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Motivation for work

Sourdis and Fife, Existence of heteroclinic orbits for a corner layer problem in
anisotropic interfaces, Advances in Differential Equations 12 (2007), 623—668:

The physical motivation comes from a multi-order-parameter phase field model, de-
veloped by Braun et al. for the description of crystalline interphase boundaries.
The smallness of € is related to large anisotropy. [The heteroclinic orbit represents
a moving interface between ordered and disordered states.] The mathematical in-
terest stems from the fact that the smoothness and normal hyperbolicity of the crit-
ical manifold fails at certain points. Thus the well-developed geometric singular
perturbation theory does not apply. The existence of such a heteroclinic, and its
dependence on &, is proved via a functional analytic approach.

Motivation for talk

Show how the blow-up technique of geometric singular perturbation theory (Du-
mortier, Roussarie, Szmolyan, Krupa, ...) can help with such problems.

Help is: geometric matching of outer and inner solutions.
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First-order system

Write (1)—(2) as a first-order system (the slow system) with Uy = X, U3 =:
(4) Uyr = Uy,

1
(5) Uor = Ox(Ug, Ug) = _§”~'2’°+ h (uy),
(7) €Usr = Gy(Uy, Ug) = U3 — UgUs.

In (4)—(7) let T = £€0. We obtain the fast system:

(8) Ui = €Uy,
1 /
(9) Uy = €Qx(U1,U3) =€ (—§U§+ h (Ul)) ,
(10) U3g = Ug,
(11) Use = Oy(Ug, Us) = U3 — UgUs = Ug(U5— Uy ).

Equilibria of the fast system for € > O:

1 1
(u,0,0,0) with h'(u;) =0, (ug,0, £u?,0) with — SULt h(up) =0.
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Equilibria of the fast system

Uig = 8U2,

1 2 /
Ups = EQx(Up,U3) = € —§u3+ h(up) |,
u30’ — U4,

Uso = 0y(U1, Ug) = U3 — UgUs = U3(U5 — Uy)
fore > 0O;

U2
U3:O
u;=uj |
C ~ U
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For each €, the fast system has the first integral

1 1
H (U1, Up, Us, Us) = Eu% + Euﬁ —g(uq, Us).

Note:
1
H(x_,0,0,0) = H(x,,0,x%,0) =0.
Goal: show that for small € > 0, there is a heteroclinic solution of the fast system
1
from (x_,0,0,0) to (x.,0,x%,0).

1
Fore >0, (x_,0,0,0) and (x.,0,x%,0) are hyperbolic equilibria of the fast system
with two negative eigenvalues and two positive eigenvalues.

The heteroclinic solution will correspond to an intersection of the 2-dimensional

1
manifolds WY(x_, 0,0,0) and WS(x,,0,x%,0) that is transverse within the 3-dimensional
manifold H~1(0) (which is indeed a manifold away from equilibria).



Fast limit and slow systems

Set € = 0in the fast system to obtain the fast limit system:

(12) Uig = 0,

(13) Uzg = 07

(14) Uzg = Ug,

(15) Uss = Qy(U1, Ug) = Uz(U5 — Uy).

Equilibria (slow manifold):

(Us=0)



Three manifolds of normally hyperbolic equilibria:

E = {(up,uz0,0) : u; < 0and u; arbitrary },
1
F_ = {(ug,uz,—uz,0) : uy > 0 and uy arbitrary },
1
F. = {(ug,u,uf,0) : uy > 0 and u, arbitrary}.

U F_
E ; =
2 F,
[
r + B
l\),(_ Uy
U3

Each has one positive eigenvalue and one negative eigenvalue. (On E. there are
two pure imaginary eigenvalues. On the uy-axis all eigenvalues are 0.)
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Set € = 0in the slow system to obtain the slow limit system:

(16) Uir = Uo,
1 /
(17) Upe = Ox(U1, Ug) = —§u§+ H (uy),
(18) 0= Ug,
(19) 0 = gy(Uy,Us) = (U3 — uy).

E., F. are manifolds of solutions of (18)—(19). Equations (16)—(17) give the slow
system on these manifolds.

Slow system on E_ (U; < O, Uy arbitrary):

(20) Uir = Uz,
(21) Uzr = G(U1,0) = h'(uy).

