Heteroclinic solutions of a singularly perturbed Hamiltonian system

Steve Schecter (NC State) Christos Sourdis (Universidad de Chile)

Motivation for work

Sourdis and Fife, *Existence of heteroclinic orbits for a corner layer problem in anisotropic interfaces*, Advances in Differential Equations **12** (2007), 623–668:

The physical motivation comes from a multi-order-parameter phase field model, developed by Braun et al. for the description of crystalline interphase boundaries. The smallness of ε is related to large anisotropy. [The heteroclinic orbit represents a moving interface between ordered and disordered states.] The mathematical interest stems from the fact that the smoothness and normal hyperbolicity of the critical manifold fails at certain points. Thus the well-developed geometric singular perturbation theory does not apply. The existence of such a heteroclinic, and its dependence on ε , is proved via a functional analytic approach.

Motivation for talk

Show how the blow-up technique of geometric singular perturbation theory (Dumortier, Roussarie, Szmolyan, Krupa, ...) can help with such problems.

Help is: geometric matching of outer and inner solutions.

Second-order system

We consider

(1)
$$x_{\tau\tau} = g_x(x,y),$$

(2) $\epsilon^2 y_{\tau\tau} = g_y(x,y),$

where

First-order system

Write (1)–(2) as a first-order system (the slow system) with $u_1 = x$, $u_3 = y$: (4) $u_{1\tau} = u_2$,

(5)
$$u_{2\tau} = g_x(u_1, u_3) = -\frac{1}{2}u_3^2 + h'(u_1),$$

$$\mathbf{\epsilon} u_{3\tau} = u_4,$$

(7)
$$\varepsilon u_{4\tau} = g_y(u_1, u_3) = u_3^3 - u_1 u_3.$$

In (4)–(7) let $\tau = \varepsilon \sigma$. We obtain the fast system: (8) $u_{1\sigma} = \varepsilon u_2$,

(9)
$$u_{2\sigma} = \varepsilon g_x(u_1, u_3) = \varepsilon \left(-\frac{1}{2} u_3^2 + h'(u_1) \right),$$

(10) $u_{3\sigma} = u_4,$

(11)
$$u_{4\sigma} = g_y(u_1, u_3) = u_3^3 - u_1 u_3 = u_3(u_3^2 - u_1).$$

Equilibria of the fast system for $\epsilon > 0$:

$$(u_1, 0, 0, 0)$$
 with $h'(u_1) = 0$, $(u_1, 0, \pm u_1^{\frac{1}{2}}, 0)$ with $-\frac{1}{2}u_1 + h'(u_1) = 0$.

Equilibria of the fast system

$$u_{1\sigma} = \varepsilon u_2,$$

$$u_{2\sigma} = \varepsilon g_x(u_1, u_3) = \varepsilon \left(-\frac{1}{2}u_3^2 + h'(u_1) \right),$$

$$u_{3\sigma} = u_4,$$

$$u_{4\sigma} = g_y(u_1, u_3) = u_3^3 - u_1u_3 = u_3(u_3^2 - u_1)$$

for $\epsilon > 0$:

 $(x_{-},0,0,0), (x_{0},0,\pm x_{0}^{\frac{1}{2}},0), (x_{+},0,\pm x_{+}^{\frac{1}{2}},0).$

6

For each ϵ , the fast system has the first integral

$$H(u_1, u_2, u_3, u_4) = \frac{1}{2}u_2^2 + \frac{1}{2}u_4^2 - g(u_1, u_3).$$

Note:

$$H(x_{-},0,0,0) = H(x_{+},0,x_{+}^{\frac{1}{2}},0) = 0.$$

Goal: show that for small $\varepsilon > 0$, there is a heteroclinic solution of the fast system from $(x_-, 0, 0, 0)$ to $(x_+, 0, x_+^{\frac{1}{2}}, 0)$.

For $\varepsilon > 0$, $(x_-, 0, 0, 0)$ and $(x_+, 0, x_+^{\frac{1}{2}}, 0)$ are hyperbolic equilibria of the fast system with two negative eigenvalues and two positive eigenvalues.

The heteroclinic solution will correspond to an intersection of the 2-dimensional manifolds $W^u_{\varepsilon}(x_-, 0, 0, 0)$ and $W^s_{\varepsilon}(x_+, 0, x_+^{\frac{1}{2}}, 0)$ that is transverse within the 3-dimensional manifold $H^{-1}(0)$ (which is indeed a manifold away from equilibria).

