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Abstract. We consider a reaction-diffusion equation in one space dimension whose
initial condition is approximately a sequence of widely separated traveling waves
with increasing velocity, each of which is asymptotically stable. As in [25], [24], and
[14], we show that the sequence of traveling waves is itself asymptotically stable: as
t → ∞, the solution approaches the concatenated wave pattern, with different shifts
of each wave allowed. Our proof is similar to that of [14] in that it is based on spatial
dynamics, Laplace transform, and exponential dichotomies, but it incorporates a
number of modifications.

1. Introduction

Consider a system of reaction-diffusion equations in one space dimension,

(1.1) ut = uxx + f(u),

with f : Rn → Rn of class C2. A concatenated wave pattern for (1.1) consists of the
following data:

• a sequence e0, e1, . . . , em of equilibria of the ordinary differential equation ut =
f(u), with m ≥ 2;

• an increasing sequence c1 < c2 < · · · < cm of real numbers;
• for j = 1, . . . , m, a traveling wave solution of (1.1) with velocity cj , qj(ζ),
ζ = x− cjt, with qj(−∞) = ej−1 and qj(∞) = ej .

The equilibria ej are not necessarily distinct.
We are interested in solutions of (1.1) that are close to the sequence q1, . . . , qm

of traveling waves. To discuss such solutions, let y denote an increasing sequence
y1 < y2 < · · · < ym of real numbers. Associated with y is a realization of the
concatenated wave pattern defined by dividing the domain R×R+, with coordinates
(x, t), into m regions and placing one traveling wave in each region; the jth wave is
initially centered at yj. More precisely, for j = 1, . . . , m− 1, let c̄j =

1
2
(cj + cj+1), the

average speed of the waves qj and qj+1, and let xj =
1
2
(yj + yj+1), j = 1, . . . , m − 1.

Let x0 = −∞ and xm = ∞. Define

Γj = {(x, t) : x = xj + c̄jt, t ≥ 0}, j = 1, . . . , m− 1;

Ωj = {(x, t) : xj−1 + c̄j−1t < x < xj + c̄jt, t ≥ 0}, j = 1, . . . , m.
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Thus Ω1 = {(x, t) : −∞ < x < x1 + c̄1t, t ≥ 0} and Ωm = {(x, t) : xm−1 + c̄m−1t <
x < ∞, t ≥ 0}. See Figure 1.1; Γj separates Ωj and Ωj+1. The realization of the
concatenated wave pattern associated with the sequence y is the function uy(x, t)
defined on the union of the Ωj by

uy(x, t) = qj(x− yj − cjt) for (x, t) ∈ Ωj .

The center of the wave qj in Ωj moves on the line

Mj = {(x, t) : x = yj + cjt, t ≥ 0}.

The lines Γ1, . . . ,Γm−1,M1, . . . ,Mm spread apart as t increases. The function uy(x, t)
satisfies (1.1) in each Ωj . It is not continuous across the Γj, but the jump in uy(x, t)
along Γj goes to 0 exponentially as t → ∞.
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Figure 1.1. For the case m = 3, the concatenated wave pattern con-
sists of three waves separated by two lines Γ1 and Γ2.

In Ωj it is natural to replace x with the moving coordinate ξj = x − yj − cjt. In
ξjt-coordinates, Ωj corresponds to

Ω̃j = {(ξj, t) : xj−1 − yj + (c̄j−1 − cj)t < ξj < xj − yj + (c̄j − cj)t}.

The line Mj in Ωj becomes ξj = 0 in Ω̃j .
Given a function u(x, t) on R×R+, its restriction to Ωj corresponds to a function

ũj(ξj, t) on Ω̃j given by ũj(ξj, t) = u(ξj + yj + cjt, t).
Let Ij denote the interval (xj−1, xj).

Definition 1.1. A concatenated wave pattern is exponentially stable provided there
exists γ < 0 such that for each ǫ > 0 there exist χ > 0 and δ > 0 for which the
following is true. Suppose min(yj+1 − yj) > χ and uex

0 ∈ H1(R) satisfies ‖uex
0 (x) −

qj(x− yj)‖H1(Ij) < δ for j = 1, . . . , m. Then there is a solution uex(x, t) in R×R+ to
(1.1) such that

(1) uex(x, 0) = uex
0 (x);

(2) in Ω̃j , ũ
ex
j (ξj , t) = qj(ξj − βj(t)) + Yj(ξj , t), and as t → ∞, β̇j(t) and Yj(ξj, t)

are O(eγt);

(3) in appropriate function spaces, ‖β̇j(t)‖ < ǫ and ‖Yj(ξj, t)‖ < ǫ.

Since β̇j(t) is O(eγt), limt→∞ βj(t) exists. Thus the definition says that if the initial
condition uex(x, 0) is close to the concatenated wave pattern at t = 0, then the
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solution approaches a shifted concatenated wave pattern as t → ∞. Different shifts
are allowed in different Ωj .
In the coordinates (ξ, t) = (ξj, t), (1.1) becomes

(1.2) ut = uξξ + cjuξ + f(u), ξ = ξj = x− yj − cjt.

The traveling wave qj(ξ) is a stationary solution of (1.2). The linearization of (1.2)
at the traveling wave qj(ξ) is

(1.3) Ut = Uξξ + cjUξ +Df(qj(ξ))U, ξ = ξj = x− yj − cjt.

Define the linear operator Lj on L2(R) by

LjU = Uξξ + cjUξ +Df(qj(ξ))U.

We shall assume that for j = 1, . . . , m,

(A1) qj(ξ) approaches its end states exponentially as ξ → ±∞.
(A2) There is a number η < 0 such that for j = 1, . . . , m, the half-plane ℜ(λ) ≥ η

contains only resolvent points of Lj, except for the simple eigenvalue λ = 0,
with one-dimensional eigenspace spanned by q′j .

Assumptions (A1) and (A2) imply that the individual traveling waves are exponen-
tially stable. From the form (1.3) of the system, the linear operators Lj are sectorial.
Assumption (A1) implies

(A1′) There are numbers K > 0 and µ > 0 such that for j = 1, . . . , m,
(i) ‖qj(ξ)− ej−1‖ ≤ Keµξ for ξ << 0;
(ii) ‖qj(ξ)− ej‖ ≤ Ke−µξ for ξ >> 0;
(iii) ‖q′j(ξ)‖ ≤ Ke−µ|ξ| and ‖q′′j (ξ)‖ ≤ Ke−µ|ξ| for |ξ| >> 0.

We now state the main result of this paper.

Theorem 1.1. Assume (A1) and (A2). Then the concatenated wave pattern is ex-
ponentially stable. Moreover, let η and µ be given by (A2) and (A1 ′), and let

(1.4) ν = max

(

η,−
1

2
µ(c2 − c1), . . . ,−

1

2
µ(ck − ck−1)

)

< 0.

Then in the definition of stability, one may take ν < γ < 0.

