.15) Y 0 = Ỹ 0 + Y∗(ξ − q0) with (Ỹ 0, q0) ∈ R(Ps
β)× R.

Similarly, if Y (t) ∈ U , we can write

(3.16) Y (t) = Ỹ (t) + Y∗(ξ − q(t)) with (Ỹ (t), q(t)) ∈ R(Ps
β)× R.

The following theorem gathers most of our nonlinear stability results. Let Ỹ (t) =
(Ũ(t), Ṽ (t)).

Theorem 3.14. Assume that Hypotheses 3.1, 3.2, 3.6, 3.9, and 3.10 hold. Choose
ν > 0 as in Lemma 3.13. Let E0 = H1(R) or BUC(R). Then there is a constant C > 0
such that for each small δ > 0, there exists η > 0 such that the following is true. Let
Y 0 ∈ Y∗ + En

β with ‖Y 0 − Y∗‖β ≤ η, and let (Ỹ 0, q0) be given by (3.15). Let Y (t) be

the solution of (1.2) in Y∗ + En
β with Y (0) = Y 0. Then for all t ≥ 0,

(1) Y (t) is defined;
(2) Y (t) ∈ U , so we can define (Ỹ (t), q(t)) by (3.16);
(3) ‖Ỹ (t)‖β + |q(t)| ≤ δ;

(4) ‖Ỹ (t)‖α ≤ Ce−νt‖Ỹ 0‖α;
(5) there exists q∗ such that |q(t)− q∗| ≤ Ce−νt‖Ỹ 0‖α;
(6) ‖Ũ(t)‖0 ≤ C‖Ỹ 0‖β;
(7) ‖Ṽ (t)‖0 ≤ Ce−νt‖Ỹ 0‖β.
Note that (4) and (5) imply easily that for a larger constant C̃, ‖Y (t) − Y∗(ξ −

q∗)‖α ≤ C̃e−νt‖Ỹ 0‖α.
3.4. Algebraic decay. Recall from (1.8) the function h(t) = min(1, t−

1
2 ). For

E0 = L2(R), H1(R), or BUC(R), we consider the Banach space E0 ∩ L1(R) with the
norm

‖u‖E0∩L1(R) = max{‖u‖E0, ‖u‖L1(R)}.

Hypothesis 3.15.

(1) The operator associated with L(1) on L1(R)n1 generates a bounded semi-
group.

(2) For E0 = H1(R) or BUC(R), the operator associated with L(1) on (E0 ∩
L1(R))n1 generates a semigroup S(1)(t) that satisfies an estimate of the form
(1.9).

We note that if di > 0 for i = 1, . . . , n − 1 and A1 = 0, then Hypothesis 3.15
holds.

Theorem 3.16. Assume that Hypotheses 3.1, 3.2, 3.6, 3.9, 3.10, and 3.15 hold.
Let E0 = H1(R) or BUC(R). Let Y 0 ∈ Y∗ + (Eβ ∩ L1(R))n with ‖Y 0 − Y∗‖β and
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‖Y 0 − Y∗‖L1 sufficiently small, and let (Ỹ 0, q0) be given by (3.15). Let Y (t) be the
solution of (1.2) in Y∗ + En

β with Y (0) = Y 0. Then for all t ≥ 0, all conclusions of
Theorem 3.14 hold, and in addition,

(1) Y (t) ∈ (Eβ ∩ L1(R))n;

(2) ‖Ũ(t)‖L1 ≤ Cmax(‖Ũ0‖L1, ‖Ỹ 0‖α);
(3) ‖Ũ(t)‖L∞ ≤ Ch(t)max(‖Ũ0‖L1 , ‖Ỹ 0‖β);
(4) ‖Ṽ (t)‖L1 ≤ Ce−νt max(‖Ṽ 0‖L1, ‖Ỹ 0‖α).
4. System to be studied. Let E0 = H1(R) or BUC(R). We seek a solution to

(3.6)–(3.7) in the form Y (ξ, t) = Y∗(ξ − q(t)) + Ỹ (ξ, t); i.e.,

(4.1)

(
U(ξ, t)
V (ξ, t)

)
=

(
U∗(ξ − q(t))
V∗(ξ − q(t))

)
+

(
Ũ(ξ, t)

Ṽ (ξ, t)

)
,

with Ỹ (ξ, t) in En
β for each t. Let

Yq = Y∗(ξ − q) = (U∗(ξ − q), V∗(ξ − q)) = (Uq, Vq).

With this notation, Ỹ satisfies

(4.2) Ỹt = DỸξξ + cỸξ +R(Yq + Ỹ )−R(Yq) + Y ′
∗(ξ − q(t))q′(t).

Note that

R(Y + Ỹ )−R(Y )−DR(Y )Ỹ =

(∫ 1

0

DR(Y + tỸ )−DR(Y ) dt

)
Ỹ .

We define

(4.3) N(Y, Ỹ ) =

∫ 1

0

DR(Y + tỸ )−DR(Y ) dt,

as an n× n matrix-valued function of (Y, Ỹ ). Using (4.3), we rewrite (4.2) as

Ỹt = DỸξξ + cỸξ +DR(Y∗)Ỹ + (DR(Yq)−DR(Y∗))Ỹ

+N(Yq, Ỹ )Ỹ + Y ′
∗(ξ − q(t))q′(t)

= LỸ + (DR(Yq)−DR(Y∗))Ỹ +N(Yq, Ỹ )Ỹ + Y ′
∗(ξ − q(t))q′(t).(4.4)

Let us assume that Ỹ (ξ, t) is in R(Lα) ∩ En
β for every t. Applying Ps

α and Pc
α to

(4.4) we obtain

Ỹt = LỸ + Ps
α

(
(DR(Yq)−DR(Y∗))Ỹ +N(Yq, Ỹ )Ỹ + Y ′

∗(ξ − q(t))q′(t)
)
,(4.5)

−q′(t)Pc
αY

′
∗(ξ − q(t)) = Pc

α

(
(DR(Yq)−DR(Y∗))Ỹ +N(Yq, Ỹ )Ỹ

)
.(4.6)

From (4.6) we obtain

(4.7) −q′(t)παY ′
∗(ξ − q(t)) = πα

(
(DR(Yq)−DR(Y∗))Ỹ +N(Yq, Ỹ )Ỹ

)
Lemma 4.1. There is a number δ1 > 0 such that if |q| ≤ δ1, then

1

2
≤ |παY ′

∗(ξ − q)| ≤ 3

2
.
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Proof. By Lemma 3.7(2), γα(ξ)Y
′′
∗ (ξ) → 0 exponentially as ξ → ±∞. Therefore

the mapping q → Y ′∗(ξ − q) is continuous (in fact, differentiable) from R to Eα, and
πα(Y

′
∗(ξ)) = 1. The lemma follows.
Assuming |q| ≤ δ1, we introduce the notation

G(Ỹ , q) = (DR(Yq)−DR(Y∗))Ỹ +N(Yq, Ỹ )Ỹ ,(4.8)

κ(Ỹ , q) = −(παY
′
∗(ξ − q))−1παG(Ỹ , q).(4.9)

We have

(4.10)
2

3
≤ |(παY ′

∗(ξ − q))−1| ≤ 2.

Since κ(Ỹ , q) has been chosen to make

(4.11) Pc
α

(
G(Ỹ , q) + κ(Ỹ , q)Y ′

∗(ξ − q)
)
= 0,

we may rewrite (4.5)–(4.6) as the following system on (R(Lα) ∩ En
β )× R:

∂tỸ = LỸ +G(Ỹ , q) + κ(Ỹ , q)Y ′
∗(ξ − q),(4.12)

q̇ = κ(Ỹ , q).(4.13)

We recall from section 3 that R(Ps
β) = R(Lα) ∩ En

β .

5. Proof of nonlinear stability. We continue to let E0 = H1(R) or BUC(R).

5.1. Existence of solutions and a priori bound for ‖Ỹ (t)‖β + |q(t)|. We
shall study solutions of the system (4.12)–(4.13) on R(Ps

β)× R.
The operator (Lβ , 0) generates a strongly continuous semigroup on En

β × R. The
nonlinearity is locally Lipschitz by Proposition 7.7, which will be proved in the follow-
ing section. Therefore given initial data (Ỹ 0, q0) ∈ En

β×R, the system (4.12)–(4.13) has

a unique mild solution (Ỹ , q)(t, Ỹ 0, q0) with (Ỹ , q)(0, Ỹ 0, q0) = (Ỹ 0, q0). The solution
is defined for t in the maximal interval 0 ≤ t < tmax(Ỹ

0, q0), where 0 < tmax(Ỹ
0, q0) ≤

∞; see, e.g., [13, Theorem 6.1.4]. The set {(t, Ỹ 0, q0) ∈ R+ × En
β × R : 0 ≤ t <

tmax(Ỹ
0, q0)} is open in R+×En

β ×R, and the map (t, Ỹ 0, q0) �→ (Ỹ , q)(t, Ỹ 0, q0) from
this set to En

β × R is continuous; see, e.g., [19, Theorem 46.4].

Moreover, if (Ỹ , q) ∈ En
β × R, then we recall from (4.11) in section 4 that the

right-hand side of (4.12) belongs to R(Ps
β), and Ps

β commutes with Lβ and etLβ . We
may therefore consider (4.12)–(4.13) on R(Ps

β)× R. We conclude the following.
Proposition 5.1. For each δ > 0, if 0 < γ < δ, then there exists T , with

0 < T ≤ ∞, such that the following is true: if (Ỹ 0, q0) ∈ R(Ps
β)× R satisfies

(5.1) ‖(Ỹ 0, q0)‖En
β
×R = ‖Ỹ 0‖β + |q0| ≤ γ

and 0 ≤ t < T , then (Ỹ , q)(t, Ỹ 0, q0) ∈ R(Ps
β)× R is defined and satisfies

(5.2) ‖Ỹ (t, Ỹ 0, q0)‖β + |q(t, Ỹ 0, q0)| ≤ δ.

Let Tmax(δ, γ) denote the supremum of all T such that (5.2) holds for all 0 ≤ t < T
whenever (5.1) is satisfied.
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5.2. Decay of ‖Ỹ (t)‖α. Let δ1 < 1 be chosen as in Lemma 4.1.
Proposition 5.2. Let ν > 0 satisfy the hypothesis of Lemma 3.13. Then there

exist δ2 in (0, δ1), C > 0, and Kα > 0 such that for every δ ∈ (0, δ2) and every γ
with 0 < γ < δ, the following is true. Let (Ỹ 0, q0) ∈ R(Ps

β) × R satisfy (5.1) so that

(Ỹ , q)(t, Ỹ 0, q0) satisfies (5.2) for 0 ≤ t < Tmax(δ, γ). Then

(5.3) ‖Ỹ (t)‖α ≤ Kαe
−νt‖Ỹ 0‖α and |q(t)− q0| ≤ C‖Ỹ 0‖α for 0 ≤ t < Tmax(δ, γ).

Moreover, if Tmax(δ, γ) = ∞, then there is q∗ ∈ R such that

(5.4) |q(t)− q∗| ≤ Ce−νt‖Ỹ 0‖α for all t ≥ 0.

Proof. Since Ỹ (t) is a mild solution of (4.12) in En
β , it satisfies the integral equation

(5.5) Ỹ (t) = etLβ Ỹ 0 +

∫ t

0

e(t−s)Lβ

(
G(Ỹ (s), q(s)) + κ(Ỹ (s), q(s))Y ′

∗(ξ − q(s))
)
ds.

Since Ỹ 0 ∈ En
β by assumption and G(Ỹ (s), q(s)) + κ(Ỹ (s), q(s))Y ′∗(ξ − q(s)) is in En

β ,

we have etLβ Ỹ 0 = etLα Ỹ 0 and

e(t−s)Lβ

(
G(Ỹ (s), q(s)) + κ(Ỹ (s), q(s))Y ′

∗ (ξ − q(s))
)

= e(t−s)Lα

(
G(Ỹ (s), q(s)) + κ(Ỹ (s), q(s))Y ′

∗ (ξ − q(s))
)
.

Therefore (5.5) holds with Lβ replaced by Lα. In addition, Ỹ 0 ∈ R(Ps
α), and we recall

from section 4 (see (4.11)) that G(Ỹ (s), q(s)) + κ(Ỹ (s), q(s))Y ′∗(ξ− q(s)) is in R(Ps
α).