Fast limit and slow systems

Set $\varepsilon = 0$ in the fast system to obtain the fast limit system:

(12)
$$u_{1\sigma} = 0,$$

(13) $u_{2\sigma} = 0,$
(14) $u_{3\sigma} = u_4,$
(15) $u_{4\sigma} = g_y(u_1, u_3) = u_3(u_3^2 - u_1).$

Equilibria (slow manifold):

Three manifolds of normally hyperbolic equilibria:

$$E_{-} = \{(u_{1}, u_{2}, 0, 0) : u_{1} < 0 \text{ and } u_{2} \text{ arbitrary}\},\$$

$$F_{-} = \{(u_{1}, u_{2}, -u_{1}^{\frac{1}{2}}, 0) : u_{1} > 0 \text{ and } u_{2} \text{ arbitrary}\},\$$

$$F_{+} = \{(u_{1}, u_{2}, u_{1}^{\frac{1}{2}}, 0) : u_{1} > 0 \text{ and } u_{2} \text{ arbitrary}\}.$$

Each has one positive eigenvalue and one negative eigenvalue. (On E_+ there are two pure imaginary eigenvalues. On the u_2 -axis all eigenvalues are 0.)

Set $\varepsilon = 0$ in the slow system to obtain the slow limit system:

(16)
$$u_{1\tau} = u_2,$$

(17)
$$u_{2\tau} = g_x(u_1, u_3) = -\frac{1}{2}u_3^2 + h'(u_1),$$

(18)
$$0 = u_4,$$

(19)
$$0 = g_y(u_1, u_3) = u_3(u_3^2 - u_1).$$

 E_{\pm} , F_{\pm} are manifolds of solutions of (18)–(19). Equations (16)–(17) give the slow system on these manifolds.

Slow system on E_- ($u_1 < 0$, u_2 arbitrary):

(20)
$$u_{1\tau} = u_2,$$

(21) $u_{2\tau} = g_x(u_1, 0) = h'(u_1).$

Slow system on F_+ ($u_1 > 0$, u_2 arbitrary):

(22) $u_{1\tau} = u_2,$

(23)
$$u_{2\tau} = g_x(u_1, u_1^{\frac{1}{2}}) = -\frac{1}{2}u_1 + h'(u_1).$$

Phase portraits of slow system on E_{-} and F_{+} in $u_{1}u_{2}$ -coordinates, both extended to $u_{1} = 0$:

- In (a), $(x_-,0)$ is a hyperbolic saddle, and a branch of its unstable manifold meets the u_2 axis at a point $(0, u_2^*)$.
- In (b), (x₊,0) is a hyperbolic saddle, and a branch of its stable manifold meets the u₂ axis at the same point (0, u₂^{*}).

Slow limit system on E_{-} and F_{+} :

12

Theorem 1. For small $\varepsilon > 0$, there is a heteroclinic solution of the fast system from $(x_-, 0, 0, 0)$ to $(x_+, 0, x_+^{\frac{1}{2}}, 0)$ that is close to $\Gamma_- \cup \Gamma_+$.

Blow-up

To the fast system append the equation $\varepsilon_{\sigma} = 0$:

$$(24) u_{1\sigma} = \varepsilon u_2,$$

(25)
$$u_{2\sigma} = \varepsilon g_x(u_1, u_3) = \varepsilon (-\frac{1}{2}u_3^2 + h'(u_1)),$$

(26) $u_{3\sigma} = u_4,$

(27)
$$u_{4\sigma} = g_y(u_1, u_3) = u_3^3 - u_1 u_3,$$

(28)
$$\varepsilon_{\sigma} =$$

(29)

$$y = g_y(u_1, u_3) = u_3^3 - u_1 u_3$$

 $y = 0.$

The u_2 -axis consists of equilibria of (24)–(27) with $\varepsilon = 0$ that are not normally hyperbolic within $u_1u_2u_3u_4$ -space

In $u_1u_2u_3u_4\varepsilon$ -space, we shall it blow up to the product of the u_2 -axis with a 3-sphere. The 3-sphere is a blow-up of the origin in $u_1u_3u_4\varepsilon$ -space.

