Heteroclinic solutions of a singularly perturbed Hamiltonian system

Steve Schecter (NC State)
Christos Sourdis (Universidad de Chile)

Motivation for work

Sourdis and Fife, Existence of heteroclinic orbits for a corner layer problem in anisotropic interfaces, Advances in Differential Equations 12 (2007), 623-668:

The physical motivation comes from a multi-order-parameter phase field model, developed by Braun et al. for the description of crystalline interphase boundaries. The smallness of ε is related to large anisotropy. [The heteroclinic orbit represents a moving interface between ordered and disordered states.] The mathematical interest stems from the fact that the smoothness and normal hyperbolicity of the critical manifold fails at certain points. Thus the well-developed geometric singular perturbation theory does not apply. The existence of such a heteroclinic, and its dependence on ε, is proved via a functional analytic approach.

Motivation for talk

Show how the blow-up technique of geometric singular perturbation theory (Dumortier, Roussarie, Szmolyan, Krupa, ...) can help with such problems.

Help is: geometric matching of outer and inner solutions.

Second-order system

We consider

$$
\begin{align*}
x_{\tau \tau} & =g_{x}(x, y), \tag{1}\\
\varepsilon^{2} y_{\tau \tau} & =g_{y}(x, y), \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
g(x, y)=\frac{1}{4} y^{4}-\frac{1}{2} x y^{2}+h(x) \tag{3}
\end{equation*}
$$

Graph of $(1 / 4) y^{4}-(1 / 2) x y^{2}$
Graph of $h(x)$

First-order system

Write (1)-(2) as a first-order system (the slow system) with $u_{1}=x, u_{3}=y$:

$$
\begin{equation*}
u_{1 \tau}=u_{2} \tag{4}
\end{equation*}
$$

$$
\begin{align*}
u_{2 \tau} & =g_{x}\left(u_{1}, u_{3}\right)=-\frac{1}{2} u_{3}^{2}+h^{\prime}\left(u_{1}\right), \tag{5}\\
\varepsilon u_{3 \tau} & =u_{4}, \tag{6}\\
\varepsilon u_{4 \tau} & =g_{y}\left(u_{1}, u_{3}\right)=u_{3}^{3}-u_{1} u_{3} . \tag{7}
\end{align*}
$$

In (4)-(7) let $\tau=\varepsilon \sigma$. We obtain the fast system:

$$
\begin{align*}
& u_{1 \sigma}=\varepsilon u_{2} \tag{8}\\
& u_{2 \sigma}=\varepsilon g_{x}\left(u_{1}, u_{3}\right)=\varepsilon\left(-\frac{1}{2} u_{3}^{2}+h^{\prime}\left(u_{1}\right)\right), \tag{9}\\
& u_{3 \sigma}=u_{4} \tag{10}\\
& u_{4 \sigma}=g_{y}\left(u_{1}, u_{3}\right)=u_{3}^{3}-u_{1} u_{3}=u_{3}\left(u_{3}^{2}-u_{1}\right) . \tag{11}
\end{align*}
$$

Equilibria of the fast system for $\varepsilon>0$:

$$
\left(u_{1}, 0,0,0\right) \text { with } h^{\prime}\left(u_{1}\right)=0, \quad\left(u_{1}, 0, \pm u_{1}^{\frac{1}{2}}, 0\right) \text { with }-\frac{1}{2} u_{1}+h^{\prime}\left(u_{1}\right)=0 .
$$

Assumptions on h :

Equilibria of the fast system

$$
\begin{aligned}
& u_{1 \sigma}=\varepsilon u_{2} \\
& u_{2 \sigma}=\varepsilon g_{x}\left(u_{1}, u_{3}\right)=\varepsilon\left(-\frac{1}{2} u_{3}^{2}+h^{\prime}\left(u_{1}\right)\right), \\
& u_{3 \sigma}=u_{4} \\
& u_{4 \sigma}=g_{y}\left(u_{1}, u_{3}\right)=u_{3}^{3}-u_{1} u_{3}=u_{3}\left(u_{3}^{2}-u_{1}\right)
\end{aligned}
$$

for $\varepsilon>0$:

$$
\left(x_{-}, 0,0,0\right), \quad\left(x_{0}, 0, \pm x_{0}^{\frac{1}{2}}, 0\right), \quad\left(x_{+}, 0, \pm x_{+}^{\frac{1}{2}}, 0\right)
$$

For each ε, the fast system has the first integral

$$
H\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\frac{1}{2} u_{2}^{2}+\frac{1}{2} u_{4}^{2}-g\left(u_{1}, u_{3}\right) .
$$

Note:

$$
H\left(x_{-}, 0,0,0\right)=H\left(x_{+}, 0, x_{+}^{\frac{1}{2}}, 0\right)=0
$$

Goal: show that for small $\varepsilon>0$, there is a heteroclinic solution of the fast system from $\left(x_{-}, 0,0,0\right)$ to $\left(x_{+}, 0, x_{+}^{\frac{1}{2}}, 0\right)$.