The result says that if the individual traveling waves are exponentially stable, then
the concatenated wave pattern is exponentially stable.
Essentially the same result was proved by Doug Wright [25] and Sabrina Selle

[24]. However, their approach does not use concatenated wave patterns, but instead
uses a sum of traveling waves. We have found it difficult to apply this approach
to problems in which the traveling waves were degenerate in some manner at their
end states, because of the “smearing” of the waves inherent in using sums. We
were therefore motivated to try to develop a stability approach to concatenated wave
patterns in which the different waves are more clearly separated, and their interactions
can perhaps be more precisely seen.
Wright’s work has been generalized to two space dimensions [26] and to lattice

differential equations [6]. There is also work on concatenated wave patterns for scalar
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problems that uses methods limited to scalar problems such as the comparison prin-
ciple; see [4, 3]. In addition, there is a literature on the related problem of fronts that
approach each other; see for example [27, 18, 23]
Our approach uses “spatial dynamics,” which was developed by Kirchgassner [7],

Renardy [20], Mielke [17], Sandstede, Scheel, and collaborators [19, 1], Lin [10, 11]
and others. The idea of spatial dynamics is to treat the space variable as time, and
evolve functions of t to the left and right. With the aid of Laplace transform in t
and exponential dichotomies in ξ, one can decompose a function of t into a part that
decays to the left and a part that decays to the right. A recent paper that uses
Laplace transform in this manner is [21].
Here is a brief outline of the paper. In §2 we reduce the problem of proving

Theorem 1.1 to one of proving a linear result. In §3 we reduce the problem of proving
the linear result to one of proving two lemmas. The proofs of these lemmas occupy the
remainder of the paper. One, the Tail Lemma, deals with canceling a discontinuity in
the solution along one of the lines Γj , where the tails of two traveling waves interact.
The proof of this lemma uses the linearization of the the reaction-diffusion equation
at the equilibrium ej , which has spectrum in ℜλ < ν < 0. The other, the Interior
Lemma, deals with canceling a discontinuity in the solution near one of the lines Mj ,
i.e., in the interior of the jth traveling wave. The proof of this lemma uses the linear
operator Lj, which has the eigenvalue 0.
In order to prove these two lemmas, in §4 we give some background about exponen-

tial dichotomies and Laplace transform. Much of this background comes from [10].
The two lemmas are proved using the material of §4 in §5–§6.
The organization of the paper is intended to make the structure of the argument

clear in §2–§3. Our hope is that the structure of the argument can be used in less
standard situations, for example, when the operators Lj are not sectorial or have
essential spectrum on the imaginary axis. However, the choice of spaces used in §2–
§3, and the proofs of the lemmas in §5–§6, rely on the strong assumptions we have
made.
Our approach to the problem of stability of concatenated waves was first presented

in [14]. The present paper differs from [14] in a number of respects, including: (1)
a more standard ǫδ-definition of stability of the concatenated wave pattern; (2) a
simpler treatment of linear implies nonlinear stability (§2) that in particular does not
attempt to determine the ultimate phase shifts as variables in the problem, and thus
differs from the approach of Sattinger in [22]; (3) greater emphasis on the structure of
the argument (§2–§3); (4) generalization and detailed proof of a key lemma about the
smoothness of the solution of a second-order linear partial differential equation that is
almost time-independent (Lemma 4.6); (5) an alternate construction of the solution
to a certain linear ODE satisfying an internal jump condition, near a parameter value
where there is no exponential dichotomy (§6, Step 2).
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2. Reduction to a linear problem

2.1. Spaces and jumps. Define the Banach spaces

Hk(R+) = W k,2(R+,Rn), k ≥ 0, the usual Sobolev space;

Hk1×k2(R+) = Hk1(R+)×Hk2(R+), k1 ≥ 0, k2 ≥ 0.

As usual, H0 = L2.
Let Ω be an open subset of R × R+, with coordinates (x, t). Define the Banach

space

H2,1(Ω) = {u : Ω → R
n | u, ux, uxx and ut ∈ L2(Ω;Rn};

‖u‖H2,1(Ω) = ‖u‖L2 + ‖ux‖L2 + ‖uxx‖L2 + ‖ut‖L2 .

We use the subscript 0 to denote a subspace of functions that equal 0 at t = 0;
thus Hk

0 (R
+) ⊆ Hk(R+) consists of functions in Hk(R+) that are 0 at t = 0.

For a constant γ < 0, define:

Hk(R+, γ) = {u : R+ → R
n | e−γtu ∈ Hk(R+}; ‖u‖Hk(R+,γ) = ‖e−γtu‖Hk(R+).

Hk1×k2(R+, γ) = Hk1(R+, γ)×Hk2(R+, γ).

L2(Ω, γ) = {u : Ω → R
n | e−γtu ∈ L2(Ω)}; ‖u‖L2(Ω,γ) = ‖e−γtu‖L2(Ω).

H2,1(Ω, γ) = {u : Ω → R
n | e−γtu ∈ H2,1(Ω)}; ‖u‖H2,1(Ω,γ) = ‖e−γtu‖H2,1(Ω).

X1(R+, γ) = {u : R+ → R
n | e−γtu̇ ∈ L2(R+}; ‖u‖X1(R+,γ) = ‖u(0)‖+ ‖e−γtu̇‖L2(R+).

The change of coordinates ξ = x − y − ct converts Ω to a subset Ω̃ of R × R+,
with coordinates (ξ, t), and converts a function u(x, t) on Ω to a function ũ(ξ, t) =
u(ξ + y + ct, t) on Ω̃.

Lemma 2.1. The map u → ũ is a linear isomorphism of H2,1(Ω, γ) to H2,1(Ω̃, γ).
The map u → ũ and its inverse ũ → u both have norm at most 1 + |c|.

Proof. Let u ∈ H2,1
0 (Ω, γ). Then ũξ = ux, ũξξ = uxx, ũt = ut + cjux. Thus

‖ũ‖+ ‖ũξ‖+ ‖ũξξ‖+ ‖ũt‖ ≤ ‖u‖+ ‖ux‖+ ‖uxx‖+ ‖ut‖+ |c|‖ux‖.

Here all the norms are in L2(Ω, γ). The lemma follows easily. �

Let ℓ(x0, c) = {(x, t) : x = x0 − ct, t ≥ 0}. We shall sometimes denote ℓ(x0, c)
simply by ℓ. If u ∈ H2,1(Ω, γ) and ℓ(x0, c) ⊂ Ω (resp. ℓ(x0, c) is the right- or left-
hand boundary of Ω), then u has a naturally defined restriction (resp. extension) to
ℓ(x0, c) called the trace of u on ℓ(x0, c).

Lemma 2.2. (1) If u ∈ H2,1(Ω, γ) and ℓ(x0, c) ⊂ Ω or ℓ(x0, c) is the right- or
left-hand boundary of Ω, then the trace of u on ℓ(x0, c), as a function of
t, belongs to H0.75×0.25(R+, γ). The mapping u → u|ℓ(x0,c) is bounded linear
from H2,1(Ω, γ) to H0.75×0.25(R+, γ). Moreover, there is a number K > 0,
independent of x0 and c, such the norm of the linear map is at most K(1+|c|).