The blowup transformation is a map from $\mathbb{R} \times S^3 \times [0,\infty)$ to $u_1 u_2 u_3 u_4 \varepsilon$ -space. Let $(u_2, (\bar{u_1}, \bar{u_3}, \bar{u_4}, \bar{\epsilon}), \bar{r})$ be a point of $\mathbb{R} \times S^3 \times [0, \infty)$; we have $\bar{u_1}^2 + \bar{u_3}^2 + \bar{u_4}^2 + \bar{\epsilon}^2 = 1$. Then

 $u_1 = \bar{r}^2 \bar{u}_1, \quad u_2 = u_2, \quad u_3 = \bar{r} \bar{u}_3, \quad u_4 = \bar{r}^2 \bar{u}_4, \quad \varepsilon = \bar{r}^3 \bar{\varepsilon}.$

Under this transformation (24)–(28) pulls back to a vector field X on $\mathbb{R} \times S^3 \times [0,\infty)$ for which the cylinder $\bar{r} = 0$ consists entirely of equilibria. The vector field we shall study is $\tilde{X} = \bar{r}^{-1}X$. Division by \bar{r} desingularizes the vector field on the cylinder $\bar{r} = 0$ but leaves it invariant.

Let $p_{-}(\varepsilon)$ (respectively $p_{+}(\varepsilon)$) be the unique point in $\mathbb{R} \times S^{3} \times [0,\infty)$ that corresponds to $(x_{-},0,0,0,\varepsilon)$ (respectively $(x_{+},0,x_{+}^{\frac{1}{2}},0,\varepsilon)$). We wish to show that for small $\varepsilon > 0$ there is an integral curve of X from $p_{-}(\varepsilon)$ to $p_{+}(\varepsilon)$. Equivalently, we shall show that for small $\varepsilon > 0$ there is an integral curve of \tilde{X} from $p_{-}(\varepsilon)$ to $p_{+}(\varepsilon)$.

In blow-up space:

- $\tilde{\Gamma}_{-}$ corresponds to Γ_{-} and approaches a point $\tilde{q}_{-} = (u_{2}^{*}, \hat{q}_{-}, 0)$ on the blow-up cylinder.
- $\tilde{\Gamma}_+$ corresponds to Γ_+ and approaches a point $\tilde{q}_+ = (u_2^*, \hat{q}_+, 0)$ on the blow-up cylinder.
- On the blow-up cylinder, each 3-sphere $u_2 = \text{constant}$ is invariant.

Proposition 2. There is an integral curve $\tilde{\Gamma}_0$ of \tilde{X} from \tilde{q}_- to \tilde{q}_+ that lies in the 3-dimensional hemisphere given by $u_2 = u_2^*$, $\bar{r} = 0$, $\bar{\epsilon} > 0$.

Theorem 3. For small $\varepsilon > 0$ there is an integral curve $\tilde{\Gamma}(\varepsilon)$ of \tilde{X} from $p_{-}(\varepsilon)$ to $p_{+}(\varepsilon)$. As $\varepsilon \to 0$, $\tilde{\Gamma}(\varepsilon) \to \tilde{\Gamma}_{-} \cup \tilde{\Gamma}_{0} \cup \tilde{\Gamma}_{+}$.

We shall need three charts on blow-up space:

Chart for $\overline{\epsilon} > 0$

On the set of points in $\mathbb{R} \times S^3 \times [0,\infty)$ with $\overline{\epsilon} > 0$, let

(30)
$$u_1 = r^2 b_1, \quad u_2 = u_2, \quad u_3 = r b_3, \quad u_4 = r^2 b_4, \quad \varepsilon = r^3,$$

with $r \ge 0$. After division by r, (24)–(28) becomes

(31)
$$b_{1s} = u_2$$

(31)
$$D_{1s} = u_2,$$

(32) $u_{2s} = r^2(-\frac{1}{2}r^2b_3^2 + h'(r^2b_1)),$

(33)
$$b_{3s} = b_4,$$

(34)
$$b_{4s} = b_3^3 - b_1 b_3,$$

(35) $r_{s} = 0.$

Note 1: r = 0 implies $u_{2s} = 0$.

Note 2:
$$b_1 = \bar{u}_1 \bar{\epsilon}^{-\frac{2}{3}}$$
, u_2 , $b_3 = \bar{u}_3 \bar{\epsilon}^{-\frac{1}{3}}$, $b_4 = \bar{u}_4 \bar{\epsilon}^{-\frac{2}{3}}$, and $r = \bar{r} \bar{\epsilon}^{\frac{1}{3}}$.