Slow system on F, (U; > O, Uy arbitrary):

(22) Ujr = Uy,
1

1 1
(23) Ur = Ox(Up, U7) = Uit h'(uy).
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Phase portraits of slow system on E_ and F, in U;Uy-coordinates, both extended to
u; = 0:

/.
N

\
@

(a) (b)

e In (a), (x_,0) is a hyperbolic saddle, and a branch of its unstable manifold
meets the U, axis at a point (0, U).

e In (b), (X,,0) is a hyperbolic saddle, and a branch of its stable manifold meets
the Uy aX|s at the same point (0, U).
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Slow limit system on E_ and F,:

U F_
E ; =
2 F,
[_
r + B
l\),(_ g
U3

Theorem 1. For small € > 0O, there is a heteroclinic solution of the fast system from
1
(x-,0,0,0) to (x,,0,x%,0) thatis close to ' _UT .
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Blow-up

To the fast system append the equation €5 = O:

(24) Uig = €U,
1
(25) Upo = €Qx(U1, U) = 8(—§U§ +h (u)),
(26) Uzg = Ug,
(27) Uge = gy(u17 U3) — Ug — Uy U3,
(28) 80‘ — O.

The Uy-axis consists of equilibria of (24)—(27) with € = O that are not normally hy-
perbolic within U;U>U3U4-Space

In UqUoU3U4€E-Sspace, we shall it blow up to the product of the Uy-axis with a 3-sphere.
The 3-sphere is a blow-up of the origin in UjU3U4E-Space.

The blowup transformation is a map from R X S x [0, ) to UyUpUsUse-space. Let
(Up, (Ug, U3, Ug, €),T) be a point of R x $* x [0,); we have Uy + Uz + Us* + €2 = 1.
Then

(29) U =T%0;, Up=Uy, Ug=TUs, Us=T%Uy, €=
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S~

p_’(.;) S B\

P, (€)

Under this transformation (24)—(28) pulls back to a vector field X on R x S® x 0, )
for which the cylinder r = O consists entirely of equilibria. The vector field we shall
study is X =~ 1X. Division by I desingularizes the vector field on the cylinder r =0
but leaves it invariant.

Let p_(€) (respectively p,(€)) be the unique point in R x S* x [0,0) that corre-
1

sponds to (x_,0,0,0,¢€) (respectively (x,,0,x2,0,€)). We wish to show that for
small € > O there is an integral curve of X from p_(€) to p,(€). Equivalently, we
shall show that for small € > O there is an integral curve of X from p_(€) to p,(€).
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In blow-up space:

ol _ corresponds to ['_ and approaches a point §_ = (u5,§4_,0) on the blow-up
cylinder.

e [, corresponds to I, and approaches a point § = (U5, ,0) on the blow-up
cylinder.

e On the blow-up cylinder, each 3-sphere U, = constant is invariant.

Proposition 2. There is an integral curve Fo of )Z_from g_ to §, that lies in the
3-dimensional hemisphere given by u, = U3, r =0, € > 0.

Theorem 3. For small € > O there is an integral curve [(€) of X from p_(€) to
p.(g). Ase — 0, () > T_UlUl,.
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We shall need three charts on blow-up space:

e>0

l/;1<0 ui

Us, Uy

I/l1>0
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Chart for € > 0

On the set of points in R x S* x [0, %) with € > O, let
(30) U =10y, Up=Up, Ug=rhg, Us=rbs, e=r1°

with r > 0. After division by r, (24)—(28) becomes

(31) D15 = Up,
1 ,
(32) Ups = r2(—§r2b§+h (r’by)),
(33) b3S — b47
(34) Dss = bg — bybs,

Note 1: r = O implies Uyg = O.

1 — — —

—— 2 _
Note 2: by = U1€73, Uy, b3 = U3€ 73, by = U4€ 3, and r = res.

Note 3: (31)—(35) actually represents the vector field
X =1 iX =& X
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Chart for u; < 0

On the set of points in R x S* x [0, ) with U; < 0O, let

(36)

U =Uz, Usz=Vag, Us= Vza4,

with v > 0. After division by Vv, (24)—(28) becomes

(37)
(38)

(39)
(40)

(41)

1
Vi = —Evéuz,

n = VB~ 1P+ H (D)),

1
ag = ay+ -0Upag,

2
au = a3+ ag + Slpau,
3
= —3Up.
O 50 U2

Note 1: v= 0 implies uy = 0.

Note 2: v=r(— ul)z Up, 83 = Uz(—Uyp)~ 2 LA = —Ugl; %, and &= &(—0y) 2.

