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Motivation for work

Sourdis and Fife, Existence of heteroclinic orbits for a corner layer problem in
anisotropic interfaces, Advances in Differential Equations 12 (2007), 623–668:

The physical motivation comes from a multi-order-parameter phase field model, de-
veloped by Braun et al. for the description of crystalline interphase boundaries.
The smallness of ε is related to large anisotropy. [The heteroclinic orbit represents
a moving interface between ordered and disordered states.] The mathematical in-
terest stems from the fact that the smoothness and normal hyperbolicity of the crit-
ical manifold fails at certain points. Thus the well-developed geometric singular
perturbation theory does not apply. The existence of such a heteroclinic, and its
dependence on ε, is proved via a functional analytic approach.

Motivation for talk

Show how the blow-up technique of geometric singular perturbation theory (Du-
mortier, Roussarie, Szmolyan, Krupa, . . . ) can help with such problems.

Help is: geometric matching of outer and inner solutions.
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Second-order system

We consider

xττ = gx(x,y),(1)

ε2yττ = gy(x,y),(2)

where

(3) g(x,y) =
1
4

y4−
1
2

xy2+h(x).

y yy

x<0 x>0x=0

x1/2−x1/2
x

x− 0

Graph of (1/4)y4−(1/2)xy2 Graph of h(x)
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First-order system

Write (1)–(2) as a first-order system (the slow system) with u1 = x, u3 = y:

u1τ = u2,(4)

u2τ = gx(u1,u3) = −
1
2

u2
3+h′(u1),(5)

εu3τ = u4,(6)

εu4τ = gy(u1,u3) = u3
3−u1u3.(7)

In (4)–(7) let τ = εσ. We obtain the fast system:

u1σ = εu2,(8)

u2σ = εgx(u1,u3) = ε
(

−
1
2

u2
3+h′(u1)

)

,(9)

u3σ = u4,(10)

u4σ = gy(u1,u3) = u3
3−u1u3 = u3(u

2
3−u1).(11)

Equilibria of the fast system for ε > 0:

(u1,0,0,0) with h′(u1) = 0, (u1,0, ±u
1
2
1,0) with −

1
2

u1+h′(u1) = 0.
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Assumptions on h:

x
x− 0

h(x)

x
x−

0
x+x0

h(x)

−(1/2)x+h(x)
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Equilibria of the fast system

u1σ = εu2,

u2σ = εgx(u1,u3) = ε
(

−
1
2

u2
3+h′(u1)

)

,

u3σ = u4,

u4σ = gy(u1,u3) = u3
3−u1u3 = u3(u

2
3−u1)

for ε > 0:

x−
u1

u3

u2

(u4=0)

u3=0
u1=u3

2

(x−,0,0,0), (x0,0,±x
1
2
0,0), (x+,0,±x

1
2
+,0).
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For each ε, the fast system has the first integral

H(u1,u2,u3,u4) =
1
2

u2
2+

1
2

u2
4−g(u1,u3).

Note:

H(x−,0,0,0) = H(x+,0,x
1
2
+,0) = 0.

Goal: show that for small ε > 0, there is a heteroclinic solution of the fast system

from (x−,0,0,0) to (x+,0,x
1
2
+,0).

For ε > 0, (x−,0,0,0) and (x+,0,x
1
2
+,0) are hyperbolic equilibria of the fast system

with two negative eigenvalues and two positive eigenvalues.

The heteroclinic solution will correspond to an intersection of the 2-dimensional

manifolds W u
ε (x−,0,0,0) and W s

ε (x+,0,x
1
2
+,0) that is transverse within the 3-dimensional

manifold H−1(0) (which is indeed a manifold away from equilibria).
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Fast limit and slow systems

Set ε = 0 in the fast system to obtain the fast limit system:

u1σ = 0,(12)

u2σ = 0,(13)

u3σ = u4,(14)

u4σ = gy(u1,u3) = u3(u
2
3−u1).(15)

Equilibria (slow manifold):

u1

u3

u2

(u4=0)
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Three manifolds of normally hyperbolic equilibria:

E− = {(u1,u2,0,0) : u1 < 0 and u2 arbitrary},

F− = {(u1,u2,−u
1
2
1,0) : u1 > 0 and u2 arbitrary},

F+ = {(u1,u2,u
1
2
1,0) : u1 > 0 and u2 arbitrary}.

x−
u1

u2

u3

E−

F+Γ− Γ+ 

u2
*

F−

E+

Each has one positive eigenvalue and one negative eigenvalue. (On E+ there are
two pure imaginary eigenvalues. On the u2-axis all eigenvalues are 0.)
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Set ε = 0 in the slow system to obtain the slow limit system:

u1τ = u2,(16)

u2τ = gx(u1,u3) = −
1
2

u2
3+h′(u1),(17)

0 = u4,(18)

0 = gy(u1,u3) = u3(u
2
3−u1).(19)

E±, F± are manifolds of solutions of (18)–(19). Equations (16)–(17) give the slow
system on these manifolds.