Note 3: (31)–(35) actually represents the vector field $r^{-1}X = \overline{r}^{-1}\overline{\varepsilon}^{-\frac{1}{3}}X = \overline{\varepsilon}^{-\frac{1}{3}}\tilde{X}$

Chart for $\bar{u}_1 < 0$

On the set of points in $\mathbb{R} imes S^3 imes [0,\infty)$ with $ar{u}_1 < 0$, let

(36)
$$u_1 = -v^2, \quad u_2 = u_2, \quad u_3 = va_3, \quad u_4 = v^2 a_4, \quad \varepsilon = v^3 \delta,$$

with $v \ge 0$. After division by v, (24)–(28) becomes

$$v_t = -\frac{1}{2}v\delta u_2,$$

(38)
$$u_{2t} = v^2 \delta(-\frac{1}{2}v^2 a_3^2 + h'(-v^2)),$$

(39)
$$a_{3t} = a_4 + \frac{1}{2}\delta u_2 a_3,$$

(40)
$$a_{4t} = a_3^3 + a_3 + \delta u_2 a_4,$$

$$\delta_t = \frac{3}{2}\delta^2 u_2.$$

Note 1: v = 0 implies $u_{2t} = 0$.

Note 2:
$$v = \bar{r}(-\bar{u}_1)^{\frac{1}{2}}$$
, u_2 , $a_3 = \bar{u}_3(-\bar{u}_1)^{-\frac{1}{2}}$, $a_4 = -\bar{u}_4\bar{u}_1^{-1}$, and $\delta = \bar{\epsilon}(-\bar{u}_1)^{-\frac{3}{2}}$.

Note 3: (37)–(41) actually represents the vector field

$$v^{-1}X = \bar{r}^{-1}(-\bar{u}_1)^{-\frac{1}{2}}X = (-\bar{u}_1)^{-\frac{1}{2}}\tilde{X}$$

Chart for $\bar{u}_1 > 0$

On the set of points in $\mathbb{R} imes S^3 imes [0,\infty)$ with $ar{u}_1 > 0$, let

(42)
$$u_1 = w^2, \quad u_2 = u_2, \quad u_3 = wc_3, \quad u_4 = w^2 c_4, \quad \varepsilon = w^3 \gamma.$$

with $w \ge 0$. After division by w, (24)–(28) becomes

$$(43) w_t = \frac{1}{2} w \gamma u_2,$$

(44)
$$u_{2t} = w^2 \gamma (-\frac{1}{2} w^2 c_3^2 + h'(w^2)),$$

(45)
$$c_{3t} = c_4 - \frac{1}{2}\gamma u_2 c_3,$$

(46)
$$c_{4t} = c_3^3 - c_3 - \gamma u_2 c_4,$$

$$\gamma_t = -\frac{3}{2}\gamma^2 u_2.$$

Note 1:
$$w = 0$$
 implies $u_{2t} = 0$.
Note 2: $w = \bar{r}\bar{u}_1^{\frac{1}{2}}$, u_2 , $c_3 = \bar{u}_3\bar{u}_1^{-\frac{1}{2}}$, $c_4 = \bar{u}_4\bar{u}_1^{-1}$, and $\gamma = \bar{\epsilon}\bar{u}_1^{-\frac{3}{2}}$.

Note 3: (43)–(47) actually represents the vector field $-1_{\mathbf{V}} = -1 - \frac{1}{2}_{\mathbf{V}} = -\frac{1}{2} \frac{1}{2}_{\mathbf{V}}$

$$w^{-1}X = \bar{r}^{-1}\bar{u}_1^{-\frac{1}{2}}X = \bar{u}_1^{-\frac{1}{2}}\tilde{X}$$

Construction of the inner solution $\tilde{\Gamma}_0$

Let \hat{X} denote the restriction of the vector field \tilde{X} to the invariant 3-sphere $M = \{u_2^*\} \times S^3 \times \{0\}, S^3 = \{(\bar{u}_1, \bar{u}_3, \bar{u}_4, \bar{\epsilon}) : \bar{u}_1^2 + \bar{u}_3^2 + \bar{u}_4^2 + \bar{\epsilon}^2 = 1\}.$

Chart on the open subset of M with $\bar{u}_1 < 0$: $a_3 = \bar{u}_3(-\bar{u}_1)^{-\frac{1}{2}}$, $a_4 = -\bar{u}_4\bar{u}_1^{-1}$, $\delta = \bar{\epsilon}(-\bar{u}_1)^{-\frac{3}{2}}$. In this chart, the vector field $(-\bar{u}_1)^{-\frac{1}{2}}\hat{X}$ is