Therefore (5.5) holds with Lβ replaced by LαPs
α.

Choose k > 1 such that

sup{Reλ : λ ∈ Sp(Lα) and λ �= 0} < −ν̄ := −kν.
By Lemma 3.13 there exists Kα > 0 such that ‖etLαP

s
α‖ ≤ Kαe

−ν̄t. From Proposi-
tion 7.7(1), for ‖Ỹ (s)‖β + |q(s)| ≤ δ, with δ given by the a priori bound (5.2), there
exists a constant C1 such that

‖Ỹ (t)‖α ≤ Kαe
−ν̄t‖Ỹ 0‖α

+

∫ t

0

Kαe
−ν̄(t−s)C1

(
‖Ỹ (s)‖0 + |q(s)|

)
(1 + ‖Y ′

∗(ξ − q(s)) ‖α)‖Ỹ (s)‖α ds.

Using the a priori bound (5.2) again, along with (3.14), one finds a constant C2 so
that

‖Ỹ (t)‖α ≤ Kαe
−ν̄t‖Ỹ 0‖α + C2δ

∫ t

0

e−ν̄(t−s)‖Ỹ (s)‖α ds.(5.6)

Choosing δ2 < min(δ1, (k − 1) ν
C2

) and using Gronwall’s inequality for the function

eν̄t‖Ỹ (t)‖α (see, e.g., [8, Section 1.2.1]), we arrive at the first estimate in (5.3).
From Proposition 7.7(2), the a priori bound (5.2), and the first estimate in (5.3),

we have

|q̇(t)| = |κ(Ỹ (t), q(t))| ≤ C1

(
|q(t)|+ ‖Ỹ (t)‖0

)
‖Ỹ (t)‖α ≤ C1δKαe

−νt‖Ỹ 0‖α
= Ce−νt‖Ỹ 0‖α,(5.7)
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where C = C1δKα. Using (5.7) and

(5.8) q(t) = q0 +

∫ t

0

q̇(s) ds, 0 ≤ t < Tmax(δ, γ),

we obtain the second estimate in (5.3):

(5.9) |q(t) − q0| ≤
∫ t

0

|q̇(s)| ds ≤ C‖Ỹ 0‖α
∫ t

0

e−νt ds ≤ C

ν
‖Ỹ 0‖α.

Finally, if Tmax(δ, γ) = ∞, then (5.7) implies that in (5.8), limt→∞ q(t) = q∗

exists. From (5.8) and (5.7) we have

|q∗ − q(t)| ≤
∫ ∞

t

|q̇(s)| ds ≤ C

ν
e−νt‖Ỹ 0‖α.

5.3. Bounds for ‖Ỹ (t)‖0.
Proposition 5.3. Let ρ > 0 satisfy the hypothesis of Lemma 3.11. Choose ν < ρ

such that ν satisfies the hypothesis of Proposition 5.2. Let δ2 be given by Proposi-
tion 5.2. Then there exist δ3 in (0, δ2) and C > 0 such that for every δ ∈ (0, δ3)
and every γ with 0 < γ < δ, the following is true: let (Ỹ 0, q0) ∈ R(Ps

β) × R satisfy

(5.1). Then (Ỹ , q)(t, Ỹ 0, q0) satisfies (5.2) for 0 ≤ t < Tmax(δ, γ), and the following
estimates for Ỹ (t) = (Ũ(t), Ṽ (t)) hold for 0 ≤ t < Tmax(δ, γ)):

‖Ũ(t)‖0 ≤ C‖Ỹ 0‖β ,(5.10)

‖Ṽ (t)‖0 ≤ C‖Ỹ 0‖βe−ρt.(5.11)

Proof. Using (3.12), we rewrite (4.12) as

Ũt = L(1)Ũ +DVR1(0, 0)Ṽ +H1(ξ, Ũ , Ṽ , q),(5.12)

Ṽt = L(2)Ṽ +H2(ξ, Ũ , Ṽ , q),(5.13)

with

H1(ξ, Ũ , Ṽ , q) = (DR1(Y∗)−DR1(0))Ỹ +G1(Ỹ , q) + κ(Ỹ , q)U ′
∗(ξ − q(t))

= (DR1(Y∗)−DR1(0))Ỹ + (DR1(Yq)−DR1(Y∗))Ỹ +N1(Yq, Ỹ )Ỹ(5.14)

+κ(Ỹ , q)U ′
∗(ξ − q(t)),

H2(ξ, Ũ , Ṽ , q) = (DR2(Y∗)−DR2(0))Ỹ +G2(Ỹ , q) + κ(Ỹ , q)V ′
∗(ξ − q(t))

= (DR2(Y∗)−DR2(0))Ỹ + (DR2(Yq)−DR2(Y∗))Ỹ +N2(Yq, Ỹ )Ỹ(5.15)

+κ(Ỹ , q)V ′
∗(ξ − q(t)).

We consider the following nonautonomous linear system related to (5.12)–(5.13):

Ût = L(1)Û +DVR1(0, 0)Ṽ +H1(ξ, Ũ(t), Ṽ (t), q(t)),(5.16)

V̂t = L(2)V̂ +H2(ξ, Ũ(t), Ṽ (t), q(t)),(5.17)

where (Ũ , Ṽ , q)(t) = (Ũ , Ṽ , q)(t, U0, V 0, q0). Since (Ũ , Ṽ , q)(t) is a fixed solution of
(4.12)–(4.13) in En

β ×R, we can regard (5.16)–(5.17) as a nonautonomous linear system

on En
0 . The solution with the value (U0, V 0) at t = 0 is, of course, (Û , V̂ )(t, U0, V 0) =

(Ũ , Ṽ )(t).
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Let (Ỹ , q) lie in a bounded neighborhood N of (0, 0) in En
β ×R. Lemma 8.2, which

will be proved in section 8, implies that in (5.14) and (5.15), ‖ ‖0 of the first two terms
on the right is bounded by a constant times ‖Ỹ ‖α. Proposition 7.7(2) implies that
in each expression, ‖ ‖0 of the last term on the right is bounded by a constant times
‖Ỹ ‖α. Finally, Lemma 8.3 implies that in each expression, ‖ ‖0 of the third term on
the right is bounded by a constant times ‖Ỹ ‖0‖Ṽ ‖0. Hence for each N , there exists a
constant C1 > 0 such that for (Ỹ , q) ∈ N ,

(5.18) ‖Hi(ξ, Ũ , Ṽ , q)‖0 ≤ C1

(
‖Ỹ ‖0‖Ṽ ‖0 + ‖Ỹ ‖α

)
, i = 1, 2.

The solution of (5.17) in En
0 is

(5.19) V̂ (t) = Ṽ (t) = etL
(2)
0 Ṽ 0 +

∫ t

0

e(t−s)L(2)
0 H2(ξ, Ũ(s), Ṽ (s), q(s)) ds.

Choose k > 1 such that

sup{Reλ : λ ∈ Sp(L(2)
0 )} < −ρ̄ = −kρ.

By Lemma 3.11 there existsK2 > 0 such that ‖etL(2)
0 ‖En2

0 →En2
0

≤ K2e
−ρ̄t. Using (5.18)

we obtain the estimate

(5.20)

‖Ṽ (t)‖0 ≤ K2e
−ρ̄t‖Ṽ 0‖0 +

∫ t

0

K2e
−ρ̄(t−s)C1

(
‖Ỹ (s)‖0‖Ṽ (s)‖0 + ‖Ỹ (s)‖α

)
ds.

Let 0 < γ < δ < δ2, and let (Ỹ 0, q0) ∈ R(Ps
β)×R satisfy (5.1) so that (Ỹ , q)(t, Ỹ 0, q0)

satisfies (5.2) for 0 ≤ t < Tmax(δ, γ). Since ν < ρ < ρ̄, (5.20) and Proposition 5.2 yield

‖Ṽ (t)‖0 ≤ K2e
−ρ̄t‖Ṽ 0‖0 +

∫ t

0

K2e
−ρ̄(t−s)C1

(
δ‖Ṽ (s)‖0 +Kαe

−νs‖Ỹ 0‖α
)
ds

≤ K2e
−ρ̄t‖Ṽ 0‖0 + K2C1Kα

ρ̄− ν
e−νt‖Ỹ 0‖α +

∫ t

0

K2e
−ρ̄(t−s)C1δ‖Ṽ (s)‖0 ds

≤ C‖Ỹ 0‖β +

∫ t

0

K2C1δe
−ρ̄(t−s)‖Ṽ (s)‖0 ds.

Using Gronwall’s inequality for the function eρ̄t‖Ṽ (t)‖0, we obtain, for 0 ≤ t <
Tmax(δ, γ),

‖Ṽ (t)‖0 ≤ C‖Ỹ 0‖βe(K2C1δ−ρ̄)t.

For δ3 < min(δ2,
(k−1)ρ
K2C1

), we have (5.11).
The solution of (5.16) in En

0 is
(5.21)

Û(t) = Ũ(t) = eL
(1)
0 tŨ0+

∫ t

0

eL
(1)
0 (t−s)

(
DVR1(0, 0)Ṽ (s) +H1(ξ, Ũ(s), Ṽ (s), q(s))

)
ds.

Using Hypothesis 3.10(1), (5.18), (5.11), and Proposition 5.2, we obtain the estimate

‖Ũ(t)‖0 ≤ K1‖Ũ0‖0 +
∫ t

0

K1C2

(
‖Ṽ (s)‖0 + ‖Ỹ (s)‖0‖Ṽ (s)‖0 + ‖Ỹ (s)‖α

)
ds

≤ K1‖Ỹ 0‖β +

∫ t

0

K1C2

(
C(1 + δ)e−ρs‖Ỹ 0‖β +Kαe

−νs‖Ỹ 0‖β
)
ds,

which implies (5.10).
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5.4. Completion of proof of nonlinear stability. Define a mapping F from
R(Ps

β)× R to the affine space Ỹ∗ + En
β by

F(Ỹ , q) = Y = Y∗(ξ − q) + Ỹ = Y∗(ξ) + (Y∗(ξ − q)− Y∗(ξ)) + Ỹ (ξ).

Consider

(5.22) Y∗(ξ − q)− Y∗(ξ) = −q
∫ 1

0

Y ′
∗(ξ − tq)dt

and

(5.23) γα(ξ)(Y∗(ξ − q)− Y∗(ξ)) = −qγα(ξ)
∫ 1

0

Y ′
∗(ξ − tq)dt

= −q
∫ 1

0

γα(ξ)

γα(ξ − tq)
γα(ξ − tq)Y ′

∗(ξ − tq)dt = −q
∫ 1

0

γα(tq)γα(ξ − tq)Y ′
∗(ξ − tq)dt.

By Lemmas 3.3 and 3.7, both (5.22) and (5.23) approach 0 exponentially as ξ → ±∞.
Therefore Y∗(ξ − q)− Y∗(ξ) is in En

β as desired.
Lemma 5.4. DF(0, 0) is an isomorphism, so F maps a neighborhood V of (0, 0)

in R(Ps
β)× R diffeomorphically onto a neighborhood U of Y∗ in Y∗ + En

β .

Proof. The mapping q → Y∗(ξ − q)− Y∗(ξ) is C1 as a map from R to En
β , so F is

C1. R(Ps
β) is a codimension-one subspace of E2, and ∂F

∂q (0, 0) = −Y ′∗(ξ) is not in it.

Therefore DF(0, 0) is an isomorphism. The rest of the result is a consequence of the
inverse function theorem.

Assume that V is chosen small enough so that F and F−1 are Lipschitz. Let Q
denote the Lipschitz constant of F−1.

We are now ready to prove Theorem 3.14.
Proof of Theorem 3.14. Let ν > 0 satisfy the hypothesis of Theorem 3.14, and let

ρ > ν satisfy the hypothesis of Proposition 5.3. Let δ2 be given by Proposition 5.2,
and let δ3 be given by Proposition 5.3.

Choose δV , 0 < δV ≤ δ3, such that (1) if ‖Ỹ ‖β+ |q| ≤ δV , then (Ỹ , q) ∈ V , and (2)
ηU = Q−1δV is such that the closed ball of radius ηU about Y∗ in Y∗+ En

β is contained
in U .