Proof. For c = 0, see [15], vol. 2, Theorem 2.1. For c 6= 0, use Lemma 2.1 followed
by restriction or extension for c = 0. �
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Now let Ω− and Ω+ be open subsets of R × R+ such that the line ℓ = ℓ(x0, c) is
both the right-hand boundary of Ω− and the left-hand boundary of Ω+. Let u− ∈
H2,1(Ω−, γ) and u+ ∈ H2,1(Ω+, γ). Let u be the function on Ω− ∪ Ω+ that equals
u− on Ω− and u+ on Ω+. We denote the jump in u across ℓ, a function of t, by
[u](ℓ) = u+(t) − u−(t). By the previous lemma, [u](ℓ) is defined and belongs to
H0.75×0.25(R+, γ).

Lemma 2.3. If [u](ℓ) = 0 in H0.75×0.25(R+, γ), then u extends to a function in
H2,1(Ω− ∪ ℓ ∪ Ω+, γ) .

Proof. The proof is an exercise in trace theory. Let w be the function on Ω− ∪ ℓ∪Ω+

that equals u−
x on Ω− and u+

x on Ω+. Integrating against a test function and using
integration by parts , it is easy to show that ux = w in L2(Ω− ∪ ℓ∪Ω+) if [u](ℓ) = 0.
Thus ux ∈ L2(Ω− ∪ ℓ ∪ Ω+). Similarly one shows that uxx ∈ L2(Ω− ∪ ℓ ∪ Ω+). It is
clear that u and ut are in L2(Ω− ∪ ℓ ∪ Ω+). Therefore u ∈ H2,1(Ω− ∪ ℓ ∪ Ω+, γ). �

.
Let u(x, t) be any function defined on ∪Ωj . Then u(x, t) corresponds to a sequence

of functions ũ1(ξ1, t), . . . , ũm(ξm, t), where ũj(ξj , t) is defined on Ω̃j , with ũj(ξj, t) =
u(ξj + yj + cjt, t). Conversely, given ũ1(ξ1, t), . . . , ũm(ξm, t), one can define u(x, t) on
∪Ωj by

u(x, t) = ũj(x− yj − cjt, t) on Ωj .

If each ũj is in H2,1(Ω̃j, γ), then the trace of ũj is defined on the left and right

boundaries of Ω̃j , so we have

(2.1) [u](Γj) = ũj+1(xj − yj+1 + (c̄j − cj+1)t, t)− ũj(xj − yj + (c̄j − cj)t, t).

We shall also use the notation [ũj](Γj) to denote (2.1)

2.2. Reformulation of the problem in Ω̃j. Recall from Definition 1.1 that in Ω̃j ,
the solution of the initial value problem of interest is

ũex
j (ξj, t) = qj(ξj + βj(t)) + Yj(ξj, t).

Then in Ω̃j , (1.1) can be written

(2.2) ∂tYj + q′j(ξ + βj)β̇j = ∂ξξYj + cj∂ξYj + f(qj(ξ + βj) + Yj)− f(qj(ξ + βj)),

(ξ, t) = (ξj, t) ∈ Ω̃j.

We now reformulate (2.2) by expanding about (Yj, βj) = (0, 0). With (ξ, t) = (ξj, t),
write

f(qj(ξ + βj) + Yj)− f(qj(ξ + βj))−Df(qj(ξ + βj))Yj = Fj1(ξ, Yj, βj)(Yj, Yj),

Df(qj(ξ + βj))−Df(qj(ξ)) = Fj2(ξ, βj)βj,

q′j(ξ + βj)− q′j(ξ) = Fj3(ξ, βj)βj,
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with

Fj1(ξ, Yj, βj) =

∫ 1

0

(1− s)D2f(qj(ξ + βj) + sYj) ds,

Fj2(ξ, βj) =

∫ 1

0

D2f(qj(ξ + sβj)) ds,

Fj3(ξ, βj) =

∫ 1

0

q′′j (ξ + sβj) ds.

Let

Fj(ξ, Yj, βj, β̇j) = Fj1(ξ, Yj, βj)(Yj, Yj) + Fj2(ξ, βj)Yjβj − Fj3(ξ, βj)βj β̇j.

Write (2.2) as

(2.3) ∂tYj + q′j(ξ)β̇j = ∂ξξYj + cj∂ξYj +Df(qj(ξ))Yj + Fj(ξ, Yj, βj, β̇j),

(ξ, t) = (ξj, t) ∈ Ω̃j.

We also expand the initial conditions and the jump conditions across the Γj about
(Yj, βj) = (0, 0). With (ξ, t) = (ξj, t), write

qj(ξ + βj)− qj(ξ)− βjq
′
j(ξ) = Gj(ξ, βj)β

2
j , Gj(ξ, βj) =

∫ 1

0

(1− s)q′′j (ξ + sβj) ds.

Initial conditions for (Yj(ξ, 0), βj(0)) for (2.3) must satisfy the equation

(2.4) uex(ξ + yj, 0) = ũex
j (ξ, 0) = qj(ξ + βj(0)) + Yj(ξ, 0)

= qj(ξ) + βj(0)q
′
j(ξ) +Gj(ξ, βj(0))β

2
j (0) + Yj(ξ, 0), ξ = ξj ∈ Ij.

Across Γj we have

(2.5) 0 = [uex](Γj ] = [ũex
j ](Γj ] = [qj(ξj + βj)](Γj) + [Yj ](Γj)

= [qj(ξj)](Γj) + [βjq
′
j(ξj)](Γj) + [Gj(ξj, βj)β

2
j ](Γj) + [Yj](Γj).

2.3. Approach. Given γ < 0, to solve (1.1) with the initial condition uex(x, 0) =

uex
0 (x) ∈ H1(R), we need to find pairs (Yj(ξj, t), βj(t)) ∈ H2,1(Ω̃j , γ) × X1(R+, γ),

j = 1, . . . , m, that satisfy the following conditions, which come from (2.3), (2.4), and
(2.5):

(N1) In Ω̃j , (Yj, βj) satisfies

∂tYj + q′j(ξ)β̇j = ∂ξξYj + cj∂ξYj +Df(qj(ξ)Yj + Fj(ξ, Yj, βj, β̇j), (ξ, t) = (ξj, t) ∈ Ω̃j .

Yj(ξ, 0) + βj(0)q
′
j(ξ) = uex(ξ + yj, 0)− qj(ξ)−Gj(ξ, βj(0))β

2
j (0), ξ = ξj ∈ Ij .