(48)
$$a_{3t} = a_4 + \frac{1}{2} \delta u_2^* a_3,$$

$$a_{3t} = a_4 + \frac{1}{2} \delta u_2 a_3,$$

$$a_{4t} = a_3^3 + a_3 + \delta u_2^* a_4$$

$$\delta_t = \frac{3}{2} \delta^2 u_2^*.$$

(50)

Chart on the open subset of M with $\bar{u}_1 > 0$: $c_3 = \bar{u}_3 \bar{u}_1^{-\frac{1}{2}}$, $c_4 = \bar{u}_4 \bar{u}_1^{-1}$, $\gamma = \bar{\epsilon} \bar{u}_1^{-\frac{3}{2}}$. In this chart, the vector field $\bar{u}_1^{-\frac{1}{2}} \hat{X}$ is

(51)
$$c_{3t} = c_4 - \frac{1}{2}\gamma u_2^* c_3,$$

$$c_{4t} = c_3^3 - c_3 - \gamma u_2^* c_4,$$

$$\gamma_t = -\frac{3}{2} \gamma^2 u_2^*.$$

(53)
$$\gamma_t =$$

Chart on the open subset of M with $\bar{\epsilon} > 0$: $b_1 = \bar{u}_1 \bar{\epsilon}^{-\frac{2}{3}}$, $b_3 = \bar{u}_3 \bar{\epsilon}^{-\frac{1}{3}}$, $b_4 = \bar{u}_4 \bar{\epsilon}^{-\frac{2}{3}}$. In this chart, the vector field $\bar{\epsilon}^{-\frac{1}{3}} \hat{X}$ is

(54)
$$b_{1s} = u_2^*$$

(55)
$$b_{3s} = b_4,$$

(56)
$$b_{4s} = b_3^3 - b_1 b_3 = b_3 (b_3^2 - b_1).$$

The solution of (54) with $b_1(0) = 0$ is $b_1 = u_2^*s$. Substitute into (56) and combining (55) and (56) into a second-order equation:

(57)
$$b_{3ss} = b_3(b_3^2 - u_2^* s)$$

By Sourdis and Fife, (57) has a solution $b_3(s)$ with $b_{3s} > 0$ such that

(S1)
$$b_3(s) = O\left(|s|^{-\frac{1}{4}}e^{-\frac{2}{3}(u_2^*)^{\frac{1}{2}}|s|^{\frac{3}{2}}}\right)$$
 as $s \to -\infty$,
(S2) $b_3(s) = (u_2^*s)^{\frac{1}{2}} + O\left(s^{-\frac{5}{2}}\right)$ as $s \to \infty$,
(S3) $b_{3s}(s) \le C|s|^{-\frac{1}{2}}$, $s \ne 0$.

 $(u_2^*s, b_3(s), b_{3s}(s))$ is a solution of (54)–(56). It represents an intersection of $W^{cu}(\hat{q}_-)$ and $W^{cs}(\hat{q}_+)$ in the 3-sphere M.

Transversality

 $W^{cu}(\hat{q}_{-})$ and $W^{cs}(\hat{q}_{+})$ are 2-dimensional submanifolds of the 3-sphere M. Let $\tilde{\Gamma}_0 = (u_2^*, \hat{\Gamma}_0, 0)$. They intersect along $\hat{\Gamma}_0$.

Proposition 4. $W^{cu}(\hat{q}_{-})$ and $W^{cs}(\hat{q}_{+})$ intersect transversally within M along $\hat{\Gamma}_{0}$.

Proof. The linearization of

$$b_{1s} = u_2^*,$$

 $b_{3s} = b_4,$
 $b_{4s} = b_3^3 - b_1 b_3$

along $(u_2^*s, b_3(s), b_{3s}(s))$ is

(58)

$$\begin{pmatrix} B_{1s} \\ B_{3s} \\ B_{4s} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ -b_3(s) & 3b_3(s)^2 - u_2^* s & 0 \end{pmatrix} \begin{pmatrix} B_1 \\ B_3 \\ B_4 \end{pmatrix}.$$

We must show there are no solutions with appropriate behavior at $s = \pm \infty$ other than multiples of (u_2^*, b_{3s}, b_{3ss}) .