For $\varepsilon>0,\left(x_{-}, 0,0,0\right)$ and $\left(x_{+}, 0, x_{+}^{\frac{1}{2}}, 0\right)$ are hyperbolic equilibria of the fast system with two negative eigenvalues and two positive eigenvalues.

The heteroclinic solution will correspond to an intersection of the 2-dimensional manifolds $W_{\varepsilon}^{u}\left(x_{-}, 0,0,0\right)$ and $W_{\varepsilon}^{s}\left(x_{+}, 0, x_{+}^{\frac{1}{2}}, 0\right)$ that is transverse within the 3-dimensional manifold $H^{-1}(0)$ (which is indeed a manifold away from equilibria).

Fast limit and slow systems

Set $\varepsilon=0$ in the fast system to obtain the fast limit system:

$$
\begin{align*}
& u_{1 \sigma}=0 \tag{12}\\
& u_{2 \sigma}=0 \tag{13}\\
& u_{3 \sigma}=u_{4} \\
& u_{4 \sigma}=g_{y}\left(u_{1}, u_{3}\right)=u_{3}\left(u_{3}^{2}-u_{1}\right) .
\end{align*}
$$

Equilibria (slow manifold):

Three manifolds of normally hyperbolic equilibria:

$$
\begin{aligned}
E_{-} & =\left\{\left(u_{1}, u_{2}, 0,0\right): u_{1}<0 \text { and } u_{2} \text { arbitrary }\right\} \\
F_{-} & =\left\{\left(u_{1}, u_{2},-u_{1}^{\frac{1}{2}}, 0\right): u_{1}>0 \text { and } u_{2} \text { arbitrary }\right\} \\
F_{+} & =\left\{\left(u_{1}, u_{2}, u_{1}^{\frac{1}{2}}, 0\right): u_{1}>0 \text { and } u_{2} \text { arbitrary }\right\}
\end{aligned}
$$

Each has one positive eigenvalue and one negative eigenvalue. (On E_{+}there are two pure imaginary eigenvalues. On the u_{2}-axis all eigenvalues are 0 .)

Set $\varepsilon=0$ in the slow system to obtain the slow limit system:

$$
\begin{align*}
u_{1 \tau} & =u_{2}, \tag{16}\\
u_{2 \tau} & =g_{x}\left(u_{1}, u_{3}\right)=-\frac{1}{2} u_{3}^{2}+h^{\prime}\left(u_{1}\right), \tag{17}\\
0 & =u_{4}, \tag{18}\\
0 & =g_{y}\left(u_{1}, u_{3}\right)=u_{3}\left(u_{3}^{2}-u_{1}\right) . \tag{19}
\end{align*}
$$

$E_{ \pm}, F_{ \pm}$are manifolds of solutions of (18)-(19). Equations (16)-(17) give the slow system on these manifolds.

Slow system on $E_{-}\left(u_{1}<0, u_{2}\right.$ arbitrary $)$:

$$
\begin{align*}
& u_{1 \tau}=u_{2} \tag{20}\\
& u_{2 \tau}=g_{x}\left(u_{1}, 0\right)=h^{\prime}\left(u_{1}\right) . \tag{21}
\end{align*}
$$

Slow system on $F_{+}\left(u_{1}>0, u_{2}\right.$ arbitrary $)$:

$$
\begin{align*}
& u_{1 \tau}=u_{2} \tag{22}\\
& u_{2 \tau}=g_{x}\left(u_{1}, u_{1}^{\frac{1}{2}}\right)=-\frac{1}{2} u_{1}+h^{\prime}\left(u_{1}\right) . \tag{23}
\end{align*}
$$

Phase portraits of slow system on E_{-}and F_{+}in $u_{1} u_{2}$-coordinates, both extended to $u_{1}=0$:

- In (a), $\left(x_{-}, 0\right)$ is a hyperbolic saddle, and a branch of its unstable manifold meets the u_{2} axis at a point $\left(0, u_{2}^{*}\right)$.
- In (b), $\left(x_{+}, 0\right)$ is a hyperbolic saddle, and a branch of its stable manifold meets the u_{2} axis at the same point $\left(0, u_{2}^{*}\right)$.