(N2) Along Γj,

[Yj ](Γj) + [βjq
′
j(ξj)](Γj) = −[qj(ξj)](Γj)− [Gj(ξj, βj)β

2
j ](Γj)

[Yjξ](Γj) + [βjq
′′
j (ξj)](Γj) = −[q′j(ξj)](Γj)− [Gjξ(ξj, βj)β

2
j ](Γj).
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Note that the requirement that βj ∈ X1(R+, γ) implies that βj(∞) = βj(0) +
∫∞

0
β̇j(t) dt is finite, because

∫ ∞

0

|β̇j(t)|dt =

∫ ∞

0

eγte−γt|β̇j(t)|dt ≤ ‖eγt‖L2(R+)‖e
−γt|β̇j(t)|‖L2(R+)

= (2|γ|)−
1

2‖β̇j(t)‖L2(R+,γ).

In order to solve the nonlinear system (N1)–(N2) we shall first consider the following

nonhomogeneous linear problem. Let η ≤ γ < 0. Let hj ∈ L2(Ω̃j , γ), j = 1, . . .m;
wj ∈ H1(Ij), j = 1, . . .m; and Jj ∈ H0.75×0.25(R+, γ), j = 1, . . .m− 1. Assume

(2.6) [(wj, wjξ)](xj) = Jj(0).

Find pairs (Yj , βj) ∈ H2,1(Ω̃j , γ)×X1(R+, γ), j = 1, . . . , m, that satisfy the following
conditions.

(L1) In Ω̃j , (Yj, βj) satisfies

∂tYj + q′j(ξ)β̇j = ∂ξξYj + cj∂ξYj +Df(qj(ξ)Yj + hj(ξ, t), (ξ, t) = (ξj, t) ∈ Ω̃j ,

Yj(ξ, 0) + βj(0)q
′
j(ξ) = wj(ξ), ξ = ξj ∈ Ij.

(L2) Along Γj,

[(Yj, Yjξ)](Γj) + [(βjq
′
j(ξj), βjq

′′
j (ξj))] = Jj.

Let Y =
∏m

1 (H
2,1(Ω̃j, γ)×X1(R+, γ)), and let Z denote the subpace of

∏m
1 L2(Ωj , γ)×

∏m
1 H1(Ij)×

∏m−1
1 H0.75×0.25(R+, γ) for which (2.6) is satisfied.

Theorem 2.4 (Linear Theorem). Assume (A1) and (A2). Fix γ, η ≤ γ < 0. If
min(yj+1 − yj) is sufficiently large, then the linear problem (L1)–(L2) has a solution
((Y1, β1), . . . , (Ym, βm)) ∈ Y given by a bounded linear mapping

K : Z → Y , K(h1, . . . , hm, w1, . . . , wm, J1, . . . , Jm−1) = ((Y1, β1), . . . , (Ym, βm)).

The bound is independent of y1, . . . , ym.

We emphasize that the linear problem (L1)–(L2) does not have a unique solution,
since we have not specified subspaces in which the Yj are to lie. The assertion of the
Linear Theorem is that there is a precisely defined linear map K that picks out one
solution of (L1)–(L2) for each value of (h1, . . . , hm, w1, . . . , wm, J1, . . . , Jm−1).
Actually, for the linear problem (L1)–(L2), the sum Uj(ξ, t) = Yj(ξ, t)+βj(t)q

′
j(ξ) is

uniquely defined, although the pair (Yj, βj) is not. Moreover, each βj(∞) is uniquely
defined.
We outline the proof of the Linear Theorem in §3, with the proofs of two key

lemmas deferred to the remainder of the paper. Given the linear result, one proves
the following more precise formulation of Theorem 1.1.

Theorem 2.5 (Nonlinear Theorem). Assume (A1) and (A2). Let ν be given by
(1.4). Fix γ, ν < γ < 0, and let ǫ > 0. Then there exist χ > 0 and δ > 0
such that the following is true. If min(yj+1 − yj) > χ and uex

0 ∈ H1(R) satisfies
‖uex

0 (x)−qj(x−yj)‖H1(Ij) < δ for j = 1, . . . , m, then the nonlinear problem (N1)–(N2)
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has a solution ((Y1, β1), . . . , (Ym, βm)) ∈ Y. Moreover, for each j, ‖Yj‖H2,1(Ω̃j ,γ)
< ǫ

and ‖βj‖X1(R+,γ) < ǫ.

Proof. The argument follows a standard template. A solution of the nonlinear prob-
lem (N1)–N(2) is given by the fixed point of the mapping F = K ◦ N , where
N : Y → Z is given by

(Yj, βj)|
m
j=1 → (Fj(ξj, Yj, βj, β̇j)|

m
j=1, u

ex(ξj + yj, 0)− qj(ξj)−Gj(ξj, βj(0))β
2
j (0)|

m
j=1,

− [qj(ξj), q
′
j(ξj)](Γj)− [Gj(ξj, βj)β

2
j , Gjξj(ξj, βj)β

2
j ](Γj)|

m−1
j=1 ).

Note that

‖[qj(ξj)]‖ = ‖qj+1(xj − yj+1 + (c̄j − cj+1)t)− qj(xj − yj + (c̄j − cj)t)‖

≤ ‖qj+1(xj − yj+1 + (c̄j − cj+1)t)− ej‖+ ‖ej − qj(xj − yj + (c̄j − cj)t)‖

≤ Keµ(xj−yj+1+(c̄j−cj+1)t) +Ke−µ(xj−yj+(c̄j−cj)t) ≤ K̃e−
1

2
µ(cj+1−cj)t.

Similar estimates apply to [q′j(ξj)], [Gj(ξj, βj)], and [Gjξj(ξj, βj)]. This is the reason
for the requirement that ν < γ.
For notational simplicity, let (Y, β) denote (Yj, βj)|

m
j=1. Then

N (Y, β) = (0|mj=1, u
ex(ξj + yj, 0)− qj(ξj)|

m
j=1,−[qj(ξj), q

′
j(ξj)](Γj)|

m−1
j=1 ) +O(‖(Y, β)‖2).

In fact, there are numbers K > 1 and ǫ > 0 such that if min(yj+1 − yj) is sufficiently
large and max ‖uex

0 (x)− qj(x− yj)‖H1(Ij) is sufficiently small, then,

(1) ‖N (Y, β)−N (0, 0)‖ ≤ K‖(Y, β)‖2 for ‖(Y, β)‖ ≤ ǫ;
(2) ‖DN (Y, β)‖ ≤ K‖(Y, β)‖ for ‖(Y, β)‖ ≤ ǫ;
(3) ‖K‖ ≤ K;
(4) ‖N (0, 0)‖ ≤ ǫ

2K
.

We may assume ǫ ≤ 1/2K2. Then ‖F(0, 0)‖ = ‖KN (0, 0)‖ ≤ ǫ
2
and

‖F(Y, β)− F(0, 0)‖ ≤ K‖N (Y, β)−N (0, 0)‖ ≤ K2ǫ2 ≤
ǫ

2
.