Given Y 0 ∈ Y∗ + En
β , let Y (t) = Y (t, Y 0) be the solution of (1.2) in Y∗ + En

β with

Y (0) = Y 0. If Y 0 ∈ U , we can use the decomposition (3.15); similarly, if Y (t) ∈ U , we
can use the decomposition (3.16).

To prove Theorem 3.14, we shall show that for each δ ∈ (0, δV), there exists η
with 0 < η < ηU with the properties given in the statement of the theorem.

Let 0 < γ1 < δ < δV . Let γ = C−1γ1, where C ≥ 1 is the largest of Kα

in Proposition 5.2 and the constants C appearing in Propositions 5.2 and 5.3. Let
η = Q−1γ.

Let Y 0 ∈ Y ∗
0 + En

β with ‖Y 0 − Y∗‖ ≤ η. Now η = Q−1γ ≤ Q−1γ1 < Q−1δV = ηU ,
so Y0 ∈ U . Therefore there exists (Ỹ 0, q0) ∈ R(Ps

β) × R with Y 0 = Ỹ 0 + Y∗(ξ − q0)

and ‖Ỹ0‖β + |q0| ≤ Qη = γ < δ. By Proposition 5.1, (Ỹ , q)(t, Ỹ 0, q0) is defined for
0 ≤ t < Tmax(δ, γ); by Propositions 5.1, 5.2, and 5.3, it satisfies (5.2), (5.3), (5.10),
and (5.11).

We claim that Tmax(δ, γ) = ∞. To see this, let (Ỹ 0, q0) ∈ R(Ps
β)×R with ‖Ỹ0‖β+

|q0| ≤ γ. For any T in (0, Tmax(δ, γ)), the inequalities (5.3), (5.10), and (5.11) yield

(5.24) ‖Ỹ (T, Ỹ 0, q0)‖β + |q(T, Ỹ 0q0)| ≤ C(‖Ỹ 0‖β + |q0|) ≤ Cγ = γ1.
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Consider the solution with initial data (Ỹ 1, q1) = (Ỹ , q)(T, Ỹ 0, q0). Since ‖Ỹ 1‖β +
|q1| ≤ γ1, Proposition 5.1 applies to this solution. Therefore for all t ∈ [0, Tmax(δ, γ1)),
we have

(5.25) ‖Ỹ (t+ T, Ỹ 0, q0)‖β + |q(t+ T, Ỹ 0, q0)| = ‖Ỹ (t, Ỹ 1, q1)‖β + |q(t, Ỹ 1, q1)| ≤ δ.

This shows that the a priori bound (5.2) for the solution with any initial data satisfying
‖Ỹ 0‖β + |q0| ≤ γ holds for all t ∈ [0, T + Tmax(δ, γ1)). Therefore Tmax(δ, γ) ≥ T +
Tmax(δ, γ1), and thus, Tmax(δ, γ) ≥ Tmax(δ, γ) + Tmax(δ, γ1). Hence Tmax(δ, γ) = ∞.

Hence for all t ≥ 0, ‖Ỹ (t))‖β + |q(t)| ≤ δ < δV , so (Ỹ (t), q(t)) ∈ V and Y (t) =

Ỹ (t) + Y∗(ξ− q(t)) is in U ; thus (1), (2), and (3) hold. Statement (4) is just (5.3); (5)
is (5.4); (6) and (7) are (5.10) and (5.11), respectively.

6. Algebraic decay. We continue to let E0 = H1(R) or BUC(R). In this section
we shall study solutions of (1.2) of the form Y = Y∗ + Ỹ with Ỹ ∈ (Eβ ∩ L1(R))n.

Since (Y∗)′ ∈ L1(R)n by Lemma 3.3 and Eβ ∩ L1(R) ↪→ Eβ , the one-dimensional
operator Pc

β restricts to a bounded linear map of (Eβ ∩ L1(R))n into itself. Therefore

Ps
β = I −Pc

β also restricts to a bounded linear map of (Eβ ∩L1(R))n into itself, which
we denote Ps

1 . By analogy to what was done in subsection 5.1, instead of studying
solutions of (1.2) of the form Y = Y∗ + Ỹ with Ỹ ∈ (Eβ ∩ L1(R))n, we shall instead
study the system (4.12)–(4.13) on R(Ps

1)× R.
The operator (Lβ , 0) restricted to (Eβ ∩ L1(R))n × R generates a strongly con-

tinuous semigroup on (Eβ ∩ L1(R))n × R. The nonlinearity is locally Lipschitz on

on (Eβ ∩ L1(R))n × R by Proposition 7.7. Therefore given initial data (Ỹ 0, q0) ∈
(Eβ∩L1(R))n×R, the system (4.12)–(4.13) has a unique mild solution (Ỹ , q)(t, Ỹ 0, q0)

in (Eβ ∩ L1(R))n × R with (Ỹ , q)(0, Ỹ 0, q0) = (Ỹ 0, q0). The solution is defined for t

in the maximal interval 0 ≤ t < tmax(Ỹ
0, q0), where 0 < tmax(Ỹ

0, q0) ≤ ∞. The set
{(t, Ỹ 0, q0) ∈ R+ ×En

β ×R : 0 ≤ t < tmax(Ỹ
0, q0)} is open in R+ × (Eβ ∩L1(R))n ×R,

and the map (t, Ỹ 0, q0) �→ (Ỹ , q)(t, Ỹ 0, q0) from this set to (Eβ ∩ L1(R))n × R is
continuous. As in subsection 5.1, we conclude the following.

Proposition 6.1. For each δ > 0, if 0 < γ < δ, then there exists T , with
0 < T ≤ ∞, such that the following is true: if (Ỹ 0, q0) ∈ R(Ps

1)× R satisfies

(6.1) ‖(Ỹ 0, q0)‖(Eβ∩L1(R))n×R = max
(
‖Ỹ 0‖β, ‖Ỹ ‖L1

)
+ |q0| ≤ γ

and 0 ≤ t < T , then (Ỹ , q)(t, Ỹ 0, q0) ∈ R(Ps
1)× R is defined and satisfies

(6.2) max
(
‖Ỹ (t, Ỹ 0, q0)‖β, ‖Ỹ (t, Ỹ 0, q0)‖L1

)
+ |q(t, Ỹ 0, q0)| ≤ δ.

We shall now prove Theorem 3.16, mimicking the proof of Theorem 3.14 in the
previous section.

To prove the analogue of Proposition 5.3, the key estimate that we need is the
following: given a bounded neighborhood N of (0, 0) in (Eβ∩L1(R))n×R, there exists

a constant C1 > 0 such that for (Ỹ , q) ∈ N ,

(6.3) ‖Hi(ξ, Ũ , Ṽ , q)‖L1 ≤ C1

(
‖Ỹ ‖0‖Ṽ ‖L1 + ‖Ỹ ‖α

)
.

(Compare (5.18).) To justify (6.3), look at each term in (5.14) and (5.15). Since U ′∗ and
V ′
∗ are exponentially decaying, Proposition 7.7(2) implies that in (5.14) and (5.15),

‖ ‖L1 of the last term on the right is bounded by a constant times ‖Ỹ ‖α. Lemma 8.2
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implies that in (5.14) and (5.15), ‖ ‖L1 of the first two terms on the right is bounded
by a constant times ‖Ỹ ‖α. Finally, Lemma 8.3 implies that in each expression, ‖ ‖L1

of the third term on the right is bounded by a constant times ‖Ỹ ‖0(‖Ṽ ‖L1 + ‖Y ‖α).
The estimate (6.4) follows.

From (5.19), (6.3) for H2, and Lemma 3.11(3c) for the case E0 = L1(R), we obtain
the following analogue of (5.20):

(6.4)

‖Ṽ (t)‖L1 ≤ K2e
−ρ̄t‖Ṽ 0‖L1 +

∫ t

0

K2e
−ρ̄(t−s)C1

(
‖Ỹ (s)‖0‖Ṽ (s)‖L1 + ‖Ỹ (s)‖α

)
ds.

Proceeding as in the proof of Proposition 5.3, we obtain the following analogue of
(5.11):

(6.5) ‖Ṽ (t)‖L1 ≤ Ce−ρt max
(
‖Ṽ 0‖L1 , ‖Ỹ 0‖α

)
.

From (5.21), Hypothesis 3.15(1), (6.3) for H1, Theorem 3.16(4), and Proposi-
tion 5.2, we have

‖Ũ(t)‖L1 ≤ K1‖Ũ0‖L1 +

∫ t

0

K1C2

(
max

(
‖Ṽ (s)‖0, ‖Ṽ (s)‖L1

)
+ ‖Ỹ (s)‖0 max

(
‖Ṽ (s)‖0, ‖Ṽ (s)‖L1

)
+ ‖Ỹ (s)‖α

)
ds(6.6)

≤ K1‖Ũ0‖L1 +

∫ t

0

K1C2

(
C(1 + δ)e−ρs‖Ỹ 0‖α +Kαe

−νs‖Ỹ 0‖α
)
ds,

which implies the following analogue of (5.10):

(6.7) ‖Ũ(t)‖L1 ≤ Cmax
(
‖Ũ0‖L1, ‖Ỹ 0‖α

)
.

The estimates (6.5) and (6.7) yield an analogue for Proposition 5.3. Then, ar-
guing as in subsection 5.4, we use Propositions 6.1 and 5.2 and our analogue for
Proposition 5.3 to show, under the assumptions of Theorem 3.16, that Y (t) stays in
(Eβ ∩ L1(R))n for all t ≥ 0, which is conclusion (1) of Theorem 3.16.

Conclusions (2) and (4) of the theorem are just (6.7) and (6.5), respectively.
Finally, we show conclusion (3) of Theorem 3.16. From (5.21), Hypothesis 3.15(2),

(6.3) for H1, Theorem 3.16(4), Theorem 3.14(4), and the fact that 0 < ν < ρ, we have

‖Ũ(t)‖L∞ ≤ K1h(t)max
(
‖Ũ0‖0, ‖Ũ0‖L1

)
+

∫ t

0

K1h(t− s)C3

(
max

(
‖Ṽ (s)‖0, ‖Ṽ (s)‖L1

)
+ ‖Ỹ (s)‖0 max

(
‖Ṽ (s)‖0, ‖Ṽ (s)‖L1

)
+ ‖Ỹ (s)‖α

)
ds

≤ K1h(t)max
(
‖Ũ0‖0, ‖Ũ0‖L1

)
+

∫ t

0

K1h(t− s)C3(1 + δ)e−νs‖Ỹ 0‖α ds.(6.8)

We note that∫ t

0

h(t− s)e−νs ds =

∫ t
2

0

h(t− s)e−νs ds+

∫ t

t
2

h(t− s)e−νs ds(6.9)

≤
∫ t

2

0

h

(
t

2

)
e−νs ds+

∫ t

t
2

e−νs ds ≤ 1

ν
h

(
t

2

)
+

1

ν
e−

ν
2 t.
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Note that for t ≥ max
(
2, 1

2ν lnν
)
,

h

(
t

2

)
+ e−

ν
2 t ≤ 2

1
2 t−

1
2 + t−

1
2 =

(
2

1
2 + 1

)
h(t).

It follows easily that there is a constant C5 such that for all t ≥ 0,

(6.10)

∫ t

0

h(t− s)e−νs ds ≤ C5h(t).

Theorem 3.16(3) follows from (6.8) and (6.10).

7. Lipschitz properties of nonlinear operators. Let E0 = H1(R) or
BUC(R). We recall the properties of the weighted spaces Eα and Eβ listed in
Lemma 3.12.

Proposition 7.1.

(1) If y ∈ E0, then y ∈ C0(R), and there is a constant C > 0 such that ‖y‖L∞ ≤
C‖y‖0.

(2) If y, z ∈ E0, then yz ∈ E0, and there is a constant C > 0 such that ‖yz‖0 ≤
C‖y‖0‖z‖0.

(3) If y, z ∈ Eβ, then yz ∈ Eα, and there is a constant C > 0 such that ‖yz‖α ≤
C‖y‖0‖z‖α.

(4) If y, z ∈ Eβ, then yz ∈ Eβ, and there is a constant C > 0 such that ‖yz‖β ≤
C‖y‖β‖z‖β.