Slow system on E− (u1 < 0, u2 arbitrary):

u1τ = u2,(20)

u2τ = gx(u1,0) = h′(u1).(21)

Slow system on F+ (u1 > 0, u2 arbitrary):

u1τ = u2,(22)

u2τ = gx(u1,u
1
2
1) = −

1
2

u1+h′(u1).(23)
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Phase portraits of slow system on E− and F+ in u1u2-coordinates, both extended to
u1 = 0:

u2 u2

u1

u2
*u2

*

x+x0x−

(a) (b)

• In (a), (x−,0) is a hyperbolic saddle, and a branch of its unstable manifold
meets the u2 axis at a point (0,u∗

2).

• In (b), (x+,0) is a hyperbolic saddle, and a branch of its stable manifold meets
the u2 axis at the same point (0,u∗

2).
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Slow limit system on E− and F+:

x−
u1

u2

u3

E−

F+Γ− Γ+ 

u2
*

F−

E+

Theorem 1. For small ε > 0, there is a heteroclinic solution of the fast system from

(x−,0,0,0) to (x+,0,x
1
2
+,0) that is close to Γ−∪Γ+.
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Blow-up

To the fast system append the equation εσ = 0:

u1σ = εu2,(24)

u2σ = εgx(u1,u3) = ε(−
1
2

u2
3+h′(u1)),(25)

u3σ = u4,(26)

u4σ = gy(u1,u3) = u3
3−u1u3,(27)

εσ = 0.(28)

The u2-axis consists of equilibria of (24)–(27) with ε = 0 that are not normally hy-
perbolic within u1u2u3u4-space

In u1u2u3u4ε-space, we shall it blow up to the product of the u2-axis with a 3-sphere.
The 3-sphere is a blow-up of the origin in u1u3u4ε-space.

The blowup transformation is a map from R× S3× [0,∞) to u1u2u3u4ε-space. Let
(u2,(ū1, ū3, ū4, ε̄), r̄) be a point of R×S3× [0,∞); we have ū1

2+ ū3
2+ ū4

2+ ε̄2 = 1.
Then

(29) u1 = r̄2ū1, u2 = u2, u3 = r̄ū3, u4 = r̄2ū4, ε = r̄3ε̄.
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u2

p−(ε)
p+(ε)

S3

Under this transformation (24)–(28) pulls back to a vector field X on R×S3× [0,∞)
for which the cylinder r̄ = 0 consists entirely of equilibria. The vector field we shall
study is X̃ = r̄−1X . Division by r̄ desingularizes the vector field on the cylinder r̄ = 0
but leaves it invariant.

Let p−(ε) (respectively p+(ε)) be the unique point in R× S3× [0,∞) that corre-

sponds to (x−,0,0,0,ε) (respectively (x+,0,x
1
2
+,0,ε)). We wish to show that for

small ε > 0 there is an integral curve of X from p−(ε) to p+(ε). Equivalently, we
shall show that for small ε > 0 there is an integral curve of X̃ from p−(ε) to p+(ε).
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u2

p−(ε)
p+(ε)

Γ− Γ+

q−

q+

~ ~
~

~

Γ0
~

E−

F+

F−

E+~

~

~ ~

In blow-up space:

• Γ̃− corresponds to Γ− and approaches a point q̃− = (u∗
2, q̂−,0) on the blow-up

cylinder.
• Γ̃+ corresponds to Γ+ and approaches a point q̃+ = (u∗

2, q̂+,0) on the blow-up
cylinder.

• On the blow-up cylinder, each 3-sphere u2 = constant is invariant.

Proposition 2. There is an integral curve Γ̃0 of X̃ from q̃− to q̃+ that lies in the
3-dimensional hemisphere given by u2 = u∗

2, r̄ = 0, ε̄ > 0.