Therefore F maps the ǫ-ball in
∏m

1 (H
2,1(Ω̃j , γ)×X1(R+, γ)) into itself. For ‖(Y, β)‖ ≤

ǫ, ‖DF(Y, β)‖ ≤ K‖DN (Y, β)‖ ≤ K2ǫ ≤ 1
2
. Therefore F is a contraction of that

ball. The fixed point is a solution of (N1)–(N2). �

3. Proof of the Linear Theorem 2.4

In §3.1 we review some facts about a single traveling wave. In §3.2, we solve the
initial value problem (L1) in each Ω̃j , ignoring the jump condition (L2). In §3.3, we
state a result, the Jump Theorem 3.2, about the solution of the full linear system
(L1)–(L2) with hj = 0, wj = 0, and Jj(0) = 0, i.e., zero forcing, initial condition zero,
and jump at t = 0 equal to zero to match the initial condition. Then we combine the
two solutions to prove the Linear Theorem 2.4. In §3.4 we state two key lemmas, and
in §3.5 we use these two lemmas to prove the Jump Theorem. The proofs of the two
lemmas are given in the remainder of the paper.
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3.1. A single traveling wave. The traveling wave qj(ξ), ξ = ξj = x − yj − cjt,
satisfies the ODE

q′′j + cjq
′
j + f(qj) = 0.

The function (u(ξ), v(ξ)) = (qj(ξ), q
′
j(ξ)), −∞ < ξ < ∞, is a heteroclinic solution of

the associated first-order system

(3.1) uξ = v, vξ = −cjv − f(qj)

that connects the equilibria (ej−1, 0) and (ej , 0). Assumption (A2) implies that these
equilibria are hyperbolic saddles with n eigenvalues having positive real part and n
having negative real part.
Let L∗

j be the adjoint operator for Lj on L2(R),

(3.2) L∗
jz = zξξ − cjzξ +Df(qj(ξ))

∗z.

The kernel of L∗
j is spanned by a function zj . Since q′j is not in the range of Lj ,

∫∞

−∞
< zj , q

′
j > dξ 6= 0. We choose zj so that

(3.3)

∫ ∞

−∞

< zj , q
′
j > dξ = 1.

The spectral projection to ker(Lj) is

PjU =

(
∫ ∞

−∞

< zj , U > dξ

)

q′j.

We have the spectral decomposition U = Y + βq′j with

Y ∈ R(I − Pj) = RLj = {Y :

∫ ∞

−∞

< zj , Y > dξ = 0}.

3.2. Solution of (L1). In this subsection we consider each Ω̃j separately. Given a

forcing function hj ∈ L2(Ω̃j , γ) and an initial condition wj ∈ H1(Ij), we look for a

solution (Yj, βj) of (L1) in H2,1(Ω̃j , γ)×X1(R+, γ).

Proposition 3.1. Assume (A1) and (A2), and assume min(yj+1 − yj) is bounded
below by a positive number. Fix γ, η ≤ γ < 0. Then the linear problem (L1) has a

solution ((Y
(1)
1 , β

(1)
1 ), . . . , (Y

(1)
m , β

(1)
m )) ∈ Y that is given by a bounded linear mapping

K(1) :
m
∏

1

L2(Ωj , γ)×
m
∏

1

H1(Ij) → Y ,

K(1)(h1, . . . , hm, w1, . . . , wm) = ((Y
(1)
1 , β

(1)
1 ), . . . , (Y (1)

m , β(1)
m )).

The bound is independent of y1, . . . , ym.

We remark that (L1) does not have a unique solution. The assertion of Theorem
3.1 is that there is a precisely defined linear map K(1) that picks out one solution of
(L1) for each value of (h1, . . . , hm, w1, . . . , wm).
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Proof. We shall need linear extension operators from L2(Ω̃j, γ) to L2(R×R+, γ) and

from H1(Ij) → H1(R). Functions in L2(Ω̃j , γ) can be extended to L2(R × R+, γ)

by taking them to be 0 outside Ω̃j . For a method of extending functions in H1(Ij)
to H1(R), see [5], Theorem 6.44. If min(yj+1 − yj) is bounded below by a positive
number, then these extension operators can be chosen to have a uniform bound K
independent of the choice of y1, . . . , ym. We shall denote all such extension operators
by E .
Let h̄j = Ehj ∈ L2(R × R+, γ), and let w̄j = Ewj ∈ H1(R). Then consider the

initial value problem
(3.4)
Ut = Uξξ + cjUξ +Df(qj(ξ))U + h̄j(ξ, t), (ξ, t) ∈ R× R

+; U(ξ, 0) = w̄j(ξ), ξ ∈ R.

The solution of (3.4) can be written as U(ξ, t) = Y (ξ, t) + β(t)q′j with Y (·, t) ∈
R(I −Pj). Applying the operators I −Pj and Pj to (3.4), we obtain

Yt = Yξξ + cjYξ +Df(qj(ξ))Y + (I − Pj)h̄j(ξ, t), Y (ξ, 0) = (I − Pj)w̄j ,(3.5)

β̇ = Pjh̄j , β(0) = Pjw̄j.(3.6)

Now R(I − Pj) = RLj is invariant under Lj , and Lj|R(I − Pj) is sectorial and
generates an analytic semigroup eLjt. We have

Y (ξ, t) = eLjt(I − Pj)w̄j(ξ) +

∫ t

0

eLj(t−τ)(I −Pj)h̄j(ξ, τ) dτ,

β(t) = Pjw̄j +

∫ t

0

Pj h̄j(ξ, τ) dτ.

From Lemma 3.11 of [10] it is easy to show that Y ∈ H2,1(R× R+, γ) and satisfies

‖Y ‖H2,1(R×R+,γ) ≤ C1(‖w̄j‖H1(R) + ‖h̄j‖L2(R×R+,γ)) ≤ C1K(‖wj‖H1(Ij) + ‖hj‖L2(Ω̃j ,γ)
),

Also, we clearly have

‖β‖X1(R) = |β(0)|+ ‖β̇‖L2(R+,γ) ≤ C2(‖w̄j‖H1(R) + ‖h̄j‖L2(R×R+,γ))

≤ C2K(‖wj‖H1(Ij) + ‖hj‖L2(Ω̃j ,γ)
).

Finally, to solve (L1) in Ω̃j , we let

Y
(1)
j = Y |Ω̃j, β

(1)
j = β.

�

3.3. The Jump Theorem and the proof of the Linear Theorem. Consider the
following linear problem: given jumps J̃j ∈ H0.75×0.25

0 (R+, γ), j = 1, . . . , m − 1, find

pairs (Y
(2)
j , β

(2)
j ) ∈ H2,1

0 (Ω̃j , γ) × X1
0 (R

+, γ), j = 1, . . . , m, such that the functions

Ũ
(2)
j (ξj, t) = Y

(2)
j (ξj, t) + β

(2)
j q′j(ξj) satisfy

Ut = Uξξ + cjUξ +Df(qj(ξ))U, (ξ, t) = (ξj, t) ∈ Ω̃j ,(3.7)

U(ξ, 0) = 0, ξ = ξj ∈ Ij,(3.8)

[Uj , Ujξ)](Γj) = J̃j(Γj).(3.9)



12 LIN AND SCHECTER

Note that this linear problem has zero forcing and initial condition zero.