(5) If y, z ∈ Eβ ∩ L1(R), then yz ∈ Eβ ∩ L1(R), and there is a constant C > 0
such that ‖yz‖L1 ≤ C‖y‖L1‖z‖L∞ ≤ C‖y‖L1‖z‖β.

Proof. Statement (1) is obvious for E0 = BUC(R) and well known for E0 = H1(R);
the same is true for (2). To show (3), let y, z ∈ Eβ and let w = γαz ∈ E0 . Then, using
(2),

‖yz‖α = ‖γαyz‖0 = ‖yw‖0 ≤ C‖y‖0‖w‖0 = C‖y‖0‖z‖α.
To show (4), let y, z ∈ Eβ . Then by (2), ‖yz‖0 ≤ C‖y‖0‖z‖0 ≤ C‖y‖β‖z‖β, and by
(3), ‖yz‖α ≤ C‖y‖0‖z‖α ≤ C‖y‖β‖z‖β. Therefore yz ∈ Eβ and ‖yz‖β ≤ C‖y‖β‖z‖β.
Statement (5) follows from (4) and an obvious fact about the L1 norm.

Proposition 7.2. Let m(ξ, q, y) ∈ C2(R3). Consider the formula

(7.1) (q, y(ξ), z(ξ)) �→ m(ξ, q, y(ξ))z(ξ).

(1) Formula (7.1) defines a mapping from R×E2
0 to E0 that is Lipschitz on any set

of the form {(q, y, z) : |q|+‖y‖0+‖z‖0 ≤ K}. If m(ξ, 0, y) is identically 0, then
there is a constant C such that on this set, ‖m(ξ, q, y(ξ))z(ξ)‖0 ≤ C|q|‖z‖0.

(2) Formula (7.1) defines a mapping from from R×E2
β to Eβ that is Lipschitz on

any set of the form {(q, y, z) : |q|+ ‖y‖β + ‖z‖β ≤ K}. If m(ξ, 0, y) is identi-
cally 0, then there is a constant C such that on this set, ‖m(ξ, q, y(ξ))z(ξ)‖α ≤
C|q|‖z‖α and ‖m(ξ, q, y(ξ))z(ξ)‖β ≤ C|q|‖z‖β.

(3) Formula (7.1) defines a mapping from R× (Eβ∩L1(R))2 to Eβ ∩L1(R) that is
Lipschitz on any set of the form {(q, y, z) : |q|+‖y‖β+‖y‖L1+‖z‖β+‖z‖L1 ≤
K}.

Proof. We will only consider the case E0 = H1(R); the case E0 = BUC(R) is
easier. First we show that the mappings go into the correct spaces. We have

(7.2) ‖m(ξ, q, y)z‖Lk ≤ ‖m‖L∞‖z‖Lk , k = 1, 2,
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and

(7.3) ‖(mz)ξ‖L2 ≤ ‖mξz‖L2 + ‖myyξz‖L2 + ‖mzξ‖L2

≤ ‖m‖C1‖z‖L2 + ‖m‖C1‖yξ‖L2‖z‖L2 + ‖m‖L∞‖zξ‖L2 .

Therefore if (q, y, z) ∈ R × H1(R)2 (respectively, R × (H1(R) ∩ L1(R))2), then
m(ξ, q, y)z ∈ H1(R) (respectively, L1(R)). Next, we have

(7.4) ‖γαm(q, y, z)z‖L2 ≤ ‖m‖L∞‖γαz‖L2

and

(7.5) ‖γα(mz)ξ‖L2 ≤ ‖γαmξz‖L2 + ‖γαmyyξz‖L2 + ‖γαmzξ‖L2

≤ ‖m‖C1‖γαz‖L2 + ‖m‖C1‖yξ‖L2‖γαz‖L2 + ‖m‖L∞‖γαzξ‖L2 .

Therefore if (q, y, z) ∈ R×H1
β(R)

2, then m(ξ, q, y)z ∈ H1
α(R).

Now we show the Lipschitz properties.
First we consider variations in q. We have

m(ξ, q + q̄, y(ξ))z(ξ)−m(ξ, q, y(ξ))z(ξ) =

∫ 1

0

mq(ξ, q + tq̄, y(ξ)) dt q̄z(ξ).

Therefore

‖m(ξ, q + q̄, y)z −m(ξ, q, y)z‖Lk ≤ ‖m‖C1‖z‖Lk|q̄|, k = 1, 2,

and

‖γα(m(ξ, q + q̄, y)z −m(ξ, q, y)z)‖L2 ≤ ‖m‖C1‖γαz‖L2|q̄|.
Also,

(m(ξ, q + q̄, y(ξ))z(ξ)−m(ξ, q, y(ξ))z(ξ))ξ =

∫ 1

0

mqξ(ξ, q + tq̄, y(ξ)) dt q̄z(ξ)

+

∫ 1

0

mqy(ξ, q + tq̄, y(ξ)) dt q̄yξz(ξ) +

∫ 1

0

mq(ξ, q + tq̄, y(ξ)) dt q̄zξ.

Therefore

‖(m(ξ, q + q̄, y(ξ))z(ξ)−m(ξ, q, y(ξ))z(ξ))ξ‖L2

≤ (‖m‖C2‖z‖L2 + ‖m‖C2‖yξ‖L2‖z‖L2 + ‖m‖C1‖zξ‖L2)|q̄|
and

‖γα(m(ξ, q + q̄, y(ξ))z(ξ)−m(ξ, q, y(ξ))z(ξ))ξ‖L2

≤ (‖m‖C2‖γαz‖L2 + ‖m‖C2‖yξ‖L2‖γαz‖L2 + ‖m‖C1‖γαzξ‖L2)|q̄|.
Next we consider variations in y. We have

m(ξ, q, y(ξ) + ȳ(ξ))z(ξ)−m(ξ, q, y(ξ))z(ξ) =

∫ 1

0

my(ξ, q, y(ξ) + tȳ(ξ)) dt ȳ(ξ)z(ξ).
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Therefore

‖m(ξ, q, y + ȳ)z −m(ξ, q, y)z‖Lk ≤ ‖m‖C1‖ȳ‖Lk‖z‖L∞, k = 1, 2,

and

‖γα(m(ξ, q, y + ȳ)z −m(ξ, q, y)z)‖L2 ≤ ‖m‖C1‖ȳ‖L2‖γαz‖L2.

Also,

(m(ξ, q, y(ξ) + ȳ(ξ))z(ξ)−m(ξ, q, y(ξ))z(ξ))ξ =∫ 1

0

myξ(ξ, q, y(ξ)+ tȳ(ξ)) dt ȳ(ξ)z(ξ)+

∫ 1

0

myy(ξ, q, y(ξ)+ tȳ(ξ))(yξ + tȳξ) dt ȳ(ξ)z(ξ)

+

∫ 1

0

my(ξ, q, y(ξ) + tȳ(ξ)) dt ȳξz(ξ) +

∫ 1

0

my(ξ, q, y(ξ) + tȳ(ξ)) dt ȳ(ξ)zξ.

Therefore

‖(m(ξ, q, y(ξ) + ȳ(ξ))z(ξ)−m(ξ, q, y(ξ))z(ξ))ξ‖L2

≤ ‖m‖C2‖ȳ‖L2‖z‖L2 + ‖m‖C2‖yξ‖L2C‖ȳ‖H1‖z‖H1

+
1

2
‖m‖C2‖ȳξ‖L2C‖ȳ‖H1‖z‖H1 + ‖m‖C1‖ȳξ‖L2‖z‖L2 + ‖m‖C1‖ȳ‖L2‖zξ‖L2

and

‖γα(m(ξ, q, y(ξ) + ȳ(ξ))z(ξ)−m(ξ, q, y(ξ))z(ξ))ξ‖L2

≤ ‖m‖C2‖ȳ‖L2‖γαz‖L2 + ‖m‖C2‖yξ‖L2C‖ȳ‖H1‖γαz‖H1

+
1

2
‖m‖C2‖ȳξ‖L2C‖ȳ‖H1‖γαz‖H1 + ‖m‖C1‖ȳξ‖L2‖γαz‖L2

+ ‖m‖C1‖ȳ‖L2‖γαzξ‖L2 .

Finally, we consider variations in z. We have

m(ξ, q, y(ξ))(z(ξ) + z̄(ξ))−m(ξ, q, y(ξ))z(ξ) = m(ξ, q, y(ξ))z̄(ξ).

Estimates are left to the reader.
Using the separate Lipschitz estimates for variations in q, y, and z, one can easily

show that the mappings are Lipschitz on the given sets.
To prove the estimates when m(ξ, 0, y) = 0, we note that this assumption implies

that ‖m‖L∞ ≤ C|q| and ‖m‖C1 ≤ C|q| on the given sets; then use (7.2)–(7.5).
Corollary 7.3. Let m(ξ, q, z) ∈ C2(R3). Then the formula

(q, z(ξ)) �→ m(ξ, q, z(ξ))z(ξ)

defines mappings from R × E0 to E0, from R× Eβ to Eβ, and from R× (Eβ ∩ L1(R))
to Eβ ∩ L1(R). The first is Lipschitz on any set of the form {(q, z) : |q|+ ‖z‖0 ≤ K};
the second is Lipschitz on any set of the form {(q, z) : |q| + ‖z‖β ≤ K}; the third is
Lipschitz on any set of the form {(q, z) : |q|+ ‖z‖β + ‖z‖L1 ≤ K}.

We remark that in both Proposition 7.2 and Corollary 7.3, it is enough to assume
that m ∈ C2(U) for any set U of the form {(ξ, q, y) : |q|+ |y| ≤ K}.
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Proposition 7.4.

(1) The formula (Ỹ (ξ), q) �→ (DR(Yq)−DR(Y∗))Ỹ defines a mapping from En
0 ×R

to En
0 that is Lipschitz on any set of the form {(Ỹ , q) : ‖Ỹ ‖0 + |q| ≤ K}.

On such a set there is a constant C such that ‖(DR(Yq) − DR(Y∗))Ỹ ‖0 ≤
C|q|‖Ỹ ‖0.

(2) The formula (Ỹ (ξ), q) �→ (DR(Yq)−DR(Y∗))Ỹ defines a mapping from En
β×R

to En
β that is Lipschitz on any set of the form {(Ỹ , q) : ‖Ỹ ‖β + |q| ≤ K}.

On such a set there is a constant C such that ‖(DR(Yq) − DR(Y∗))Ỹ ‖α ≤
C|q|‖Ỹ ‖α and ‖(DR(Yq)−DR(Y∗))Ỹ ‖β ≤ C|q|‖Ỹ ‖β.

(3) The formula (Ỹ (ξ), q) �→ (DR(Yq)−DR(Y∗))Ỹ defines a mapping from (Eβ ∩
L1(R))n×R to (Eβ∩L1(R))n that is Lipschitz on any set of the form {(Ỹ , q) :
‖Ỹ ‖β + ‖Ỹ ‖L1 + |q| ≤ K}.

Proof. Just apply Proposition 7.2 to each component of (DR(Yq) − DR(Y∗))Ỹ .
(In this case the function m depends only on ξ and p. Note that it is important here
that R is C3.)

Proposition 7.5.

(1) The formula (Ỹ , q) �→ N(Yq, Ỹ ) defines a mapping from En
0 ×R to En2

0 that is

Lipschitz and O(‖Ỹ ‖0) on any bounded neighborhood of (0, 0) in En
0 × R.

(2) The formula (Ỹ , q) �→ N(Yq, Ỹ )Ỹ defines a mapping from En
0 × R to En

0 that
is Lipschitz on any bounded neighborhood of (0, 0) in En

0 × R.
Proof. (1) The Lipschitz property follows from Corollary 7.3. (Again, it is im-

portant here that R is C3.) The mapping is O(‖Ỹ ‖0) on the given set because it is
Lipschitz and N(Yq, 0) = 0. (2) This follows from (1).

Proposition 7.6.

(1) If Ỹ ∈ En
β , then N(Yq, Ỹ )Ỹ ∈ En

α , and on any bounded neighborhood of (0, 0)

in En
β ×R there is a constant C > 0 such that ‖N(Yq, Ỹ )Ỹ )‖α ≤ C‖Ỹ ‖0‖Ỹ ‖α.