There is a complementary 2-dimensional space of solutions of (58) with $B_1(s) = 0$ and $(B_3(s), B_4(s))$ a solution of

(59)
$$\begin{pmatrix} B_{3s} \\ B_{4s} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 3b_3(s)^2 - u_2^* s & 0 \end{pmatrix} \begin{pmatrix} B_3 \\ B_4 \end{pmatrix}$$

We must show that no nontrivial solution has appropriate behavior at $s = \pm \infty$. (59) is equivalent to the second order linear system

(60)
$$B_{3ss} = (3b_3(s)^2 - u_2^*s)B_3.$$

By Alikakos, Bates, Cahn, Fife, Fusco, and Tanoglu, *Analysis of the corner layer* problem in anisotropy, Discrete Contin. Dyn. Syst. **6** (2006), 237–255, (60) has no nontrivial solutions in L^2 , hence no solution with the correct asymptotic behavior.

Proof of Theorem 3

Theorem 3. For small $\varepsilon > 0$ there is an integral curve $\tilde{\Gamma}(\varepsilon)$ of \tilde{X} from $p_{-}(\varepsilon)$ to $p_{+}(\varepsilon)$. As $\varepsilon \to 0$, $\tilde{\Gamma}(\varepsilon) \to \tilde{\Gamma}_{-} \cup \tilde{\Gamma}_{0} \cup \tilde{\Gamma}_{+}$.

Recall: for each ε , the fast system has the first integral

$$H(u_1, u_2, u_3, u_4) = \frac{1}{2}u_2^2 + \frac{1}{2}u_4^2 - \left(\frac{1}{4}u_3^4 - \frac{1}{2}u_1u_3^2 + h(u_1)\right).$$

H gives rise to a first integral for \tilde{H} on blow-up space:

$$\tilde{H}(u_2,(\bar{u_1},\bar{u_3},\bar{u_4},\bar{\epsilon}),\bar{r}) = \frac{1}{2}u_2^2 + \bar{r}^4\left(\frac{1}{2}\bar{u}_4^2 - \frac{1}{4}\bar{u}_3^4 + \frac{1}{2}\bar{u}_1\bar{u}_3^2\right) - h(\bar{r}^2\bar{u}_1).$$

Let N_{ε} denote the set of points in blow-up space at which $\tilde{H} = 0$ and $\bar{r}^3 \bar{\varepsilon} = \varepsilon$.

Away from equilibria of \tilde{X} , each N_{ε} is a manifold of dimension 3.

For the vector field \tilde{X} and $\varepsilon > 0$, the equilibria $p_{-}(\varepsilon)$ and $p_{+}(\varepsilon)$ have 2-dimensional unstable and stable manifolds.

We will prove the theorem by showing that for small $\varepsilon > 0$, $W^u(p_-(\varepsilon))$ and $W^s(p_+(\varepsilon))$ have a nonempty intersection that is transverse within N_{ε} .

Chart for $\bar{u}_1 < 0$:

$$v_{t} = -\frac{1}{2}v\delta u_{2},$$

$$u_{2t} = v^{2}\delta(-\frac{1}{2}v^{2}a_{3}^{2} + h'(-v^{2})),$$

$$a_{3t} = a_{4} + \frac{1}{2}\delta u_{2}a_{3},$$

$$a_{4t} = a_{3}^{3} + a_{3} + \delta u_{2}a_{4},$$

$$\delta_{t} = \frac{3}{2}\delta^{2}u_{2}.$$

The 3-dimensional space $a_3 = a_4 = 0$ is invariant, and is normally hyperbolic near the plane of equilibria $a_3 = a_4 = \delta = 0$. One eigenvalue is positive, one is negative.

The plane of equilibria corresponds to E_- . Normal hyperbolicity within $\delta = 0$ is not lost at v = 0, which corresponds to $u_1 = 0$.

,

Restrict to $a_3 = a_4 = 0$ and divide by δ :

(61)

$$\dot{v} = -\frac{1}{2}vu_2,$$

(62)
 $\dot{u}_2 = v^2h'(-v^2)$
 $\dot{\delta} = \frac{3}{2}\delta u_2.$

Equilibria on the lines $\{(v, u_2, \delta) : v = (-x_-)^{\frac{1}{2}}, u_2 = 0\}$ and $\{(v, u_2, \delta) : v = \delta = 0, u_2 \neq 0\}$ are normally hyperbolic, with one positive eigenvalue and one negative eigenvalue.