Theorem 3.2 (Jump Theorem). Assume (A1) and (A2). Fix γ, η ≤ γ < 0. If
min(yj+1 − yj) is sufficiently large, then the linear problem (3.7)–(3.9) has a solution

((Y
(2)
1 , β

(2)
1 ), . . . , (Y

(2)
m , β

(2)
m )) ∈ Y0 that is given by a bounded linear mapping

K(2) :

m−1
∏

1

H0.75×0.25
0 (R+, γ) → Y0, K(2)(J̃1, . . . , J̃m−1) = ((Y

(2)
1 , β

(2)
1 ), . . . , (Y (2)

m , β(2)
m )).

The bound is independent of y1, . . . , ym.

As usual the solution is not unique, but one solution is given by a precisely defined
linear map.
Given Proposition 3.1 and Theorem 3.2, the Linear Theorem 2.4 is proved as fol-

lows. Given the hj , wj , and Jj, let ((Y
(1)
1 , β

(1)
1 ), . . . , (Y

(1)
m , β

(1)
m )) be the solution of

(L1) found in Theorem 3.1. For j = 1, . . .m, define the function Ũ
(1)
j (ξj, t) on Ω̃j by

Ũ
(1)
j (ξj, t) = Y

(1)
j (ξj, t) + β

(1)
j q′j(ξj). Then define

J̃j(Γj) = Jj(Γj)− [(Ũ
(1)
j , Ũ

(1)
jξ )](Γj).

Note that J̃j ∈ H0.75×0.25(R+, γ) and

J̃j(0) = [Jj(0)]− [w](0) = 0.

Use Theorem 3.2 to find the functions Ũ
(2)
j = Y

(2)
j (ξj, t) + β

(2)
j q′j(ξj). Set

Yj = Y
(1)
j + Y

(2)
j , βj = β

(1)
j + β

(2)
j , j = 1, . . . , m.

3.4. Two lemmas. The proof of the Jump Theorem 3.2 relies on two lemmas. In
this subsection we state the two lemmas and show how they yield Theorem 3.2.
Let N > 0. Assume that min(yj+1 − yj) > 2N . In xt-coordinates, let

M+
j = {(x, t) : x = yj +N + cjt, t ≥ 0}, j = 1, . . . , m− 1,

M−
j+1 = {(x, t) : x = yj+1 −N + cj+1t, t ≥ 0}, j = 1, . . . , m− 1,

M = the union of the M+
j and M−

j+1, j = 1, . . . , m− 1,

Λ+
j = the open subset of Ωj between M+

j and Γj , j = 1, . . . , m− 1,

Λ−
j+1 = the open subset of Ωj+1 between Γj and M−

j+1, j = 1, . . . , m− 1,

Λ = the union of the Λ+
j and Λ−

j+1, j = 1, . . . , m− 1.

See Figure 3.1.

3.4.1. Tail Lemma. The Tail Lemma, which deals with canceling discontinuities along
the Γj, is most easily stated in xt-coordinates.
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Figure 3.1.

Let φj ∈ H0.75×0.25
0 (R+, γ), j = 1, . . . , m. On Λ, i.e., near the union of the Γj, we

look for a function U(x, t) that satisfies

Ut = Uxx +Df(qj(x− yj − cjt))U, (x, t) in Λ+
j ,(3.10)

Ut = Uxx +Df(qj+1(x− yj+1 − cj+1t))U, (x, t) in Λ−
j+1,(3.11)

U(x, 0) = 0, [(U, Ux)](Γj) = φj.(3.12)

The solution should decay exponentially in t as t → ∞ and in x as (x, t) moves away
from Γj.

Lemma 3.3 (Tail Lemma). Assume (A1) and (A2). Fix γ, η ≤ γ < 0. Then
there is a number N > 0 such that if min(yj+1 − yj) > 2N , then the linear problem

(3.10)–(3.12) has a solution U(x, t) in H2,1
0 (Λ, γ) that is given by a bounded linear

mapping

K(3) :
m−1
∏

1

H0.75×0.25
0 (R+, γ) → H2,1

0 (Λ, γ).

The bound is independent of y1, . . . , ym. There are numbers C̃ > 0 and α̃ > 0,
independent of y1, . . . , ym, such that the solution satisfies the estimates

(3.13) ‖U |M+

j
‖ ≤ C̃e−α̃(xj−yj−N)‖φj‖, ‖U |M−

j+1
‖ ≤ C̃e−α̃(yj+1−N−xj)‖φj‖,

where all the norms are in H0.75×0.25(R+, γ).

Note that the assumption min(yj+1−yj) > 2N implies that yj+N < xj < yj+1−N ,
so xj − yj −N > 0 and yj+1 −N − xj > 0.

3.4.2. Interior Lemma. The Tail Lemma produces discontinuities along the lines in
M ; the Interior Lemma deals with canceling them. To state the Interior Lemma, we
will work in a single moving coordinate ξ = ξj = x − yj − cjt. In ξt-coordinates, let
Ma denote the line ξ = a. Let φ ∈ H0.75×0.25

0 (R+, γ). We consider the problem

Ut = Uξξ + cjUξ +Df(qj(ξ))U, (ξ, t) ∈ R× R
+ \Ma),(3.14)

U(ξ, 0) = 0, [(U, Uξ)](Ma) = φ.(3.15)

Lemma 3.4 (Interior Lemma). Assume (A1) and (A2). With N given by Lemma
3.3 and min(yj+1 − yj) > 2N , let a = −N or N . Fix j, and fix γ, η ≤ γ < 0. Then

the linear problem (3.14)–(3.15) has a solution Ũ = Yj(ξ, t) + βj(t)q
′
j(ξ) with
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(1) Yj ∈ H2,1
0 (R× R+ \Ma, γ) and PjYj(·, t) = 0 for each t;

(2) βj ∈ X1
0 (R

+, γ).

The solution is given by a bounded linear mapping

K(4) : H0.75×0.25
0 (R+, γ) → H2,1

0 (R× R
+ \Ma, γ)×X1

0 (R
+, γ), K(4)(φ) = (Yj, βj).

The bound is independent of j and y1, . . . , ym. There are numbers C > 0 and α > 0,
independent of y1, . . . , ym, such that the solution satisfies the estimates

(3.16) ‖Ũ |Γj−1
‖ ≤ Ce−α(yj+a−xj−1)‖φ‖, ‖Ũ |Γj

‖ ≤ Ce−α(xj−yj−a)‖φ‖,

where all the norms are in H0.75×0.25(R+, γ).

Note that the assumption min(yj+1− yj) > 2N implies that xj−1 < yj + a < xj , so
yj + a− xj−1 > 0 and xj − yj − a > 0.