Slow limit system on E_{-}and F_{+}:

Theorem 1. For small $\varepsilon>0$, there is a heteroclinic solution of the fast system from $\left(x_{-}, 0,0,0\right)$ to $\left(x_{+}, 0, x_{+}^{\frac{1}{2}}, 0\right)$ that is close to $\Gamma_{-} \cup \Gamma_{+}$.

Blow-up

To the fast system append the equation $\varepsilon_{\sigma}=0$:

$$
\begin{align*}
u_{1 \sigma} & =\varepsilon u_{2}, \tag{24}\\
u_{2 \sigma} & =\varepsilon g_{x}\left(u_{1}, u_{3}\right)=\varepsilon\left(-\frac{1}{2} u_{3}^{2}+h^{\prime}\left(u_{1}\right)\right), \tag{25}\\
u_{3 \sigma} & =u_{4}, \tag{26}\\
u_{4 \sigma} & =g_{y}\left(u_{1}, u_{3}\right)=u_{3}^{3}-u_{1} u_{3}, \tag{27}\\
\varepsilon_{\sigma} & =0 . \tag{28}
\end{align*}
$$

The u_{2}-axis consists of equilibria of (24)-(27) with $\varepsilon=0$ that are not normally hyperbolic within $u_{1} u_{2} u_{3} u_{4}$-space

In $u_{1} u_{2} u_{3} u_{4} \varepsilon$-space, we shall it blow up to the product of the u_{2}-axis with a 3 -sphere. The 3 -sphere is a blow-up of the origin in $u_{1} u_{3} u_{4} \varepsilon$-space.

The blowup transformation is a map from $\mathbb{R} \times S^{3} \times[0, \infty)$ to $u_{1} u_{2} u_{3} u_{4} \varepsilon$-space. Let $\left(u_{2},\left(\overline{u_{1}}, \overline{u_{3}}, \overline{u_{4}}, \bar{\varepsilon}\right), \bar{r}\right)$ be a point of $\mathbb{R} \times S^{3} \times[0, \infty)$; we have $\overline{u_{1}}+{\overline{u_{3}}}^{2}+{\overline{u_{4}}}^{2}+\bar{\varepsilon}^{2}=1$. Then

$$
\begin{equation*}
u_{1}=\bar{r}^{2} \bar{u}_{1}, \quad u_{2}=u_{2}, \quad u_{3}=\bar{r} \bar{u}_{3}, \quad u_{4}=\bar{r}^{2} \bar{u}_{4}, \quad \varepsilon=\bar{r}^{3} \bar{\varepsilon} . \tag{29}
\end{equation*}
$$

Under this transformation (24)-(28) pulls back to a vector field X on $\mathbb{R} \times S^{3} \times[0, \infty)$ for which the cylinder $\bar{r}=0$ consists entirely of equilibria. The vector field we shall study is $\tilde{X}=\bar{r}^{-1} X$. Division by \bar{r} desingularizes the vector field on the cylinder $\bar{r}=0$ but leaves it invariant.

Let $p_{-}(\varepsilon)$ (respectively $p_{+}(\varepsilon)$) be the unique point in $\mathbb{R} \times S^{3} \times[0, \infty)$ that corresponds to $\left(x_{-}, 0,0,0, \varepsilon\right)$ (respectively $\left(x_{+}, 0, x_{+}^{\frac{1}{2}}, 0, \varepsilon\right)$). We wish to show that for small $\varepsilon>0$ there is an integral curve of X from $p_{-}(\varepsilon)$ to $p_{+}(\varepsilon)$. Equivalently, we shall show that for small $\varepsilon>0$ there is an integral curve of \tilde{X} from $p_{-}(\varepsilon)$ to $p_{+}(\varepsilon)$.

In blow-up space:

- $\tilde{\Gamma}_{-}$corresponds to Γ_{-}and approaches a point $\tilde{q}_{-}=\left(u_{2}^{*}, \hat{q}_{-}, 0\right)$ on the blow-up cylinder.
- $\tilde{\Gamma}_{+}$corresponds to Γ_{+}and approaches a point $\tilde{q}_{+}=\left(u_{2}^{*}, \hat{q}_{+}, 0\right)$ on the blow-up cylinder.
- On the blow-up cylinder, each 3-sphere $u_{2}=$ constant is invariant.

Proposition 2. There is an integral curve $\tilde{\Gamma}_{0}$ of \tilde{X} from \tilde{q}_{-}to \tilde{q}_{+}that lies in the 3-dimensional hemisphere given by $u_{2}=u_{2}^{*}, \bar{r}=0, \bar{\varepsilon}>0$.