Note 3: (37)—(41) actually represents the vector field

VX = (=) 2K = (=)

I\JIH

X

£ =9,

NIw



Chart for u; > 0

On the set of points in R x S* x [0, ) with U; > 0, let
(42) Up =W, Up=Uy, U3=WC3 Us=WCy,

with w > 0. After division by w, (24)—(28) becomes

1
(43) W — EWYUZJ

1
(44) Ut = WY(—owoeg + (W),

1
(45) Cat = C4— QVUzCs,
(46) Cat = C3 — C3 — YUpCy,
3

(47) Y= —5Y U

Note 1: w= 0 implies uy = 0.
1 1

- . 3
Note 2: W= I'UZ, Up, C3 = U3l 2, C4 = Ugl; 1, and y = €U 2.

Note 3: (43)—(47) actually represents the vector field

I —q—1 _ 1.
WX =r "u, “X=u, °X

£ = Wy.

19
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Construction of the inner solution fo

Let X denote the restriction of the vector field X to the invariant 3-sphere M =
{up} x S x {0}, S = { (U1, U3, Us, €) : U] +- U3+ U + €% = 1}.

NI

Chart on the open subset of M with u; < 0: ag = Uz(—Up) "2, a4y = —u_4u_Il, 0=

8(—61)‘%. In this chart, the vector field (—u_l)‘%)A( is

1 %
(48) 8z = au+ Eéuzag,
(49) aq = a3+ ag+ OUsay,
3
(50) & = Eézuz.
O
\WC”(O,O,Oj
P
\\ -




Chart on the open subset of M with u; > 0: ¢3 = u3u_I

_ 1.
this chart, the vector field U, *X is

(51)
(52)

(53)

1 *
Cat = C4 — EVUzCSa

3
Cat = C3 — C3 — YUpCa,

3 2
Yt = —éyzuz.

Y

W*%(1,0,0 + P

NI

——1
, C4 = UgU, 7, Y =
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Chart on the open subset of M with € > 0: by = Uy~
this chart, the vector field £ 3X is

(54) blS — uza
(55) bSS — b47
(56) e = b3 — byls = ba(b2— by).

The solution of (54) with b;(0) = Ois by = u3s. Substitute into (56) and combining
(55) and (56) into a second-order equation:

(57) bass = b3(b5 — U3S)

By Sourdis and Fife, (57) has a solution b3(s) with bzs > 0 such that

(S1) bi(s) = (\s| e s<u2>?|s|2) ass
(S2) bs(s) = (UZS)2 +0(s2)ass— o,
(S3) bas(s) < C|s| 2, s £ 0.

s) <
(U5S, bs(S), bas(S)) is a solution of (54)—(56). It represents an intersection of W(G_ )
and W(q, ) in the 3-sphere M.
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Transversality

W (G_) and W*({,. ) are 2-dimensional submanifolds of the 3-sphere M.

Let o= (u3,lo,0). They intersect along I o.
Proposition 4. W(G_) and W®S(§. ) intersect transversally within M along [ o.

Proof. The linearization of
blS — U;,
bSS — b47
by = bg — b41bs

along (U5S,b3(s),bss(S)) is

Bis 0 0 O\ /B;
Bus —bs(s) 3bs(s)?—uss 0/ \ By

We must show there are no solutions with appropriate behavior at S = 4= other
than multiples of (U5, bss, Dass).
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There is a complementary 2-dimensional space of solutions of (58) with B;(s) =0
and (Bs(S), B4(S)) a solution of

Bss\ 0 1\ (B3
(59) <B4s) B <3b3(5)2— UsS O) (84)

We must show that no nontrivial solution has appropriate behavior at S= +o.

(59) is equivalent to the second order linear system
(60) Biss = (3b3(S)2 — U;S) Bs.

By Alikakos, Bates, Cahn, Fife, Fusco, and Tanoglu, Analysis of the corner layer
problem in anisotropy, Discrete Contin. Dyn. Syst. 6 (2006), 237-255, (60) has no
nontrivial solutions in L2, hence no solution with the correct asymptotic behavior.



Proof of Theorem 3

Theorem 3. For small € > O there is an integral curve [(€) of X from p_(€) to
p.(€). Ase—0,I(e) - T_UlNuUrl,.

Lol

d \/i\* B

p_(€) T
p.(€)

Recall: for each €, the fast system has the first integral

1 1 1 1
H (U1, Up, Us, Ug) = iu% + Euﬁ - (Zug‘ - Eulug + h(u1)> .