3.5. Proof of the Jump Theorem. We use the Tail Lemma 3.3 and the Interior
Lemma 3.4 to prove the Jump Theorem 3.2 by an iterative procedure. We work in
xt-coordinates, in which the system (3.7)–(3.9) becomes

Ut = Uxx +Df(qj)U, (x, t) ∈ Ωj , j = 1, . . . , m,(3.17)

U(x, 0) = 0,(3.18)

[(U, Ux)](Γj) = J̃j(Γj).(3.19)

Let
∆ = max

j=1,...,m
‖J̃j(Γj)‖H0.75×0.25(R+,γ).

Choose N so that the Tail Lemma 3.3 is true, then let min(yj+1−yj) be sufficiently

large so that for j = 1, . . . , m, the coefficients C̃e−α̃(xj−yj−N) and C̃e−α̃(yj+1−N−xj) in
(3.13), and Ce−α(yj+a−xj−1) and Ce−α(xj−yj−a) in (3.16), with a = ±N , are at most
κ < 1

2
, so that 4κ2 < 1. Let K be the larger of the bounds for the linear maps

K(3) of the Tail Lemma and K(4) of the Interior Lemma. K is independent of j and
y1, . . . , ym.

For each j = 1, . . . , m, given the jump J̃j ∈ H0.75×0.25
0 (R+, γ), we set J̃

[0]
j =

J̃j and use the Tail Lemma with φj = J̃
[0]
j . For each j, the Tail Lemma pro-

duces a function U
tail+ [0]
j (x, t) defined on Λ+

j , and a function U
tail− [0]
j+1 (x, t) defined

on Λ−
j+1; see Figure 3.1. We extend each to be 0 elsewhere, and we set U tail [0] =

∑m
j=1

(

U
tail+[0]
j + U

tail−[0]
j+1

)

. U tail [0](x, t) is a solution of the homogeneous problem

(3.17)–(3.18) on the complement of the M+
j , Γj, and M−

j+1. For each j = 1, . . . , m,

it has the correct jump J̃
[0]
j along Γj , but has undesired jumps along M+

j and M−
j+1,

which we denote −φ
+[0]
j and −φ

−[0]
j+1 respectively. In H0.75×0.25(R+, γ), we have

max(‖φ+[0]
j ‖, ‖φ−[0]

j+1‖) ≤ κ‖J̃ [0]
j ‖ ≤ κ∆.

To eliminate the undesired jump along M+
j (resp. M−

j+1), we use the Interior

Lemma 3.4 with a = N (resp. with j replaced by j + 1 and a = −N) and φ = φ
+[0]
j

(resp. φ = φ
−[0]
j+1). We denote by U

int+[0]
j (resp. U

int−[0]
j+1 ) the solution produced by
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Lemma 3.4, translated into xt-coordinates, then restricted to Ωj (resp. Ωj+1) and

extended to be 0 outside Ωj (resp. Ωj+1). We set U int [0] =
∑m

j=1

(

U
int+[0]
j + U

int−[0]
j+1

)

.

U int [0](x, t) is a solution of the homogeneous problem (3.17)–(3.18) on the complement
of the M+

j , Γj, and M−
j+1. For j = 1, . . . , m, its jumps along M+

j and M−
j+1 are minus

those of U
tail [0]
j (x, t), but it has a small undesired jump along Γj, which we denote

−J̃
[1]
j . In H0.75×0.25(R+, γ), we have

‖J̃ [1]
j ‖ ≤ κ(‖φ−[0]

j ‖+ ‖φ+[0]
j ‖+ ‖φ−[0]

j+1‖+ ‖φ+[0]
j+1‖) ≤ 4κ2∆.

For j = 1, the first of the four summands is missing, and for j = m, the last of the
four summands is missing.
The function U [0] = U tail [0] + U int [0] is a solution of the homogeneous problem

(3.17)–(3.18) in the complement of the Γj. For each j, its jump along Γj is J̃
[0]
j − J̃

[1]
j .

We now iterate the procedure, beginning by using the Tail Lemma for each j with

φj = J̃
[1]
j . For each j = 1, . . . , m we obtain

• sequences of functions U
tail+ [k]
j (x, t) defined on Λ+

j and U
tail− [k]
j+1 (x, t) defined

on Λ−
j+1, k = 0, 1, 2, . . .;

• sequences of jumps φ
+[k]
j defined on M+

j and φ
− [k]
j+1 defined on M−

j+1, k =
0, 1, 2, . . .;

• sequences of functions U
int+[k]
j defined on Ωj \ M+

j and U
int−[0]
j+1 defined on

Ωj+1 \M
−
j+1, k = 0, 1, 2, . . ..

We set

U tail [k] =

m
∑

j=1

(

U
tail+[k]
j + U

tail−[k]
j+1

)

, U int [k] =

m
∑

j=1

(

U
int+[k]
j + U

int−[k]
j+1

)

,

U [k] = U tail [k] + U int [k]. U [k] is a solution of the homogeneous problem (3.17)–(3.18)

in the complement of the Γj . Its jump along Γj is J̃
[k]
j − J̃

[k+1]
j , where

(3.20) ‖J̃ [k]
j ‖H0.75×0.25(R+,γ) ≤ (4κ2)k∆.

We wish to obtain the solution whose existence is asserted in the Jump Theorem
by summing the U [k]. The summation will be done in each Ω̃j . The restriction of U [k]

to Ωj corresponds, in ξjt-coordinates, to

Ũ
[k]
j = Ũ

tail− [k]
j + Ũ

tail+ [k]
j + Ũ

int− [k]
j + Ũ

int+ [k]
j .

Given a subset S of Ωj , we use S̃ to denote the corresponding subset of Ω̃j . With this

notation, the first (resp. second) summand is nonzero only on Λ̃−
j (resp. Λ̃+

j ), and the

third (resp. fourth) summand has a jump along M̃−
j (resp. M̃+

j ). Nevertheless the

sum has no jumps along M̃±
j . For j = 1, the first and third summands are missing;

for j = m, the second and fourth summands are missing.

The functions Ũ
int± [k]
j produced by the Interior Lemma are in the form Ũ

int± [k]
j =

Y
± [k]
j (ξj, t) + β

± [k]
j q′j(ξj), with Y

± [k]
j ∈ H2,1

0 (Ω̃j \M
±
j , γ) and β

± [k]
j ∈ X1

0 (R
+, γ). We
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set

Y
[k]
j = Ũ

tail− [k]
j + Ũ

tail+ [k]
j + Y

− [k]
j + Y

+ [k]
j , β

[k]
j q′j = β

− [k]
j q′j + β

+ [k]
j q′j .