Theorem 3. For small $\varepsilon>0$ there is an integral curve $\tilde{\Gamma}(\varepsilon)$ of \tilde{X} from $p_{-}(\varepsilon)$ to $p_{+}(\varepsilon)$. As $\varepsilon \rightarrow 0, \tilde{\Gamma}(\varepsilon) \rightarrow \tilde{\Gamma}_{-} \cup \tilde{\Gamma}_{0} \cup \tilde{\Gamma}_{+}$.

We shall need three charts on blow-up space:

Chart for $\bar{\varepsilon}>0$

On the set of points in $\mathbb{R} \times S^{3} \times[0, \infty)$ with $\bar{\varepsilon}>0$, let

$$
\begin{equation*}
u_{1}=r^{2} b_{1}, \quad u_{2}=u_{2}, \quad u_{3}=r b_{3}, \quad u_{4}=r^{2} b_{4}, \quad \varepsilon=r^{3} \tag{30}
\end{equation*}
$$

with $r \geq 0$. After division by r, (24)-(28) becomes

$$
\begin{align*}
b_{1 s} & =u_{2} \tag{31}\\
u_{2 s} & =r^{2}\left(-\frac{1}{2} r^{2} b_{3}^{2}+h^{\prime}\left(r^{2} b_{1}\right)\right), \tag{32}\\
b_{3 s} & =b_{4} \tag{33}\\
b_{4 s} & =b_{3}^{3}-b_{1} b_{3}, \tag{34}\\
r_{s} & =0 \tag{35}
\end{align*}
$$

Note 1: $r=0$ implies $u_{2 s}=0$.
Note 2: $b_{1}=\bar{u}_{1} \bar{\varepsilon}^{-\frac{2}{3}}, u_{2}, b_{3}=\bar{u}_{3} \bar{\varepsilon}^{-\frac{1}{3}}, b_{4}=\bar{u}_{4} \bar{\varepsilon}^{-\frac{2}{3}}$, and $r=\bar{r} \bar{\varepsilon}^{\frac{1}{3}}$.
Note 3: (31)-(35) actually represents the vector field

$$
r^{-1} X=\bar{r}^{-1} \bar{\varepsilon}^{-\frac{1}{3}} X=\bar{\varepsilon}^{-\frac{1}{3}} \tilde{X}
$$

Chart for $\bar{u}_{1}<0$
On the set of points in $\mathbb{R} \times S^{3} \times[0, \infty)$ with $\bar{u}_{1}<0$, let

$$
\begin{equation*}
u_{1}=-v^{2}, \quad u_{2}=u_{2}, \quad u_{3}=v a_{3}, \quad u_{4}=v^{2} a_{4}, \quad \varepsilon=v^{3} \delta, \tag{36}
\end{equation*}
$$

with $v \geq 0$. After division by $v,(24)-(28)$ becomes

$$
\begin{align*}
v_{t} & =-\frac{1}{2} v \delta u_{2} \tag{37}\\
u_{2 t} & =v^{2} \delta\left(-\frac{1}{2} v^{2} a_{3}^{2}+h^{\prime}\left(-v^{2}\right)\right), \\
a_{3 t} & =a_{4}+\frac{1}{2} \delta u_{2} a_{3} \\
a_{4 t} & =a_{3}^{3}+a_{3}+\delta u_{2} a_{4} \\
\delta_{t} & =\frac{3}{2} \delta^{2} u_{2}
\end{align*}
$$

Note 1: $v=0$ implies $u_{2 t}=0$.
Note 2: $v=\bar{r}\left(-\bar{u}_{1}\right)^{\frac{1}{2}}, u_{2}, a_{3}=\bar{u}_{3}\left(-\bar{u}_{1}\right)^{-\frac{1}{2}}, a_{4}=-\bar{u}_{4} \bar{u}_{1}^{-1}$, and $\delta=\bar{\varepsilon}\left(-\bar{u}_{1}\right)^{-\frac{3}{2}}$.
Note 3: (37)-(41) actually represents the vector field

$$
v^{-1} X=\bar{r}^{-1}\left(-\bar{u}_{1}\right)^{-\frac{1}{2}} X=\left(-\bar{u}_{1}\right)^{-\frac{1}{2}} \tilde{X}
$$