(2) The formula (Ỹ , q) �→ N(Yq, Ỹ ) defines a mapping from En
β × R to En2

β (re-

spectively, (Eβ ∩ L1(R))n × R to (Eβ ∩ L1(R))n
2

) that is Lipschitz on any
bounded neighborhood of (0, 0) in En

β × R (respectively, (Eβ ∩ L1(R))n × R).

(3) The formula (Ỹ , q) �→ N(Yq, Ỹ )Ỹ defines a mapping from En
β × R to En

β

(respectively, (Eβ ∩ L1(R))n × R to (Eβ ∩ L1(R))n
2

) that is Lipschitz on any
bounded neighborhood of (0, 0) in En

β × R (respectively, (Eβ ∩ L1(R))n × R).
Proof. (1) Using Proposition 7.5(1),

‖N(Yq, Ỹ )Ỹ ‖α = ‖N(Yq, Ỹ )γαỸ ‖0 ≤ ‖N(Yq, Ỹ )‖0‖γαỸ ‖0 ≤ C‖Ỹ ‖0‖Ỹ ‖α;
(2) and (3) are proved like Proposition 7.5(1) and (2).
Proposition 7.7. The formula (4.8) for G(Ỹ , q) defines mappings from En

β ×R

to En
β and from (Eβ ∩ L1(R))n × R to (Eβ ∩ L1(R))n. The formula (4.9) for κ(Ỹ , q)

defines a mapping from En
β × R to R. Each of these mappings is Lipschitz on any

bounded neighborhood of (0, 0) in its domain space. Moreover, there is a constant C
such that

(1) ‖G(Ỹ , q)‖α ≤ C(‖Ỹ ‖0 + |q|)‖Ỹ ‖α;
(2) |κ(Ỹ , q)| ≤ C(‖Ỹ ‖0 + |q||)‖Ỹ ‖α.
Proof. The Lipschitz statement follows from Proposition 7.4(2) and (3) and Propo-

sition 7.6(3). The proof of (1) follows from (4.8) together with Proposition 7.4(2) and
Proposition 7.6(1). For (2), note that

|κ(Ỹ , q)| = |πY ′
∗(ξ − q)|−1|πG(Ỹ , q)|.
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By Lemma 4.1, |πY ′
∗(ξ − q)|−1 ≤ 2, and |πG(Ỹ , q)| is bounded by a constant times

the bound on ‖G(Ỹ , q)‖α given by (1).

8. Estimates for the nonlinear operator N . We continue to let E0 = H1(R)
or BUC(R).

Lemma 8.1. We have the following.
(1) (DR(Y∗)−DR(0))γ−1

α is in C1(R)n, En
0 , and L

1(R)n.
(2) For each q ∈ R, γ−1

α (ξ)Y ′∗(ξ − q) is in C1(R)n, En
0 , and L

1(R)n.
Proof. Statement (1) follows from

(DR(Y∗)−DR(0))γ−1
α =

(∫ 1

0

D2R(tY∗) dt
)
Y∗γ−1

α

and Lemma 3.7(1). To see (2), note that for |ξ| large,

γ−1
α (ξ)Y ′

∗(ξ − q) =
γα(ξ − q)

γα(ξ)
γ−1
α (ξ − q)Y ′

∗(ξ − q) = γα(−q)γ−1
α (ξ − q)Y ′

∗(ξ − q)

and use Lemma 3.7(2).
Lemma 8.2. There is a constant K > 0 such that
(1) ‖(DR(Y∗)−DR(0))Ỹ ‖0 ≤ K‖Ỹ ‖α;
(2) ‖(DR(Y∗)−DR(0))Ỹ ‖L1 ≤ K‖Ỹ ‖α;
(3) ‖(DR(Yq)−DR(Y∗))Ỹ ‖0 ≤ K|q|‖Ỹ ‖α;
(4) ‖(DR(Yq)−DR(Y∗))Ỹ ‖L1 ≤ K|q|‖Ỹ ‖α.
Proof. To see (1) and (2), write

(DR(Y∗)−DR(0))Ỹ = (DR(Y∗)−DR(0))γ−1
α γαỸ .

By Lemma 8.1(1),

‖(DR(Y∗)−DR(0))Ỹ ‖0 ≤ ‖(DR(Y∗)−DR(0))γ−1
α ‖0‖γαỸ ‖0 = K‖Ỹ ‖α,

and

‖(DR(Y∗)−DR(0))Ỹ ‖L1 ≤ ‖(DR(Y∗)−DR(0))γ−1
α ‖L1‖γαỸ ‖L∞

≤ ‖(DR(Y∗)−DR(0))γ−1
α ‖L1‖γαỸ ‖0 ≤ K‖Ỹ ‖α.

To see (3) and (4), write

(DR(Y∗(ξ − q))−DR(Y∗(ξ)))Ỹ = −q
∫ 1

0

D2R(Y∗(ξ − sq))Y ′
∗(ξ − sq)Ỹ ds

= −q
∫ 1

0

D2R(Y∗(ξ − sq))γ−1
α Y ′

∗(ξ − sq)γαỸ ds.

By Lemma 8.1(2), for each s, γ−1
α (ξ)Y ′∗(ξ − sq) is in En

0 and L1(R)n. The remainder
of the argument is similar to the proof of (1) and (2).

Lemma 8.3.

(1) For each bounded neighborhood N0 of (0, 0) in En
β ×R, there exists a constant

K > 0 such that for all (Ỹ , p) ∈ N0,

(8.1) ‖N(Yq, Ỹ )Ỹ ‖0 ≤ K‖Ỹ ‖0
(
‖Ỹ ‖α + ‖Ṽ ‖0

)
.
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(2) For each bounded neighborhood N1 of (0, 0) in (Eβ ∩L1(R))n ×R, there exists

a constant K > 0 such that for all (Ỹ , q) ∈ N1,

(8.2) ‖N(Yq, Ỹ )Ỹ ‖L1 ≤ K‖Ỹ ‖0
(
‖Ỹ ‖α + ‖Ṽ ‖L1

)
.

Proof. Let

r(U, V ) =

∫ 1

0

DVR(U, tV ) dt,

an n× n matrix that is a C2 function of (U, V ). By Hypothesis 3.9,

R(U, V ) = R(U, 0) +R(U, V )−R(U, 0) =

(
A1

0

)
U + r(U, V )V.

Therefore

DUR(U, V )Ũ =

(
A1

0

)
Ũ +

(
DUr(U, V )Ũ

)
V,

DVR(U, V )Ṽ =
(
DV r(U, V )Ṽ

)
V + r(U, V )Ṽ .

Then

N(Yq, Ỹ )Ỹ =

∫ 1

0

DR(Yq + tỸ )Ỹ −DR(Yq)Ỹ dt

=

∫ 1

0

DUR(Yq + tỸ )Ũ −DUR(Yq)Ũ dt+

∫ 1

0

DVR(Yq + tỸ )Ṽ

−DVR(Yq)Ṽ dt

=

∫ 1

0

(
DUr(Yq + tỸ )Ũ

)
(Vq + tṼ )−

(
DUr(Yq)Ũ

)
Vq dt

+

∫ 1

0

(
DV r(Yq + tỸ )Ṽ

)
(Vq + tṼ )−

(
DV r(Yq)Ṽ

)
Vq dt

+

∫ 1

0

(
r(Yq + tỸ )− r(Yq)

)
Ṽ dt

=

∫ 1

0

(
DUr(Yq + tỸ )−DUr(Yq)

)
ŨVq dt+

∫ 1

0

(
DUr(Yq + tỸ )Ũ

)
tṼ dt

+

∫ 1

0

(
DV r(Yq + tỸ )−DV r(Yq)

)
Ṽ Vq dt+

∫ 1

0

(
DV r(Yq + tỸ )Ṽ

)
tṼ dt

+

∫ 1

0

(
r(Yq + tỸ )− r(Yq)

)
Ṽ dt.

Thus N(Yq, Ỹ )Ỹ is a sum of five integrals.

To estimate ‖N(Yq, Ỹ )Ỹ ‖0, we note that if (Ỹ , q) ∈ N0, then in ‖ ‖0 the second

through fifth integrals is each at most a constant times ‖Ỹ ‖0‖Ṽ ‖0. Similarly, to esti-
mate ‖N(Yq, Ỹ )Ỹ ‖L1 , we note that if (Ỹ , q) ∈ N1, then in ‖ ‖L1 the second through

fifth integrals is each at most a constant times ‖Ỹ ‖0‖Ṽ ‖L1 .
Finally, the first integral can be rewritten as

∫ 1

0

(
DUr(Yq + tỸ )−DUr(Yq)

)
ŨVq dt =

∫ 1

0

(
DUr(Yq + tỸ )−DUr(Yq)

)
γαŨγ−1

α Vq dt.
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By Hypothesis 3.6(1), γ−1
α Vq is in C1(R)n1 . Therefore in ‖ ‖0, the integral is at most

K‖Ỹ ‖0‖γαŨ‖0 = K‖Ỹ ‖0‖Ũ‖α ≤ K‖Ỹ ‖0‖Ỹ ‖α. Also, by Hypothesis 3.6(1), γ−1
α Vq is

in L1(R)n1 . Therefore in ‖ ‖L1, the integral is at most

K‖Ỹ ‖L∞‖γαŨ‖L∞ ≤ K‖Ỹ ‖0‖Ũ‖α ≤ K‖Ỹ ‖0‖Ỹ ‖α.
9. Stability of traveling waves in an exothermic-endothermic reaction.

In [22, 23, 24], Simon et al. study the system

∂tz1 = ∂xxz1 + z2f2(z1)− σz3f3(z1),(9.1)

∂tz2 = d2∂xxz2 − z2f2(z1),(9.2)

∂tz3 = d3∂xxz3 − τz3f3(z1).(9.3)

Here z1 is temperature, z2 is concentration of an exothermic reactant, and z3 is con-
centration of an endothermic reactant. The parameters d2, d3, σ, and τ are positive,
and there are positive constants ai and bi such that

fi(u) =

{
aie

− bi
u for u > 0,

0 for u ≤ 0.

We have changed the notation of Simon et al. a little to fit with ours. Simon et al. study
existence of traveling waves for this system, and they study the discrete spectrum
of the linearization at a traveling wave using the Evans function. We shall use our
Theorem 3.14 to show what sort of stability is implied by their work.

The change of variables ξ = x− ct, c > 0, converts (9.1)–(9.3) to

∂tz1 = ∂ξξz1 + c∂ξz1 + z2f2(z1)− σz3f3(z1),(9.4)

∂tz2 = d2∂ξξz2 + c∂ξz2 − z2f2(z1),(9.5)

∂tz3 = d3∂ξξz3 + c∂ξz3 − τz3f3(z1).(9.6)

Let Z∗(ξ) be a stationary solution of (9.4)–(9.6), i.e., a traveling wave solution of
(9.1)–(9.3) with speed c > 0, with Z− = (z, 0, 0), z > 0, and Z+ = (0, 1, 1). It turns
out that z = 1 − σ

τ , so we must have σ < τ . Simon et al. show numerically that in
certain parameter regimes, such traveling waves exist for which both end states are
approached at an exponential rate. (See [22, p. 544], for a discussion of why their
numerical method should find traveling waves with this property.)

With z = 1− σ
τ , the change of variables y1 = z1−z, y2 = z2, and y3 = z3 converts

(9.4)–(9.6) to the system

∂ty1 = ∂ξξy1 + c∂ξy1 + y2f2(z + y1)− σy3f3(z + y1),(9.7)

∂ty2 = d2∂ξξy2 + c∂ξy2 − y2f2(z + y1),(9.8)

∂ty3 = d3∂ξξy3 + c∂ξy3 − τy3f3(z + y1).(9.9)

We write (9.7)–(9.9) as

(9.10) ∂tY = D∂ξξY + c∂ξY +R(Y ),

where

(9.11)
R(Y ) = S(z+y1, y2, y3) = (y2f2(z+y1)−σy3f3(z+y1),−y2f2(z+y1),−τy3f3(z+y1)).
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Let Y∗(ξ) = (y1∗(ξ), y2∗(ξ), y3∗(ξ)) be the stationary solution of (9.7) that corresponds
to Z∗(ξ) so that Y− = (0, 0, 0) (as required by our setup) and Y+ = (−z, 1, 1).