Theorem 3. For small ε > 0 there is an integral curve Γ̃(ε) of X̃ from p−(ε) to
p+(ε). As ε → 0, Γ̃(ε) → Γ̃−∪ Γ̃0∪ Γ̃+.
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We shall need three charts on blow-up space:

u1

u3, u4

ε

ε>0

u1>0u1<0

-

- -



17

Chart for ε̄ > 0

On the set of points in R×S3× [0,∞) with ε̄ > 0, let

(30) u1 = r2b1, u2 = u2, u3 = rb3, u4 = r2b4, ε = r3
,

with r ≥ 0. After division by r, (24)–(28) becomes

b1s = u2,(31)

u2s = r2(−
1
2

r2b2
3+h′(r2b1)),(32)

b3s = b4,(33)

b4s = b3
3−b1b3,(34)

rs = 0.(35)

Note 1: r = 0 implies u2s = 0.

Note 2: b1 = ū1ε̄−2
3, u2, b3 = ū3ε̄−1

3, b4 = ū4ε̄−2
3, and r = r̄ε̄ 1

3.

Note 3: (31)–(35) actually represents the vector field

r−1X = r̄−1ε̄−1
3X = ε̄−1

3X̃
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Chart for ū1 < 0

On the set of points in R×S3× [0,∞) with ū1 < 0, let

(36) u1 = −v2
, u2 = u2, u3 = va3, u4 = v2a4, ε = v3δ,

with v ≥ 0. After division by v, (24)–(28) becomes

vt = −
1
2

vδu2,(37)

u2t = v2δ(−
1
2

v2a2
3+h′(−v2)),(38)

a3t = a4+
1
2

δu2a3,(39)

a4t = a3
3+a3+δu2a4,(40)

δt =
3
2

δ2u2.(41)

Note 1: v = 0 implies u2t = 0.

Note 2: v = r̄(−ū1)
1
2, u2, a3 = ū3(−ū1)

−1
2, a4 = −ū4ū−1

1 , and δ = ε̄(−ū1)
−3

2.

Note 3: (37)–(41) actually represents the vector field

v−1X = r̄−1(−ū1)
−1

2X = (−ū1)
−1

2X̃
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Chart for ū1 > 0

On the set of points in R×S3× [0,∞) with ū1 > 0, let

(42) u1 = w2
, u2 = u2, u3 = wc3, u4 = w2c4, ε = w3γ.

with w ≥ 0. After division by w, (24)–(28) becomes

wt =
1
2

wγu2,(43)

u2t = w2γ(−
1
2

w2c2
3+h′(w2)),(44)

c3t = c4−
1
2

γu2c3,(45)

c4t = c3
3− c3− γu2c4,(46)

γt = −
3
2

γ2u2.(47)

Note 1: w = 0 implies u2t = 0.

Note 2: w = r̄ū
1
2
1, u2, c3 = ū3ū

−1
2

1 , c4 = ū4ū−1
1 , and γ = ε̄ū

−3
2

1 .

Note 3: (43)–(47) actually represents the vector field

w−1X = r̄−1ū
−1

2
1 X = ū

−1
2

1 X̃
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Construction of the inner solution Γ̃0

Let X̂ denote the restriction of the vector field X̃ to the invariant 3-sphere M =
{u∗

2}×S3×{0}, S3 = {(ū1, ū3, ū4, ε̄) : ū2
1+ ū2

3+ ū2
4+ ε̄2 = 1}.

Chart on the open subset of M with ū1 < 0: a3 = ū3(−ū1)
−1

2, a4 = −ū4ū−1
1 , δ =

ε̄(−ū1)
−3

2. In this chart, the vector field (−ū1)
−1

2X̂ is

a3t = a4+
1
2

δu∗
2a3,(48)

a4t = a3
3+a3+δu∗

2a4,(49)

δt =
3
2

δ2u∗
2.(50)

a3

a4

δ

W cu(0,0,0)
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Chart on the open subset of M with ū1 > 0: c3 = ū3ū
−1

2
1 , c4 = ū4ū−1

1 , γ = ε̄ū
−3

2
1 . In

this chart, the vector field ū
−1

2
1 X̂ is

c3t = c4−
1
2

γu∗
2c3,(51)

c4t = c3
3− c3− γu∗

2c4,(52)

γt = −
3
2

γ2u∗
2.(53)

c3

c4

γ

1

W cs(1,0,0)
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Chart on the open subset of M with ε̄ > 0: b1 = ū1ε̄−2
3, b3 = ū3ε̄−1