Lemma 4. As $\delta_0 \to 0+$, $W^u((-x_-)^{\frac{1}{2}}, 0, \delta_0)$ approaches $W^u(0, u_2^*, 0)$ in the C^1 topology. (Both have dimension 1.)

Lemma 5. In the chart for $\bar{u}_1 < 0$, as $\delta_0 \to 0+$, $W^u((-x_-)^{\frac{1}{2}}, 0, 0, 0, \delta_0)$ approaches the manifold of unstable fibers over $W^u(0, u_2^*, 0)$ in the C^1 topology. (Both have dimension 2.)

The latter corresponds to $W^{cu}(\hat{q}_1)$ in $M = \{u_2^*\} \times S^3 \times \{0\}$.

Chart for $\bar{u}_1 > 0$:

$$w_{t} = \frac{1}{2}w\gamma u_{2},$$

$$u_{2t} = w^{2}\gamma(-\frac{1}{2}w^{2}c_{3}^{2} + h'(w^{2})),$$

$$c_{3t} = c_{4} - \frac{1}{2}\gamma u_{2}c_{3},$$

$$c_{4t} = c_{3}^{3} - c_{3} - \gamma u_{2}c_{4},$$

$$\gamma_{t} = -\frac{3}{2}\gamma^{2}u_{2}.$$

The equilibria of the plane $c_3 = 1$, $c_4 = \gamma = 0$ have, transverse to the plane, one positive eigenvalue, one negative eigenvalue, one zero eigenvalue.

Therefore this plane is part of a 3-dimensional normally hyperbolic invariant manifold S_2 , with equations

$$c_3 = 1 + \gamma^2 \tilde{c}_3(w, u_2, \gamma), \quad c_4 = \gamma \tilde{c}_4(w, u_2, \gamma).$$

The plane of equilibria corresponds to F_+ . Normal hyperbolicity within $\gamma = 0$ is *not* lost at w = 0, which corresponds to $u_1 = 0$.

Restrict to S_2 and divide by γ :

Lemma 6. As $\gamma_0 \to 0+$, $W^s(x_+^{\frac{1}{2}}, 0, \gamma_0)$ approaches $W^s(0, u_2^*, 0)$ in the C^1 topology. (Both have dimension 1.)

Lemma 7. In the chart for $\bar{u}_1 > 0$, as $\gamma_0 \to 0+$, $W^s(x_+^{\frac{1}{2}}, 0, 1, 0, \gamma_0)$ approaches the manifold of stable fibers over $W^s(0, u_2^*, 0)$ in the C^1 topology. (Both have dim 2.)

The latter corresponds to $W^{cs}(\hat{q}_+)$ in $M = \{u_2^*\} \times S^3 \times \{0\}$.

In blow-up space:

Lemma 8. As $\varepsilon \to 0+$, $W^u(p_-(\varepsilon))$ approaches $W^{cu}(\hat{q}_-)$ in the C^1 topology.

Lemma 9. As $\varepsilon \to 0+$, $W^s(p_+(\varepsilon))$ approaches $W^{cs}(\hat{q}_+)$ in the C^1 topology.

By Proposition 4: $W^{cu}(\hat{q}_{-})$ and $W^{cs}(\hat{q}_{+})$ meet transversally within the 3-sphere $\bar{r} = 0$, $u_2 = u_2^*$, which is N_0 .

In the chart for $\bar{\epsilon} > 0$, H corresponds to

$$H_b(b_1, u_2, b_3, b_4, r) = \frac{1}{2}u_2^2 + r^4(\frac{1}{2}b_4^2 - \frac{1}{4}b_3^4 + \frac{1}{2}b_1b_3^2) + h(r^2b_1).$$

 N_0 corresponds to the set of (b_1, u_2, b_3, b_4, r) such that $H_b = 0$ and r = 0. The functions H_b and r have linearly independent gradients provided $u_2 \neq 0$. Therefore, where $u_2 \neq 0$, the sets $N_{\epsilon^{\frac{1}{3}}} = N_r$ depend smoothly on r. Since $W^c u(\hat{q}_-)$ and $W^c s(\hat{q}_+)$ meet transversally within N_0 , it follows that $W^u(p_-(\epsilon))$ and $W^s(p_+(\epsilon))$ meet transversally within N_ϵ for ϵ small.