The linearization of (9.10) at Y∗(ξ) is

(9.12) ∂tỸ = LỸ = D∂ξξỸ + c∂ξỸ +DR(Y∗(ξ))Ỹ ,

where

DR(Y∗(ξ))

(9.13)

=

⎛
⎝y2∗(ξ)f ′

2(z + y1∗(ξ))− σy3∗(ξ)f ′
3(z + y1∗(ξ)) f2(z + y1∗(ξ)) −σf3(z + y1∗(ξ))

−y2∗(ξ)f ′
2(z + y1∗(ξ)) −f2(z + y1∗(ξ)) 0

−τy3∗(ξ)f ′
3(z + y1∗(ξ)) 0 −τf3(z + y1∗(ξ))

⎞
⎠ .

Theorem 9.1. Suppose the constants d2, d3, σ, τ , ai, bi, and c > 0 in (9.10) are
chosen so that there is a stationary solution Y∗(ξ) that approaches 0 exponentially as
ξ → −∞ and approaches Y+ = (−z, 1, 1), z = 1 − σ

τ > 0, exponentially as ξ → ∞.
Let α = (α−, α+) be as described in subsection 9.4 below; in particular α− > 0 and
α+ > 0. Assume that Hypothesis 3.6(3b) holds. Let β = (0, α+), and let E0 = H1(R)
or BUC(R). Suppose Y 0 ∈ Y∗+E3

β with ‖Y 0−Y∗‖β small, and let Y (t) be the solution

of (9.10) in Y∗ + E3
β with Y (0) = Y 0. Then the following are true.

(1) Y (t) is defined for all t ≥ 0.
(2) Y (t) = Ỹ (t)+Y∗(ξ− q(t)) with Ỹ (t) in a fixed subspace of E3

β complementary
to the span of Y ′

∗ .
(3) ‖Ỹ (t)‖β + |q(t)| is small for all t ≥ 0.

(4) ‖Ỹ (t)‖α decays exponentially as t→ ∞.
(5) There exists q∗ such that |q(t) − q∗| decays exponentially as t→ ∞.
(6) There is a constant C independent of Y 0 such that ‖ỹ1(t)‖0 ≤ C‖Ỹ 0‖β for

all t ≥ 0.
(7) ‖(ỹ2, ỹ3)(t)‖0 decays exponentially as t→ ∞.

In addition, suppose Y 0 ∈ Y∗+(Eβ∩L1(R))n with ‖Y 0−Y∗‖β and ‖Y 0−Y∗‖L1 small.
Then the following are true.

(8) Y (t) ∈ (Eβ ∩ L1(R))n for all t ≥ 0.
(9) ‖ỹ1(t)‖L1 is small for all t ≥ 0.

(10) ‖ỹ1(t)‖L∞ decays like t−
1
2 as t→ ∞.

(11) ‖(ỹ2, ỹ3)(t)‖L1 decays exponentially as t→ ∞.
This result follows from Theorems 3.14 and 3.16 by verifying their hypotheses.

The steps are easy and are carried out below, except for the verification of Hypothe-
sis 3.6(3b). This requires a numerical study of the Evans function, an analytic function
whose zeros are eigenvalues of Lα. Such a study was carried out in [23, 24]. The point
of the theorem, as discussed in the introduction, is that it shows the rather detailed
information that such a study can yield about stability of the traveling wave.

9.1. Traveling waves. Let us briefly discuss the intuitive reason that traveling
waves of (9.1)–(9.3) exist, which is related to a first integral that Simon et al. [22, 23,
24] don’t mention. The traveling wave equation for (9.1)–(9.3), written as a first-order
system, is

Zξ = V,(9.14)

Vξ = D−1(−cV + S(Z)),(9.15)
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where D = diag(1, d2, d3) and

S(Z) = (z2f2(z1)− σz3f3(z1),−z2f2(z1),−τz3f3(z1)).

Consider (9.4)–(9.6) with the left-hand side of each equation set to 0. After this
substitution, if we add (9.4), (9.5), and −σ

τ (9.6), we obtain

∂ξξz1 + c∂ξz1 + d2∂ξξz2 + c∂ξz2 − σ

τ
d3∂ξξz3 − σ

τ
c∂ξz3 = 0.

This expression can be integrated once to produce a function of ξ that is constant
along any traveling wave. Analogously, along any solution of (9.14)–(9.15) we have

v1 + cz1 + d2v2 + cz2 − σ

τ
d3v3 − σ

τ
cz3 = k.

For the solution that approaches (z1, z2, z3, v1, v2, v3) = (0, 1, 1, 0, 0, 0) as ξ → ∞, we
must have k = c(1− σ

τ ).
To take advantage of these facts, we consider (9.14)–(9.15) on the invariant surface

(9.16) v1 = −cz1 − d2v2 − cz2 +
σ

τ
d3v3 +

σ

τ
cz3 + c

(
1− σ

τ

)
.

Using (z1, z2, z3, v2, v3) as variables, we obtain

ż1 = −cz1 − d2v2 − cz2 +
σ

τ
d3v3 +

σ

τ
cz3 + c

(
1− σ

τ

)
,(9.17)

ż2 = v2,(9.18)

ż3 = v3,(9.19)

v̇2 = d−1
2 (−cv2 + z2f2(z1)),(9.20)

v̇3 = d−1
3 (−cv3 + τz3f2(z1)).(9.21)

This system has equilibria at (z1, z2, z3, v2, v3) = (z, 0, 0, 0, 0) with z = 1 − σ
τ , which

corresponds to the equilibrium (Z−, 0) of (9.14)–(9.15), and (0, z2, z3, 0, 0) with z2 −
σ
τ z3 = 1 − σ

τ , which correspond to the line of equilibria (0, z2, z3, 0, 0, 0) of (9.14)–
(9.15). One of the equilibria on this line is (0, 1, 1, 0, 0, 0) = (Z+, 0).

The linearization of (9.17)–(9.21) at (z, 0, 0, 0, 0) has two eigenvalues with posi-
tive real part and three with negative real part; at (0, 1, 1, 0, 0) there are two eigen-
values with 0 real part and three with negative real part. We therefore expect that
in the five-dimensional state space of (9.17)–(9.21), for isolated values of c the two-
dimensional unstable manifold of (z, 0, 0, 0, 0) and the three-dimensional stable man-
ifold of (0, 1, 1, 0, 0) will intersect, producing a traveling wave that approaches both
end states exponentially.

9.2. Stability of end states in weighted spaces. Let

φ2 = f2(z) > 0, φ3 = τf3(z) > 0.

With this notation, the linearization of (9.10) at Y− = (0, 0, 0) is

(9.22)⎛
⎝ỹ1tỹ2t
ỹ1t

⎞
⎠ = L−

⎛
⎝ỹ1ỹ2
ỹ3

⎞
⎠ =

⎛
⎝∂ξξ + c∂ξ 0 0

0 d2∂ξξ + c∂ξ − φ2 0
0 0 d3∂ξξ + c∂ξ − φ3

⎞
⎠

⎛
⎝ỹ1ỹ2
ỹ3

⎞
⎠ .
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If (ỹ1, ỹ2, ỹ3) belongs to a weighted L2 space with weight function eυξ, then (ỹ1(ξ),
ỹ2(ξ), ỹ3(ξ)) = e−υξ(w̃1(ξ), w̃2(ξ), w̃3(ξ)) with (w̃1, w̃2, w̃3) in L2(R)3. Substituting
into the formula for L− and multiplying by eυξ, we obtain the linear differential
expression

(9.23) L̂−W̃ = (L− − 2υ∂ξ + υ2D − cυI)W̃ .

(Compare the discussion preceding Lemma 3.5.) Using the Fourier transform, we find
that the spectrum of the operator associated with L̂− on L2(R)3 is the union of the
three curves λ = −θ2+(c−2υ)iθ+υ2−cυ and λ = −dkθ2+(c−2υ)iθ+dkυ

2−cυ−φk,
k = 2, 3, θ ∈ R. With a small abuse of notation, we use υ as shorthand for (υ, υ).
Then

sup{Reλ : λ ∈ Sp(L−
υ )} = sup{Reλ : λ ∈ Sp(L̂−

0 )}(9.24)

= max
(
υ2 − cυ, d2υ

2 − cυ − φ2, d3υ
2 − cυ − φ3

)
,

which is 0 for υ = 0 but is negative for υ > 0 sufficiently small.
Similarly, the linearization of (9.10) at Y+ = (−z, 1, 1) is

(9.25)

⎛
⎝ỹ1tỹ2t
ỹ1t

⎞
⎠ = L+

⎛
⎝ ũ
ṽ1
ṽ2

⎞
⎠ =

⎛
⎝∂ξξ + c∂ξ 0 0

0 d2∂ξξ + c∂ξ 0
0 0 d3∂ξξ + c∂ξ

⎞
⎠

⎛
⎝ ũ
ṽ1
ṽ2

⎞
⎠ .

Substituting (ỹ1(ξ), ỹ2(ξ), ỹ3(ξ)) = e−υξ(w̃1(ξ), w̃2(ξ), w̃3(ξ)) into the formula for L+

and multiplying by eυξ, we obtain the linear differential expression

(9.26) L̂+W̃ = (L+ − 2υ∂ξ + υ2D − cυI)W̃ .

We shall use the notation d1 = 1 when it seems to result in simpler expressions. Using
the Fourier transform, we find that the spectrum of the operator associated with L̂+

on L2(R)3 is the union of the three curves λ = −dkθ2 + (c − 2υ)iθ + dkυ
2 − cυ,

k = 1, 2, 3, θ ∈ R. Then

(9.27) sup{Reλ : λ ∈ Sp(L+
υ )} = sup{Reλ : λ ∈ Sp(L̂+

0 )} = max
k=1, 2, 3

(
dkυ

2 − cυ
)
,

which again is 0 for υ = 0 but is negative for υ > 0 sufficiently small.

9.3. Eigenvalue equation. The eigenvalue equation for L is LỸ = λỸ , which
we express as a first-order system:

(9.28)

(
Ỹξ
Z̃ξ

)
=

(
0 I

D−1(λI −DR(Y∗(ξ)) −cD−1

)(
Ỹ

Z̃

)
.

As ξ → ±∞, the linear system (9.28) approaches the constant-coefficient linear sys-
tems

(9.29)

(
Ỹξ
Z̃ξ

)
=

(
0 I

D−1(λI −DR(Y±)) −cD−1

)(
Ỹ

Z̃

)
.

Eigenvalues μ and corresponding eigenvectors (Ỹ , Z̃) of (9.29) satisfy the equations
Z̃ = μỸ and (

D−1(λI −DR(Y±)− cμI)− μ2I
)
Ỹ = 0.
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Therefore

(9.30) det
(
D−1(λI −DR(Y±)− cμI)− μ2I

)
= 0.

Now

DR(Y−) =

⎛
⎝0 φ2 −σf3(z)
0 −φ2 0
0 0 −φ3

⎞
⎠ and DR(Y+) = 0.

Therefore at Y−, (9.30) becomes

(9.31) (λ− cμ− μ2)(d−1
2 (λ+ φ2 − cμ)− μ2)(d−1

3 (λ+ φ3 − cμ)− μ2) = 0,

and at Y+, (9.30) becomes

(9.32) (λ− cμ− μ2)(d−1
2 (λ− cμ)− μ2)(d−1

3 (λ− cμ)− μ2) = 0.

Hence at Y− the eigenvalues of (9.29) are

μ−1± =
1

2

(
−c± (

c2 + 4λ
) 1

2

)
,

μ−k± =
1

2dk

(
−c± (

c2 + 4dk (λ+ φk)
) 1

2

)
, k = 1, 2.

(We shall always use a
1
2 to indicate a square root of a with nonnegative real part.)

At Y+, the eigenvalues of (9.29) are

μ+k± =
1

2dk

(
−c± (

c2 + 4dkλ
) 1

2

)
, k = 1, 2, 3.

For λ = 0, note that at Y−, all three μ−k−’s are negative, μ−1+ = 0, and μ−2+

and μ−3+ are positive; at Y+, all three μ+k−’s are negative, and all three μ+k+’s are
0. The six numbers μ−k−, μ−k+ (respectively, μ+k−, μ+k+) are also the eigenvalues
of the linearization of (9.14)–(9.15) at the equilibrium (Z−, 0) (respectively, (Z+, 0)).