H gives rise to a first integral for H on blow- up space:

~ _ 1 1 1 1_ 5
H (U, (U1, Us, Us, €),T) = Eu§+ r* (2“‘2‘ - ZJ;"Jr 2u1u3> h(r?uy).
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p_(€)

P, (€)

Let N denote the set of points in blow-up space at which H=0andr3s=¢.
Away from equilibria of X, each N, is a manifold of dimension 3.

For the vector field X and € > 0, the equilibria p_(€) and p..(€) have 2-dimensional
unstable and stable manifolds.

We will prove the theorem by showing that for small € > 0, W"(p_(€)) and W3(p..(€))
have a nonempty intersection that is transverse within Ng.
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Chart for u; < O:

1
Vi = —Evéuz,

n = VB~ 517+ H(—VP)),

1
ax = ag+ §6U233,
ay = a3+ ag + dUpay,

3
= ~5°Up.
Ot 50Uz
The 3-dimensional space az = a4 = O is invariant, and is normally hyperbolic near
the plane of equilibria a3 = a4 = d = 0. One eigenvalue is positive, one is negative.

The plane of equilibria corresponds to E_. Normal hyperbolicity within & = O is not
lost at V= 0, which corresponds to u; = 0.

Restrict to a3 = a4 = 0 and divide by o:

(61) V= —%vuz,
(62) Uy = Vv?h'(—V?),
3
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V= —EVUZ,
(= H ()

-3

= §6U2.

Equilibria on the lines {(V,Up,0) : v = (—X_)%,uz = 0} and {(V,Up,0) : v=20=
0,u, # 0} are normally hyperbolic, with one positive eigenvalue and one negative
eigenvalue.
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Lemma 4. As &g — O+, W“((—x_)%, 0,dp) approaches WY(0, us, 0) in the C? topol-
ogy. (Both have dimension 1.)

Lemma 5. In the chart for u; < 0, as &g — 0+, W“((—X_)%,O, 0,0,0p) approaches
the manifold of unstable fibers over WY(0, u5,0) in the C! topology. (Both have
dimension 2.)

The latter corresponds to W(qy) in M = {us} x S x {0}.
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Chart for u; > O:

1
W = EWYUZJ
U = WY(~ WG+ H (WD),

1
Cat = C4— EWZC&

3
Cat = C3— C3 — YUoCa,

3
Yt = —EVZUZ-

The equilibria of the plane ¢c3 = 1, ¢4 = Y = 0 have, transverse to the plane, one
positive eigenvalue, one negative eigenvalue, one zero eigenvalue.

Therefore this plane is part of a 3-dimensional normally hyperbolic invariant mani-
fold S, with equations

C3=1+ y263(W7 Uz,y), Cq = y64(W7 Uz, y)

The plane of equilibria corresponds to F,. Normal hyperbolicity within y= 0 is not
lost at w = 0, which corresponds to u; = 0.

Restrict to S and divide by :
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(64)
(65)

(66)

1
Lemma 6. As Yo — O+, WS(X2,0,Yo) approaches W3(0, us, 0) in the C! topology.
(Both have dimension 1.)

1
Lemma 7. In the chart for u; > 0, as Yo — 0+, W3(x%,0,1,0,Yp) approaches the
manifold of stable fibers over WS(0, u5, 0) in the C! topology. (Both have dim 2.)

The latter corresponds to W(d,) in M = {u3} x S* x {0}.
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In blow-up space:
Lemma 8. As € — 0+, WY(p_(€)) approaches W(g_) in the C* topology.
Lemma 9. As € — 0+, W3(p,.(€)) approaches W({, ) in the C? topology.

By Proposition 4: W®(G_) and W®({§,) meet transversally within the 3-sphere
= 0, U = U;, which is Np.

In the chart for € > 0, H corresponds to

1 1 1 1

Hb(bb Uy, b37 b47 r) — —U% + r4(_b421 o _bg + —b]_b%) -+ h(rzbl)‘
2 2 4 2

No corresponds to the set of (b, Uz, b3,b4,1) such that H, =0 and r = 0. The

functions Hy and r have linearly independent gradients provided Uy # 0. There-
fore, where u, # O, the sets N 1 = Nr depend smoothly on 1. Since W°u(qg_) and
€

W°s({. ) meet transversally within No, it follows that WY(p_(g)) and W3(p..(€))
meet transversally within N for € small.

p.(€)