3, b4 = ū4ε̄−2
3. In

this chart, the vector field ε̄−1
3X̂ is

b1s = u∗
2,(54)

b3s = b4,(55)

b4s = b3
3−b1b3 = b3(b

2
3−b1).(56)

The solution of (54) with b1(0) = 0 is b1 = u∗
2s. Substitute into (56) and combining

(55) and (56) into a second-order equation:

(57) b3ss = b3(b
2
3−u∗

2s)

By Sourdis and Fife, (57) has a solution b3(s) with b3s > 0 such that

(S1) b3(s) = O

(

|s|−
1
4e−

2
3(u∗2)

1
2|s|

3
2

)

as s →−∞,

(S2) b3(s) = (u∗
2s)

1
2 +O (s−

5
2) as s → ∞,

(S3) b3s(s) ≤C|s|−
1
2, s 6= 0.

(u∗
2s,b3(s),b3s(s)) is a solution of (54)–(56). It represents an intersection of W cu(q̂−)

and W cs(q̂+) in the 3-sphere M.
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Transversality

W cu(q̂−) and W cs(q̂+) are 2-dimensional submanifolds of the 3-sphere M.

Let Γ̃0 = (u∗
2, Γ̂0,0). They intersect along Γ̂0.

Proposition 4. W cu(q̂−) and W cs(q̂+) intersect transversally within M along Γ̂0.

Proof. The linearization of

b1s = u∗
2,

b3s = b4,

b4s = b3
3−b1b3

along (u∗
2s,b3(s),b3s(s)) is

(58)





B1s

B3s

B4s



 =





0 0 0
0 0 1

−b3(s) 3b3(s)2−u∗
2s 0









B1

B3

B4



 .

We must show there are no solutions with appropriate behavior at s = ±∞ other
than multiples of (u∗

2,b3s,b3ss).
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There is a complementary 2-dimensional space of solutions of (58) with B1(s) = 0
and (B3(s),B4(s)) a solution of

(59)

(

B3s

B4s

)

=

(

0 1
3b3(s)2−u∗

2s 0

)(

B3

B4

)

We must show that no nontrivial solution has appropriate behavior at s = ±∞.

(59) is equivalent to the second order linear system

(60) B3ss = (3b3(s)
2−u∗

2s)B3.

By Alikakos, Bates, Cahn, Fife, Fusco, and Tanoglu, Analysis of the corner layer
problem in anisotropy, Discrete Contin. Dyn. Syst. 6 (2006), 237–255, (60) has no
nontrivial solutions in L2, hence no solution with the correct asymptotic behavior.
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Proof of Theorem 3

Theorem 3. For small ε > 0 there is an integral curve Γ̃(ε) of X̃ from p−(ε) to
p+(ε). As ε → 0, Γ̃(ε) → Γ̃−∪ Γ̃0∪ Γ̃+.

u2

p−(ε)
p+(ε)

Γ− Γ+

q−

q+

~ ~
~

~

Γ0
~

E−

F+

F−

E+~

~

~ ~

Recall: for each ε, the fast system has the first integral

H(u1,u2,u3,u4) =
1
2

u2
2+

1
2

u2
4−

(

1
4

u4
3−

1
2

u1u2
3+h(u1)

)

.

H gives rise to a first integral for H̃ on blow-up space:

H̃(u2,(ū1, ū3, ū4, ε̄), r̄) =
1
2

u2
2+ r̄4

(

1
2

ū2
4−

1
4

ū4
3+

1
2

ū1ū2
3

)

−h(r̄2ū1).
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u2

p−(ε)
p+(ε)

Γ− Γ+

q−

q+

~ ~
~

~

Γ0
~

E−

F+

F−

E+~

~

~ ~

Let Nε denote the set of points in blow-up space at which H̃ = 0 and r̄3ε̄ = ε.

Away from equilibria of X̃ , each Nε is a manifold of dimension 3.

For the vector field X̃ and ε > 0, the equilibria p−(ε) and p+(ε) have 2-dimensional
unstable and stable manifolds.

We will prove the theorem by showing that for small ε > 0, W u(p−(ε)) and W s(p+(ε))
have a nonempty intersection that is transverse within Nε.
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Chart for ū1 < 0:

vt = −
1
2

vδu2,

u2t = v2δ(−
1
2

v2a2
3+h′(−v2)),

a3t = a4+
1
2

δu2a3,

a4t = a3
3+a3+δu2a4,

δt =
3
2

δ2u2.