Chart for $\bar{u}_{1}>0$

On the set of points in $\mathbb{R} \times S^{3} \times[0, \infty)$ with $\bar{u}_{1}>0$, let

$$
\begin{equation*}
u_{1}=w^{2}, \quad u_{2}=u_{2}, \quad u_{3}=w c_{3}, \quad u_{4}=w^{2} c_{4}, \quad \varepsilon=w^{3} \gamma \tag{42}
\end{equation*}
$$

with $w \geq 0$. After division by $w,(24)-(28)$ becomes

$$
\begin{align*}
w_{t} & =\frac{1}{2} w \gamma u_{2} \tag{43}\\
u_{2 t} & =w^{2} \gamma\left(-\frac{1}{2} w^{2} c_{3}^{2}+h^{\prime}\left(w^{2}\right)\right) \tag{44}\\
c_{3 t} & =c_{4}-\frac{1}{2} \gamma u_{2} c_{3} \tag{45}\\
c_{4 t} & =c_{3}^{3}-c_{3}-\gamma u_{2} c_{4} \tag{46}\\
\gamma_{t} & =-\frac{3}{2} \gamma^{2} u_{2} \tag{47}
\end{align*}
$$

Note 1: $w=0$ implies $u_{2 t}=0$.
Note 2: $w=\bar{r} \bar{u}_{1}^{\frac{1}{2}}, u_{2}, c_{3}=\bar{u}_{3} \bar{u}_{1}^{-\frac{1}{2}}, c_{4}=\bar{u}_{4} \bar{u}_{1}^{-1}$, and $\gamma=\bar{\varepsilon} \bar{u}_{1}^{-\frac{3}{2}}$.
Note 3: (43)-(47) actually represents the vector field

$$
w^{-1} X=\bar{r}^{-1} \bar{u}_{1}^{-\frac{1}{2}} X=\bar{u}_{1}^{-\frac{1}{2}} \tilde{X}
$$

Construction of the inner solution $\tilde{\Gamma}_{0}$

Let \hat{X} denote the restriction of the vector field \tilde{X} to the invariant 3 -sphere $M=$ $\left\{u_{2}^{*}\right\} \times S^{3} \times\{0\}, S^{3}=\left\{\left(\bar{u}_{1}, \bar{u}_{3}, \bar{u}_{4}, \bar{\varepsilon}\right): \bar{u}_{1}^{2}+\bar{u}_{3}^{2}+\bar{u}_{4}^{2}+\bar{\varepsilon}^{2}=1\right\}$.
Chart on the open subset of M with $\bar{u}_{1}<0: a_{3}=\bar{u}_{3}\left(-\bar{u}_{1}\right)^{-\frac{1}{2}}, a_{4}=-\bar{u}_{4} \bar{u}_{1}^{-1}, \delta=$ $\bar{\varepsilon}\left(-\bar{u}_{1}\right)^{-\frac{3}{2}}$. In this chart, the vector field $\left(-\bar{u}_{1}\right)^{-\frac{1}{2}} \hat{X}$ is

$$
\begin{align*}
a_{3 t} & =a_{4}+\frac{1}{2} \delta u_{2}^{*} a_{3}, \tag{48}\\
a_{4 t} & =a_{3}^{3}+a_{3}+\delta u_{2}^{*} a_{4}, \tag{49}\\
\delta_{t} & =\frac{3}{2} \delta^{2} u_{2}^{*} .
\end{align*}
$$

Chart on the open subset of M with $\bar{u}_{1}>0: c_{3}=\bar{u}_{3} \bar{u}_{1}^{-\frac{1}{2}}, c_{4}=\bar{u}_{4} \bar{u}_{1}^{-1}, \gamma=\bar{\varepsilon} \bar{u}_{1}^{-\frac{3}{2}}$. In this chart, the vector field $\bar{u}_{1}^{-\frac{1}{2}} \hat{X}$ is

$$
\begin{align*}
c_{3 t} & =c_{4}-\frac{1}{2} \gamma u_{2}^{*} c_{3}, \tag{51}\\
c_{4 t} & =c_{3}^{3}-c_{3}-\gamma u_{2}^{*} c_{4}, \tag{52}\\
\gamma_{t} & =-\frac{3}{2} \gamma^{2} u_{2}^{*} . \tag{53}
\end{align*}
$$

Chart on the open subset of M with $\bar{\varepsilon}>0: b_{1}=\bar{u}_{1} \bar{\varepsilon}^{-\frac{2}{3}}, b_{3}=\bar{u}_{3} \bar{\varepsilon}^{-\frac{1}{3}}, b_{4}=\bar{u}_{4} \bar{\varepsilon}^{-\frac{2}{3}}$. In this chart, the vector field $\bar{\varepsilon}^{-\frac{1}{3}} \hat{X}$ is

$$
\begin{align*}
& b_{1 s}=u_{2}^{*} \tag{54}\\
& b_{3 s}=b_{4} \tag{55}\\
& b_{4 s}=b_{3}^{3}-b_{1} b_{3}=b_{3}\left(b_{3}^{2}-b_{1}\right) \tag{56}
\end{align*}
$$