If we drop one 0 from each of these lists of six eigenvalues, we obtain, respec-
tively, the five eigenvalues of the linearization of (9.17)–(9.21) at (z, 0, 0, 0, 0) and
(0, 1, 1, 0, 0). This justifies the assertions at the end of subsection 9.1.

We shall use the following elementary lemma.
Lemma 9.2. Consider the quadratic equation dkμ

2 + cμ − b = 0 with dk > 0,
c > 0, and b ∈ C. The roots are

μ± =
1

2dk

(
−c± (

c2 + 4dkb
) 1

2

)
.

Choose χ− < χ+ with χ− < 0. Then
(1) if Re b ≥ χ2− + cχ−, then Reμ− ≤ χ−;
(2) if Re b ≥ χ2

+ + cχ+, then Reμ+ ≥ χ+.
Choose real numbers χ− < χ+ with χ− < 0. From Lemma 9.2 we have the

following:

Reμ−1− ≤ χ− if Reλ ≥ χ2
− + cχ−,(9.33)

Reμ−1+ ≥ χ+ if Reλ ≥ χ2
+ + cχ+,(9.34)

Reμ−k− ≤ χ− if Reλ ≥ dkχ
2
− + cχ− − φk, k = 2, 3,(9.35)

Reμ−k+ ≥ χ+ if Reλ ≥ dkχ
2
+ + cχ+ − φk, k = 2, 3,(9.36)

Reμ+k− ≤ χ− if Reλ ≥ dkχ
2
− + cχ−, k = 1, 2, 3,(9.37)

Reμ+k+ ≥ χ+ if Reλ ≥ dkχ
2
+ + cχ+, k = 1, 2, 3.(9.38)
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9.4. Proof of Theorem 9.1. To prove Theorem 9.1, we just need to verify
the hypotheses of Theorems 3.14 and 3.16, other than Hypothesis 3.6(3b), which is
assumed to hold.

The function R defined by (9.11) is C∞, so Hypothesis 3.1 is satisfied.
Let let −ω− denote the minimum of the two positive eigenvalues of the lineariza-

tion of (9.14)–(9.15) at (Z−, 0), and let−ω+ denote the maximum of the three negative
eigenvalues of the linearization of (9.14)–(9.15) at (Z+, 0). Then

ω− = −min

(
1

2d2

(
−c+ (

c2 + 4d2φ2
) 1

2

)
,

1

2d3

(
−c+ (

c2 + 4d3φ3
) 1

2

))
< 0,

ω+ = min
(
c, d−1

2 c, d−1
3 c

)
> 0.

With these values of ω− and ω+, Hypothesis 3.2 is satisfied. (However, if the two
positive eigenvalues of the linearization of (9.14)–(9.15) at (Z−, 0) are equal, then ω−
should be increased slightly.)

Let α = (α−, α+), with 0 < α− < min(c,−ω−) and 0 < α+ < ω+, so that
Hypothesis 3.6(1) and (2) are satisfied. Since 0 < α+ < ω+, we see immediately that
(9.27) with υ = α+ is negative. Moreover,

0 < α− < min

(
c,

1

2d2

(
c+

(
c2 + 4d2φ2

) 1
2

)
,

1

2d3

(
c+

(
c2 + 4d3φ3

) 1
2

))
,

so (9.24) with υ = α− is also negative. Therefore Hypothesis 3.6(3a) is satisfied with

(9.39) sup{Reλ : λ ∈ Spess(Lα)} = max(α2
− − cα−, d2α2

− − cα− − φ2,

d3α
2
− − cα− − φ3, α

2
+ − cα+, d2α

2
+ − cα+, d3α

2
+ − cα+).

We decompose Y -space as follows: Y = (U, V ) with U = y1 and V = (y2, y3).
Since R(y1, 0, 0) = (0, 0, 0) from (9.11), Hypothesis 3.9 is satisfied with A1 = 0. From
(9.22) we have

(9.40) L(1) = ∂ξξ + c∂ξ, L(2) =

(
d2∂ξξ + c∂ξ − φ2 0

0 d3∂ξξ + c∂ξ − φ3

)
.

The semigroup on L2(R) or BUC(R) generated by the operator associated with L(1)

satisfies Hypotheses 3.10(1) and 3.15. The operator on L2(R)2 associated with L(2)

has for its spectrum the union of the two curves λ = −dkθ2 + ciθ − φk, k = 2, 3,
θ ∈ R. Thus Hypothesis 3.10(2) is satisfied with

(9.41) sup{Reλ : λ ∈ Sp(L(2)
0 )} = max(−φ2,−φ3).

9.5. Discrete spectrum and the Evans function. To verify Hypothesis
3.6(3b) we must consider eigenvalues λ of Lα on L2

α(R)
3. Their eigenfunctions are

the Ỹ -components of solutions (Ỹ , Z̃) of (9.28) such that γα(ξ)(Ỹ (ξ), Z̃(ξ)) decays
exponentially as ξ → ±∞.

Suppose we choose χ− < χ+ < 0 so that χ2+cχ, d2χ
2+cχ−φ2, and d3χ2+cχ−φ3,

with χ = χ±, are all negative, and let −ν− < 0 be the maximum of these six numbers.
By (9.33)–(9.36), if Reλ ≥ −ν−, then for k = 1, 2, 3, Reμ−k− ≤ χ− and Reμ−k+ ≥
χ+.

In particular, let χ+ = −α− < 0. Then χ2
+ + cχ+, d2χ

2
+ + cχ+ − φ2, and d3χ

2
+ +

cχ+−φ3 are all negative. Choose χ− < χ+ such that χ2
−+cχ−, d2χ2

−+cχ−−φ2, and
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d3χ
2
− + cχ− − φ3 are all negative, and define −ν− < 0 as in the previous paragraph.

If Reλ ≥ −ν−, then for k = 1, 2, 3, Reμ−k− ≤ χ− and Reμ−k+ ≥ χ+.
Similarly, suppose we choose η− < η+ < 0 so that dkη

2 + cη, k = 1, 2, 3, with
η = η±, are all negative, and let −ν+ < 0 be the maximum of these six numbers. By
(9.37)–(9.38), if Reλ ≥ −ν+, then for k = 1, 2, 3, Reμ+k− ≤ η− and Reμ−k+ ≥ η+.

In particular, let η− = −α+ < 0. Then dkη
2
− + cη−, k = 1, 2, 3, are all negative.

Choose η+ such that η− < η+ < 0. Then dkη
2
+ + cη+, k = 1, 2, 3, are all negative.

Define −ν+ < 0 as in the previous paragraph. If Reλ ≥ −ν+, then for k = 1, 2, 3,
Reμ+k− ≤ η− and Reμ−k+ ≥ η+.

Choose −ν such that max(−ν−,−ν+) ≤ −ν < 0, and let Reλ ≥ −ν. Define
S−(λ) to be, for the linear system (9.29) with Y−, the three-dimensional sum of the
eigenspaces for eigenvalues greater than −α− < 0; similarly, define S+(λ) to be, for
the linear system (9.29) with Y+, the three-dimensional sum of the eigenspaces for
eigenvalues less than −α+ < 0. A solution of (9.28) lies in the space L2

α(R)
6 if and

only if, when normalized, it approaches S−(λ) as ξ → −∞ and approaches S+(λ) as
ξ → ∞. Values of λ for which such a solution exists are zeros of an analytic function
E(λ), the Evans function defined on Reλ ≥ −ν.

A standard rescaling argument shows that given ψ, 0 < ψ < π, there exists a
number R > 0 such that all zeros of the Evans function in {λ = reiθ : r ≥ 0 and |θ| ≤
ψ} have r ≤ R. Therefore, when we study the Evans function on Reλ ≥ −ν, there is
a number R > 0 such that it suffices to study it on {λ : Reλ ≥ −ν and |λ| ≤ R}.

Note that for Reλ ≥ 0, the space S−(λ) actually corresponds to eigenvalues with
real part at most 0. Thus for Reλ ≥ 0, the Evans function actually detects eigenvalues
with bounded eigenfunctions.

Simon et al. [22, 23, 24] show numerically that in a region of the form {λ : Reλ ≥
0 and |λ| ≤ R}, the Evans function has no zeros except a simple 0 at the origin.
Assuming this has been shown for R sufficiently large, Hypothesis 3.6(3b) is verified.

Suppose (1) there continue to be no eigenvalues in {λ : Reλ ≥ −ν and |λ| ≤ R},
and (2) −ν is greater than the maximum of (9.39) and (9.41). Then by Theorem 3.14,
the number −ν can be used in the exponential rate conclusions of Theorem 9.1.

Appendix A. Sufficient conditions for a bounded semigroup. Hypothe-
ses 3.10 and 3.15 require that certain semigroups be bounded. In this appendix we
give some conditions that can be used to check this assumption.

Let L be the generator of a C0-semigroup {etL}t≥0 on a Banach space E . We recall
that the semigroup is bounded if supt≥0 ‖etL‖ <∞. If the semigroup is bounded, then
Sp(L) ⊂ {λ : Reλ ≤ 0}. Of course, this statement is not an equivalence, even for 2×2
matrices.

In subsection A.1 we give a simple sufficient condition for our semigroups to be
bounded that works when two matrices commute and E0 = L2(R). In subsection A.2
we give more sophisticated integral conditions based on an abstract theorem from
[7, 21]. We give a necessary and sufficient integral condition for the case E0 = L2(R),
and a sufficient integral condition that implies boundedness of the semigroup for all
of the cases E0 = L1(R), L2(R), and BUC(R).

A.1. A condition when two matrices commute. For the case E0 = L2(R),
we can relate Hypothesis 3.10(1) (respectively, (2)) to the matrix DUR1(0, 0) (respec-
tively, DVR2(0, 0)), provided the matrices D1 and DUR1(0, 0) (respectively, D2 and
DVR2(0, 0)) commute.

We recall that an eigenvalue of a matrix is called semisimple if its algebraic and
geometric multiplicities coincide.
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Proposition A.1.

(1) Suppose (1) the matrices D1 and DUR1(0, 0) commute, and (2) for all eigen-
values λ of the matrix DUR1(0, 0), we have (a) Reλ ≤ 0, and (b) if Reλ = 0,
then λ is semisimple. Then Hypothesis 3.10(1) holds for E0 = L2(R).

(2) Suppose (1) the matrices D2 and DVR2(0, 0) commute, and (2) for all eigen-
values λ of the matrix DVR2(0, 0), we have Reλ < 0. Then Hypothesis 3.10(2)
holds for E0 = L2(R).

Proof. Given a diagonalm×mmatrixD with nonnegative entries dj and anm×m
matrix A that commutes with D, for the differential operator L = D∂2ξξ + c∂ξ +A on

L2(R)m, we claim that for t ≥ 0,

(A.1) ‖etL‖L2(R)n = ‖etA‖Cn .

Assuming the claim, we finish the proof of the proposition as follows. By (A.1) ap-
plied to the operator L1

0, Hypothesis 3.10(1) for E0 = L2(R) holds if and only if the
matrix DUR1(0, 0) generates a bounded semigroup on Cn1 . The first conclusion of the
proposition then follows from [2, Corollary I.2.11]. By (A.1) applied to the operator
L2
0, Hypothesis 3.10(2) for E0 = L2(R) holds if and only if the matrix DVR2(0, 0) gen-

erates an exponentially decaying semigroup on Cn1 , yielding the second conclusion of
the proposition.