The 3-dimensional space a3 = a4 = 0 is invariant, and is normally hyperbolic near
the plane of equilibria a3 = a4 = δ = 0. One eigenvalue is positive, one is negative.

The plane of equilibria corresponds to E−. Normal hyperbolicity within δ = 0 is not
lost at v = 0, which corresponds to u1 = 0.

Restrict to a3 = a4 = 0 and divide by δ:

v̇ = −
1
2

vu2,(61)

u̇2 = v2h′(−v2),(62)

δ̇ =
3
2

δu2.(63)
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v̇ = −
1
2

vu2,

u̇2 = v2h′(−v2),

δ̇ =
3
2

δu2.

u2
*

u2

v

δ

(−x−)1/2
Γ−a

Equilibria on the lines {(v,u2,δ) : v = (−x−)
1
2,u2 = 0} and {(v,u2,δ) : v = δ =

0,u2 6= 0} are normally hyperbolic, with one positive eigenvalue and one negative
eigenvalue.
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u2
*

u2

v

δ

(−x−)1/2
Γ−a

Lemma 4. As δ0 → 0+, W u((−x−)
1
2,0,δ0) approaches W u(0,u∗

2,0) in the C1 topol-
ogy. (Both have dimension 1.)

Lemma 5. In the chart for ū1 < 0, as δ0 → 0+, W u((−x−)
1
2,0,0,0,δ0) approaches

the manifold of unstable fibers over W u(0,u∗
2,0) in the C1 topology. (Both have

dimension 2.)

The latter corresponds to W cu(q̂1) in M = {u∗
2}×S3×{0}.
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Chart for ū1 > 0:

wt =
1
2

wγu2,

u2t = w2γ(−
1
2

w2c2
3+h′(w2)),

c3t = c4−
1
2

γu2c3,

c4t = c3
3− c3− γu2c4,

γt = −
3
2

γ2u2.

The equilibria of the plane c3 = 1, c4 = γ = 0 have, transverse to the plane, one
positive eigenvalue, one negative eigenvalue, one zero eigenvalue.

Therefore this plane is part of a 3-dimensional normally hyperbolic invariant mani-
fold S2, with equations

c3 = 1+ γ2c̃3(w,u2,γ), c4 = γc̃4(w,u2,γ).

The plane of equilibria corresponds to F+. Normal hyperbolicity within γ = 0 is not
lost at w = 0, which corresponds to u1 = 0.

Restrict to S2 and divide by γ:
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wt =
1
2

wu2,(64)

u2t = w2(−
1
2

w2(1+ γ2c̃3)
2+h′(w2)),(65)

γt = −
3
2

γu2.(66)

u2
*

u2

w

γ

x+
1/2

Lemma 6. As γ0 → 0+, W s(x
1
2
+,0,γ0) approaches W s(0,u∗

2,0) in the C1 topology.
(Both have dimension 1.)

Lemma 7. In the chart for ū1 > 0, as γ0 → 0+, W s(x
1
2
+,0,1,0,γ0) approaches the

manifold of stable fibers over W s(0,u∗
2,0) in the C1 topology. (Both have dim 2.)

The latter corresponds to W cs(q̂+) in M = {u∗
2}×S3×{0}.



32

In blow-up space:

Lemma 8. As ε → 0+, W u(p−(ε)) approaches W cu(q̂−) in the C1 topology.

Lemma 9. As ε → 0+, W s(p+(ε)) approaches W cs(q̂+) in the C1 topology.

By Proposition 4: W cu(q̂−) and W cs(q̂+) meet transversally within the 3-sphere
r̄ = 0, u2 = u∗

2, which is N0.

In the chart for ε̄ > 0, H corresponds to

Hb(b1,u2,b3,b4,r) =
1
2

u2
2+ r4(

1
2

b2
4−

1
4

b4
3+

1
2

b1b2
3)+h(r2b1).

N0 corresponds to the set of (b1,u2,b3,b4,r) such that Hb = 0 and r = 0. The
functions Hb and r have linearly independent gradients provided u2 6= 0. There-
fore, where u2 6= 0, the sets N

ε
1
3
= Nr depend smoothly on r. Since W cu(q̂−) and

W cs(q̂+) meet transversally within N0, it follows that W u(p−(ε)) and W s(p+(ε))
meet transversally within Nε for ε small.

u2

p−(ε)
p+(ε)

Γ− Γ+

q−

q+

~ ~
~

~

Γ0
~

E−

F+

F−

E+~

~

~ ~