The solution of (54) with $b_{1}(0)=0$ is $b_{1}=u_{2}^{*} s$. Substitute into (56) and combining (55) and (56) into a second-order equation:

$$
\begin{equation*}
b_{3 s s}=b_{3}\left(b_{3}^{2}-u_{2}^{*} s\right) \tag{57}
\end{equation*}
$$

By Sourdis and Fife, (57) has a solution $b_{3}(s)$ with $b_{3 s}>0$ such that
(S1) $b_{3}(s)=O\left(|s|^{-\frac{1}{4}} e^{-\frac{2}{3}\left(u_{2}^{*}\right)^{\frac{1}{2}}|s|^{\frac{3}{2}}}\right)$ as $s \rightarrow-\infty$,
(S2) $b_{3}(s)=\left(u_{2}^{*} s\right)^{\frac{1}{2}}+O\left(s^{-\frac{5}{2}}\right)$ as $s \rightarrow \infty$,
(S3) $b_{3 s}(s) \leq C|s|^{-\frac{1}{2}}, s \neq 0$.
$\left(u_{2}^{*} s, b_{3}(s), b_{3 s}(s)\right)$ is a solution of (54)-(56). It represents an intersection of $W^{c u}\left(\hat{q}_{-}\right)$ and $W^{c s}\left(\hat{q}_{+}\right)$in the 3 -sphere M.

Transversality

$W^{c u}\left(\hat{q}_{-}\right)$and $W^{c s}\left(\hat{q}_{+}\right)$are 2-dimensional submanifolds of the 3-sphere M.
Let $\tilde{\Gamma}_{0}=\left(u_{2}^{*}, \hat{\Gamma}_{0}, 0\right)$. They intersect along $\hat{\Gamma}_{0}$.
Proposition 4. $W^{c u}\left(\hat{q}_{-}\right)$and $W^{c s}\left(\hat{q}_{+}\right)$intersect transversally within M along $\hat{\Gamma}_{0}$.
Proof. The linearization of

$$
\begin{aligned}
b_{1 s} & =u_{2}^{*} \\
b_{3 s} & =b_{4} \\
b_{4 s} & =b_{3}^{3}-b_{1} b_{3}
\end{aligned}
$$

along $\left(u_{2}^{*} s, b_{3}(s), b_{3 s}(s)\right)$ is

$$
\left(\begin{array}{l}
B_{1 s} \tag{58}\\
B_{3 s} \\
B_{4 s}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
-b_{3}(s) & 3 b_{3}(s)^{2}-u_{2}^{*} s & 0
\end{array}\right)\left(\begin{array}{c}
B_{1} \\
B_{3} \\
B_{4}
\end{array}\right) .
$$

We must show there are no solutions with appropriate behavior at $s= \pm \infty$ other than multiples of $\left(u_{2}^{*}, b_{3 s}, b_{3 s s}\right)$.

There is a complementary 2-dimensional space of solutions of (58) with $B_{1}(s)=0$ and $\left(B_{3}(s), B_{4}(s)\right)$ a solution of

$$
\binom{B_{3 s}}{B_{4 s}}=\left(\begin{array}{cc}
0 & 1 \tag{59}\\
3 b_{3}(s)^{2}-u_{2}^{*} s & 0
\end{array}\right)\binom{B_{3}}{B_{4}}
$$

We must show that no nontrivial solution has appropriate behavior at $s= \pm \infty$.
(59) is equivalent to the second order linear system

$$
\begin{equation*}
B_{3 s s}=\left(3 b_{3}(s)^{2}-u_{2}^{*} s\right) B_{3} . \tag{60}
\end{equation*}
$$

By Alikakos, Bates, Cahn, Fife, Fusco, and Tanoglu, Analysis of the corner layer problem in anisotropy, Discrete Contin. Dyn. Syst. 6 (2006), 237-255, (60) has no nontrivial solutions in L^{2}, hence no solution with the correct asymptotic behavior.

Proof of Theorem 3

Theorem 3. For small $\varepsilon>0$ there is an integral curve $\tilde{\Gamma}(\varepsilon)$ of \tilde{X} from $p_{-}(\varepsilon)$ to $p_{+}(\varepsilon)$. As $\varepsilon \rightarrow 0, \tilde{\Gamma}(\varepsilon) \rightarrow \tilde{\Gamma}_{-} \cup \tilde{\Gamma}_{0} \cup \tilde{\Gamma}_{+}$.