To prove (A.1), we note that the semigroup generated by the operator L on L2(R)n

is similar via the Fourier transform to the semigroup generated on L2(R)n by the
operator M of multiplication by the matrix-valued function M(θ) = −θ2D+ iθc+A,
θ ∈ R. The norms of the respective semigroups are equal since the Fourier transform
is an isometry on L2(R); cf., e.g., Theorem VI.5.12, Propositions I.4.11 and I.4.12,
and Paragraph II.2.1 of [2]. It follows that

‖etL‖L2(R)n = ‖etM‖L2(R)n = sup
θ∈R

‖etM(θ)‖Cn = sup
θ∈R

‖et(−θ2D+iθc+A)‖Cn

= sup
η≥0

‖et(−ηD+A)‖Cn ,(A.2)

which yields the inequality (≥) in (A.1). To prove the reverse inequality, for each
x ∈ Cn with ‖x‖Cn = 1, we denote y(η, t, x) = et(−ηD+A)x. Since A and D commute,
we have d

dηe
t(−ηD+A) = −tDet(−ηD+A). We therefore calculate the following:

d

dη

(‖y(η, t, x)‖2) = d

dη
〈et(−ηD+A)x, et(−ηD+A)x〉 = −2t〈Dy(η, t, x), y(η, t, x)〉

= −2t
∑

j:dj 
=0

djyj(η, t, x)yj(η, t, x) ≤ −2t min
j:dj 
=0

dj‖y(η, t, x)‖2Cn .

We conclude easily that ‖y(η, t, x)‖Cn does not increase, so ‖y(η, t, x)‖Cn ≤
‖y(0, t, x)‖Cn for all η ≥ 0. Therefore

‖etL‖L2(R)n = sup
η≥0

‖et(−ηD+A)‖Cn = sup
η≥0

sup
‖x‖Cn=1

‖y(η, t, x)‖Cn ≤ sup
‖x‖Cn=1

‖y(0, t, x)‖Cn

= ‖etA‖Cn ,

which finishes the proof of (A.1).
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A.2. An integral condition. We begin by recalling an abstract theorem from
[7, 21]. We denote by 〈f, g〉E,E∗ the value of a functional g ∈ E∗ on f ∈ E .

Theorem A.2. Assume that the spectrum of the generator L of a C0-semigroup
{etL}t≥0 on E lies in {λ : Reλ ≤ 0}.

(1) Let E be a Hilbert space. Let L∗ be the adjoint operator of L. Then the
semigroup is bounded if and only if

(A.3)

sup
ω>0

ω

∫ ∞

−∞

∥∥(L− (ω+ iτ)I)−1f
∥∥2
E +

∥∥(L∗ − (ω+ iτ)I)−1f
∥∥2
E dτ <∞ for each f ∈ E .

(2) Let E be a Banach space. Then the semigroup is bounded, provided

(A.4) sup
ω>0

ω

∫ ∞

−∞

∣∣∣〈(L − (ω + iτ)I)−2f, g
〉
E,E∗

∣∣∣ dτ <∞ for each f ∈ E , g ∈ E∗.

This result is proved in [7, 21].

For the cases E0 = L1(R), L2(R), or BUC(R), we consider the operator L(1)
0 asso-

ciated with L(1) defined by (3.8). Since the semigroup generated by L(1)
0 on L2(R)n1

is bounded, Sp(L(1)
0 ) ⊂ {λ : Reλ ≤ 0}, so the same is true of its Fourier transform.

Therefore

(A.5) Sp(−D1θ
2 + icθ +DUR1(0, 0)) ⊂ {λ : Reλ ≤ 0} for all θ ∈ R.

Because of (A.5), we can define, for (θ, ω, τ) ∈ R3 with ω > 0,

N(θ, ω, τ) =
(−D1θ

2 + icθ +DUR1(0, 0)− (ω + iτ)I
)−1

,

m(θ, ω, τ) = ‖N(θ, ω, τ)‖Cn1×n1 .(A.6)

Proposition A.3. Assume (A.5).
(1) Suppose that m(·, ω, τ) ∈ L∞(R) for each (ω, τ) ∈ R2 with ω > 0, and

(A.7) sup
ω>0

ω

∫ ∞

−∞
‖m(·, ω, τ)‖2L∞(R) dτ <∞.

Then Hypothesis 3.10(1) holds for E0 = L2(R).
(2) Suppose that m(·, ω, τ) ∈ H1(R) for each (ω, τ) ∈ R2 with ω > 0, and

(A.8) sup
ω>0

ω

∫ ∞

−∞
‖m(·, ω, τ)‖2H1(R) dτ <∞.

Then Hypothesis 3.10(1) holds for both spaces, and Hypothesis 3.15(1) holds.
Proof. First, we recall the definition and elementary properties of matrix-valued

Fourier multipliers; see, e.g., [1] and the literature cited therein. Given an L∞ function
N : R → Cn1×n1 , we define an operator TN on the Schwartz space S(R)n1 of smooth,
rapidly decaying, vector-valued functions by TNh = F−1(N(·)Fh), where F is the
Fourier transform and h ∈ S(R)n1 . For E0 = L1(R), L2(R), or BUC(R), the function
N is called an En1

0 -Fourier multiplier if the operator TN admits a bounded extension
from S(R)n1 to all of En1

0 . Since F is an isometry on L2(R)n1 ,

every L∞function N is an L2(R)n1 -Fourier multiplier,

and ‖TN‖L2(R)n1→L2(R)n1 = ‖N‖L∞.(A.9)
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For E0 = L1(R) or BUC(R), various sufficient conditions are known for N to
be an En1

0 -Fourier multiplier. We will use one of the simplest [1, Theorem 4.1]: let
m(θ) = ‖N(θ)‖. For E0 = L1(R), L2(R), or BUC(R), if m ∈ H1(R), then N is an
En1
0 -Fourier multiplier, and

(A.10) ‖TN‖En1
0 →En1

0
≤ ‖m‖H1(R).

Next, let us consider the functions N and m defined by (A.6). In case (1)
(respectively, (2)) of the proposition, we have m(·, ω, τ) ∈ L∞(R) (respectively,
m(·, ω, τ) ∈ H1(R) ↪→ C0(R)). In either case, N is an L∞ function. For h ∈ S(R)n1 ,

we have (L(1)
0 − (ω + iτ)I)−1h = TNh. For (ω, τ) ∈ R2 with ω > 0, (A.9) implies that

TN is bounded on L2(R)n1 . Therefore on E0 = L2(R) the operator (L(1)
0 −(ω+iτ)I)−1

is also bounded, and

(A.11) (L(1)
0 − (ω + iτ)I)−1 = F−1(N(·)F) on L2(R)n1 .

Thus ω + iτ ∈ ρ(L(1)
0 ), so Sp(L(1)

0 ) ⊂ {λ : Reλ ≤ 0} for E0 = L2(R). By an analogue

of Lemma 3.5(1) for L(1)
0 , we have the same result for E0 = L1(R) and BUC(R).

Suppose (A.7) holds. Then (A.11) yields, for each f ∈ L2(R)n1 ,

sup
ω>0

ω

∫ ∞

−∞

∥∥(L(1)
0 − (ω + iτ)I)−1f

∥∥2
L2(R)n1

dτ=sup
ω>0

ω

∫ ∞

−∞

∥∥F−1(N(·)Ff)∥∥2
L2(R)n1

dτ

= sup
ω>0

ω

∫ ∞

−∞

∥∥N(·)Ff∥∥2
L2(R)n1

dτ

≤ sup
ω>0

ω

∫ ∞

−∞
‖m(·, ω, τ)‖L∞ dτ

∥∥Ff∥∥2
L2(R)n1

<∞.

This is half of what is needed to show that (A.3) holds. A similar argument yields the
other half, and then Theorem A.2(1) gives the result.

Suppose (A.8) holds. Theorem A.2(2) implies, in particular, that the semigroup
{etL}t≥0 is bounded on the Banach space E , provided Sp(L) ⊂ {λ : Reλ ≤ 0} and

(A.12) sup
ω>0

ω

∫ ∞

−∞

∥∥(L − (ω + iτ)I)−1
∥∥2
E→E dτ <∞.

For E0 = L1(R), L2(R), and BUC(R), we obtain, using (A.10),

(A.13) ‖(L(1)
0 − (ω + iτ)I)−1‖En1

0 →En1
0

= ‖TN‖En1
0 →En1

0
≤ ‖m(·, ω, τ)‖H1(R).

Then (A.13) and (A.8) imply that (A.12) holds with E = E0 and L = L(1)
0 , which

yields the result.

Appendix B. Stabilizing weights. We consider the linear PDE

(B.1) Yt = DYξξ + cYξ +AY,

with Y ∈ Rn, ξ ∈ R, t ≥ 0, D = diag(d1, . . . , dn) with all di ≥ 0, and A = (akl) an
n× n matrix.

In this appendix we will let α denote a real number, and we will use L2
α(R) to

denote a weighted L2 space with weight function eαξ so that Y ∈ L2
α(R)

n if and only
if eαξY (ξ) ∈ L2(R)n. Then

(B.2) Y (ξ) = e−αξZ(ξ), Z ∈ L2(R)n.
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Substitute (B.2) into (B.1) and multiply by eαξ:

(B.3) Zt = DZξξ + (c− 2α)Zξ + (α2D − cα+A)Z.

As explained in section 3, the operator on L2
α(R)

n given by the right-hand side of
(B.1) is similar to the operator on L2(R)n given by the right-hand side of (B.3).

To find the spectrum of the constant-coefficient linear differential operator on the
right-hand side of (B.3), we take the Fourier transform,

(B.4) Ẑt =
(−θ2D + (c− 2α)iθ + α2D − cα+A

)
Ẑ =M(θ, α)Ẑ,

where

M(θ, α) = diag
(−θ2dk + (c− 2α)iθ + α2dk − cα

)
+A.

Eigenvalues λ of M(θ, α) satisfy the equation det(M(θ, α)− λI) = 0 or

(B.5) det
(
diag

(−θ2dk + (c− 2α)iθ + α2dk − cα− λ
)
+A

)
= 0.

For fixed α, the spectrum of the operator on L2(R)n given by the right-hand side of
(B.3) is the closure of the set of λ such that λ satisfies (B.5) for some θ ∈ R.

Regard the left-hand side of (B.5) as a function of (θ, α, λ) that we denote

f(θ, α, λ). Define g : Rn2 → R by g(ckl) = det(ckl); the numbers ckl are the entries of
an n× n matrix. Then f can be regarded as the composite function,

f(θ, α, λ) = g
(
ckl(θ, α, λ)

)
,

where ckl(θ, α, λ) is the kl-entry of the matrix M(θ, α) − λI. We have

ckl = akl for k �= l, ckk = −θ2dk + (c− 2α)iθ + α2dk − cα− λ+ akk.

Suppose f(θ0, 0, 0) = 0; i.e., an eigenvalue of M(θ0, 0) = diag
(−θ20dk + icθ0

)
+A

is 0. Hence in the unweighted space (α = 0), the spectrum of the operator on the
right-hand side of (B.3) includes 0, so the semigroup it generates is not exponentially
stable. We want to move the spectrum to the left by introducing the weight eαξ.

Suppose, in addition, that ∂f
∂λ (θ0, 0, 0) �= 0; i.e., 0 is a simple eigenvalue ofM(θ0, 0).

Then by the implicit function theorem, the equation f(θ, α, λ) = 0 can be solved for
λ as a smooth function of (θ, α) near (θ0, 0, 0), so λ(θ0, 0) = 0.

Now f(θ, α, λ(θ, α)) = g(ckl(θ, α, λ(θ, α))) ≡ 0 implies

∑ ∂g

∂ckl

(
∂ckl
∂α

+
∂ckl
∂λ

∂λ

∂α

)
= 0.

This simplifies to

(B.6)
∑ ∂g

∂ckk

(
−2iθ+ 2αdk − c− ∂λ

∂α

)
= 0;

the partial derivatives of g are evaluated at M(θ, α) − λ(θ, α)I.
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If we substitute (θ, α) = (θ0, 0) into (B.6), we must evaluate the partial deriva-
tives of g at M(θ0, 0). Now

∂g
∂ckk

(M(θ0, 0)) = Mkk(θ0, 0), the kk-minor of M(θ0, 0).
Therefore

(∑
Mkk(θ0, 0)

)(
−2iθ0 − c− ∂λ

∂α
(θ0, 0)

)
= 0.

It is not hard to check that the assumption that 0 a simple eigenvalue of M(θ0, 0)
implies that

∑
Mkk(θ0, 0) �= 0; actually, the latter is equivalent to ∂f

∂λ(θ0, 0, 0) �= 0.
We therefore obtain

∂λ

∂α
(θ0, 0) = −2iθ − c.

It follows that if c > 0, increasing α will move the spectrum to the left. On the other
hand, if c < 0, increasing α will move the spectrum to the right.
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