Recall: for each ε, the fast system has the first integral

$$
H\left(u_{1}, u_{2}, u_{3}, u_{4}\right)=\frac{1}{2} u_{2}^{2}+\frac{1}{2} u_{4}^{2}-\left(\frac{1}{4} u_{3}^{4}-\frac{1}{2} u_{1} u_{3}^{2}+h\left(u_{1}\right)\right) .
$$

H gives rise to a first integral for \tilde{H} on blow-up space:

$$
\tilde{H}\left(u_{2},\left(\bar{u}_{1}, \bar{u}_{3}, \bar{u}_{4}, \bar{\varepsilon}\right), \bar{r}\right)=\frac{1}{2} u_{2}^{2}+\bar{r}^{4}\left(\frac{1}{2} \bar{u}_{4}^{2}-\frac{1}{4} \bar{u}_{3}^{4}+\frac{1}{2} \bar{u}_{1} \bar{u}_{3}^{2}\right)-h\left(\bar{r}^{2} \bar{u}_{1}\right) .
$$

Let N_{ε} denote the set of points in blow-up space at which $\tilde{H}=0$ and $\bar{r}^{3} \bar{\varepsilon}=\varepsilon$.
Away from equilibria of \tilde{X}, each N_{ε} is a manifold of dimension 3 .
For the vector field \tilde{X} and $\varepsilon>0$, the equilibria $p_{-}(\varepsilon)$ and $p_{+}(\varepsilon)$ have 2-dimensional unstable and stable manifolds.

We will prove the theorem by showing that for small $\varepsilon>0, W^{u}\left(p_{-}(\varepsilon)\right)$ and $W^{s}\left(p_{+}(\varepsilon)\right)$ have a nonempty intersection that is transverse within N_{ε}.

Chart for $\bar{u}_{1}<0$:

$$
\begin{aligned}
v_{t} & =-\frac{1}{2} v \delta u_{2}, \\
u_{2 t} & =v^{2} \delta\left(-\frac{1}{2} v^{2} a_{3}^{2}+h^{\prime}\left(-v^{2}\right)\right), \\
a_{3 t} & =a_{4}+\frac{1}{2} \delta u_{2} a_{3}, \\
a_{4 t} & =a_{3}^{3}+a_{3}+\delta u_{2} a_{4}, \\
\delta_{t} & =\frac{3}{2} \delta^{2} u_{2} .
\end{aligned}
$$

The 3-dimensional space $a_{3}=a_{4}=0$ is invariant, and is normally hyperbolic near the plane of equilibria $a_{3}=a_{4}=\delta=0$. One eigenvalue is positive, one is negative. The plane of equilibria corresponds to E_{-}. Normal hyperbolicity within $\delta=0$ is not lost at $v=0$, which corresponds to $u_{1}=0$.
Restrict to $a_{3}=a_{4}=0$ and divide by δ :

$$
\begin{align*}
\dot{v} & =-\frac{1}{2} v u_{2}, \tag{61}\\
\dot{u_{2}} & =v^{2} h^{\prime}\left(-v^{2}\right), \tag{62}\\
\dot{\delta} & =\frac{3}{2} \delta u_{2} . \tag{63}
\end{align*}
$$

$$
\begin{aligned}
\dot{v} & =-\frac{1}{2} v u_{2} \\
\dot{u}_{2} & =v^{2} h^{\prime}\left(-v^{2}\right) \\
\dot{\delta} & =\frac{3}{2} \delta u_{2}
\end{aligned}
$$

Equilibria on the lines $\left\{\left(v, u_{2}, \boldsymbol{\delta}\right): v=\left(-x_{-}\right)^{\frac{1}{2}}, u_{2}=0\right\}$ and $\left\{\left(v, u_{2}, \boldsymbol{\delta}\right): v=\boldsymbol{\delta}=\right.$ $\left.0, u_{2} \neq 0\right\}$ are normally hyperbolic, with one positive eigenvalue and one negative eigenvalue.

Lemma 4. As $\delta_{0} \rightarrow 0+, W^{u}\left(\left(-x_{-}\right)^{\frac{1}{2}}, 0, \delta_{0}\right)$ approaches $W^{u}\left(0, u_{2}^{*}, 0\right)$ in the C^{1} topology. (Both have dimension 1.)
Lemma 5. In the chart for $\bar{u}_{1}<0$, as $\delta_{0} \rightarrow 0+W^{u}\left(\left(-x_{-}\right)^{\frac{1}{2}}, 0,0,0, \delta_{0}\right)$ approaches the manifold of unstable fibers over $W^{u}\left(0, u_{2}^{*}, 0\right)$ in the C^{1} topology. (Both have dimension 2.)

The latter corresponds to $W^{c u}\left(\hat{q}_{1}\right)$ in $M=\left\{u_{2}^{*}\right\} \times S^{3} \times\{0\}$.

Chart for $\bar{u}_{1}>0$:

$$
\begin{aligned}
w_{t} & =\frac{1}{2} w \gamma u_{2} \\
u_{2 t} & =w^{2} \gamma\left(-\frac{1}{2} w^{2} c_{3}^{2}+h^{\prime}\left(w^{2}\right)\right), \\
c_{3 t} & =c_{4}-\frac{1}{2} \gamma u_{2} c_{3} \\
c_{4 t} & =c_{3}^{3}-c_{3}-\gamma u_{2} c_{4}, \\
\gamma_{t} & =-\frac{3}{2} \gamma^{2} u_{2} .
\end{aligned}
$$

The equilibria of the plane $c_{3}=1, c_{4}=\gamma=0$ have, transverse to the plane, one positive eigenvalue, one negative eigenvalue, one zero eigenvalue.

Therefore this plane is part of a 3-dimensional normally hyperbolic invariant manifold S_{2}, with equations

$$
c_{3}=1+\gamma^{2} \tilde{c}_{3}\left(w, u_{2}, \gamma\right), \quad c_{4}=\gamma \tilde{c}_{4}\left(w, u_{2}, \gamma\right) .
$$

The plane of equilibria corresponds to F_{+}. Normal hyperbolicity within $\gamma=0$ is not lost at $w=0$, which corresponds to $u_{1}=0$.

Restrict to S_{2} and divide by γ :

$$
\begin{align*}
w_{t} & =\frac{1}{2} w u_{2} \tag{64}\\
u_{2 t} & =w^{2}\left(-\frac{1}{2} w^{2}\left(1+\gamma^{2} \tilde{c}_{3}\right)^{2}+h^{\prime}\left(w^{2}\right)\right) \tag{65}\\
\gamma_{t} & =-\frac{3}{2} \gamma u_{2}
\end{align*}
$$

Lemma 6. As $\gamma_{0} \rightarrow 0+, W^{s}\left(x_{+}^{\frac{1}{2}}, 0, \gamma_{0}\right)$ approaches $W^{s}\left(0, u_{2}^{*}, 0\right)$ in the C^{1} topology. (Both have dimension 1.)

Lemma 7. In the chart for $\bar{u}_{1}>0$, as $\gamma_{0} \rightarrow 0+, W^{s}\left(x_{+}^{\frac{1}{2}}, 0,1,0, \gamma_{0}\right)$ approaches the manifold of stable fibers over $W^{s}\left(0, u_{2}^{*}, 0\right)$ in the C^{1} topology. (Both have dim 2.)
The latter corresponds to $W^{c s}\left(\hat{q}_{+}\right)$in $M=\left\{u_{2}^{*}\right\} \times S^{3} \times\{0\}$.

In blow-up space:
Lemma 8. As $\varepsilon \rightarrow 0+, W^{u}\left(p_{-}(\varepsilon)\right)$ approaches $W^{c u}\left(\hat{q}_{-}\right)$in the C^{1} topology.
Lemma 9. As $\varepsilon \rightarrow 0+$, $W^{s}\left(p_{+}(\varepsilon)\right)$ approaches $W^{c s}\left(\hat{q}_{+}\right)$in the C^{1} topology.
By Proposition 4: $W^{c u}\left(\hat{q}_{-}\right)$and $W^{c s}\left(\hat{q}_{+}\right)$meet transversally within the 3 -sphere $\bar{r}=0, u_{2}=u_{2}^{*}$, which is N_{0}.

In the chart for $\bar{\varepsilon}>0, H$ corresponds to

$$
H_{b}\left(b_{1}, u_{2}, b_{3}, b_{4}, r\right)=\frac{1}{2} u_{2}^{2}+r^{4}\left(\frac{1}{2} b_{4}^{2}-\frac{1}{4} b_{3}^{4}+\frac{1}{2} b_{1} b_{3}^{2}\right)+h\left(r^{2} b_{1}\right) .
$$

N_{0} corresponds to the set of $\left(b_{1}, u_{2}, b_{3}, b_{4}, r\right)$ such that $H_{b}=0$ and $r=0$. The functions H_{b} and r have linearly independent gradients provided $u_{2} \neq 0$. Therefore, where $u_{2} \neq 0$, the sets $N_{\varepsilon^{\frac{1}{3}}}=N_{r}$ depend smoothly on r. Since $W^{c} u\left(\hat{q}_{-}\right)$and $W^{c} s\left(\hat{q}_{+}\right)$meet transversally within N_{0}, it follows that $W^{u}\left(p_{-}(\varepsilon)\right)$ and $W^{s}\left(p_{+}(\varepsilon)\right)$ meet transversally within N_{ε} for ε small.