Using ‖ · ‖ to denote ‖ · ‖H0.75×0.25(R+,γ), from the Tail Lemma, the Interior Lemma,
and (3.20), we have

max
(

‖Ũ tail+ [k]
j ‖H2,1(Λ̃+

j ,γ), ‖Ũ
tail− [k]
j+1 ‖H2,1(Λ̃−

j+1
,γ)

)

≤ K‖J̃ [k]
j ‖ ≤ K(4κ2)k∆,(3.21)

max
(

‖Y ± [k]
j ‖H2,1(Ω̃j\M

±

j ,γ), ‖β
± [k]
j ‖X1(R+,γ)

)

≤ K‖φ±[k]
j ‖ ≤ Kκ‖J̃ [k]

j ‖ ≤ Kκ(4κ2)k∆.

(3.22)

Finally we set

Yj =

∞
∑

k=1

Y
[k]
j , βjq

′
j =

∞
∑

k=1

β
[k]
j q′j , Ũj = Yj + βjq

′
j .

Now each summand of Y
[k]
j is in H2,1

0 (S̃, γ) for an open subset S̃ of Ω̃j bounded by a

vertical line, and by construction the sum Y
[k]
j has no jumps along those lines. Hence

by Lemma 2.3 the sum is in H2,1
0 (Ω̃j , γ). From estimates 3.21–3.22 and κ < 1

2
,

‖Y [k]
j ‖H2,1(Ω̃j ,γ)

≤ 4K(4κ2)k∆

Since 4κ2 < 1, Yj is in H2,1
0 (Ω̃j , γ). Similarly, using (3.22), βj is in X1

0 (R
+, γ). The

jump in the Ũj across Γj is

∞
∑

k=1

(

J̃
[k]
j − J̃

[k+1]
j

)

= J̃
0]
j = J̃j

as desired. (The series converges by (3.20).) Moreover, independent of j,

max
(

‖Yj‖H2,1(Ω̃j ,γ)
, βj‖X1

0
(R+,γ)

)

≤
4K

1− 4κ2
∆.

4. Exponential dichotomies and Laplace transform

In this section we gather material we will need to prove the Tail Lemma and
Interior Lemma. The first four subsections are general; the last gives a lemma about
the Laplace transform of the linear differential equation (1.2).

4.1. Exponential dichotomies. Let us consider a linear differential equation Uξ =
L(ξ)U, ξ ∈ I, on a Banach space E. Here I ⊂ R is an interval, and L(ξ) : E → E
is a linear operator for each ξ ∈ I, but it may be unbounded, and its domain may
be a proper subspace of E. The solution operator U(ξ) = T (ξ, ζ)U(ζ) may have a
domain that depends on the pair (ξ, ζ). Of course, when E is finite dimensional, L(ξ)
is bounded for each ξ, and T (ξ, ζ) has domain E for each (ξ, ζ).
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Definition 4.1. We say Uξ = L(ξ)U has an exponential dichotomy on E for ξ ∈ I
if there exist bounded projections Ps(ξ) + Pu(ξ) = I in E, continuous in ξ ∈ I, and
constants K, ρ > 0, such that the solution operator T (ξ, ζ) satisfies

T (ξ, ζ) : RPs(ζ) → RPs(ξ) is defined for ξ ≥ ζ ;(4.1a)

T (ξ, ζ) : RPu(ζ) → RPu(ξ) is defined for ξ ≤ ζ ;(4.1b)

‖T (ξ, ζ)Ps(ζ)‖ ≤ Ke−ρ|ξ−ζ|, ξ ≥ ζ ;(4.1c)

‖T (ξ, ζ)Pu(ζ)‖ ≤ Ke−ρ|ξ−ζ|, ξ ≤ ζ.(4.1d)

We use the notation Es(ξ) = RPs(ξ), Eu(ξ) = RPu(ξ). In general exponential
dichotomies are not unique. However, if I = (−∞, ξ0], then the unstable subspace
Eu(ξ) is independent of the dichotomy chosen, and if I = [ξ0,∞), then the stable
subspace Es(ξ) is independent of the dichotomy chosen.
The following result gives the basic facts about persistence of exponential di-

chotomies under perturbation.

Theorem 4.1. (Roughness of Exponential Dichotomies) Let I be an interval, and let
Uξ = L(ξ)U , ξ ∈ I, be a linear differential equation on a Banach space E. Assume
that Uξ = L(ξ)U has an exponential dichotomy on I with projections P 0

s (ξ)+P 0
u(ξ) = I

and constants K0, ρ0 > 0. Let B(ξ) : E → E be a bounded linear operator for each
ξ ∈ I, with B ∈ L∞(I). Let δ = supξ∈I ‖B(ξ)‖ < ∞.
Consider the perturbed linear equation

(4.2) Uξ = (L(ξ) +B(ξ))U.

Let 0 < ρ̃ < ρ0, and assume that δ is sufficiently small so that

(4.3) C1δ < 1 and C2δ < 1, where C1 =
2K0

ρ0 − ρ̃
, C2 =

2K2
0

(ρ0 − ρ̃)(1− C1δ)
.

Then (4.2) also has an exponential dichotomy on I with projections P̃s(ξ)+ P̃u(ξ) = I
and the exponent ρ̃. The multiplicative constant is K̃ = K0(1 − C1δ)

−1(1 − C2δ)
−1,

and

‖P̃s(ξ)− P 0
s (ξ)‖ ≤

C2δ

1− C2δ
.

If E is finite-dimensional, then the proof of Theorem 4.1 is well-known [2]. If E is
infinite-dimensional, the proof must be adjusted because the solution operator is usu-
ally not invertible on E; see [8, 9]. For a shorter proof in the infinite-dimensional case,
see [12] (simply replace the rate function a(x) by ex and the decay rate (a(x)/a(y))−ρ

by e−ρ(x−y)).

4.2. Second-order linear PDEs. Let I be an interval. Consider a second-order
linear partial differential equation on C

n with zero initial conditions, of the form

(4.4) Ut = Uξξ + cUξ + A(ξ, t)U, (ξ, t) ∈ I × R
+; (U, Uξ)(ξ, 0) = 0.

We assume that A(ξ, t) defines a bounded, piecewise continuous mapping from ξ ∈ R

to C1(R+).
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Applying Laplace transform L in t and writing Û(ξ, s) = LU(ξ, t), we obtain

(4.5) Ûξξ = sÛ − cÛξ −
(

Â(ξ, ·)
s
∗ Û(ξ, ·)

)

(s).

The convolution is performed along a vertical line ℜ(p) = σ in C where the following
integral converges:

(

Â(ξ, ·)
s
∗ Û(ξ, ·)

)

(s) =
1

2πi

∫ σ+i∞

σ−i∞

Â(ξ, p)Û(ξ, s− p) dp.

We have
(

Â(ξ, ·)
s
∗ Û(ξ, ·)

)

(s) = L(A(ξ, t)L−1Û(ξ, s)).

Converting (4.4) and (4.5) to the equivalent first-order systems, we obtain

Uξ = V, Vξ = Ut − cV − A(ξ, t)U, (U, V )(ξ, 0) = (0, 0);(4.6)

Ûξ = V̂ , V̂ξ = sÛ − cV̂ −
(

Â(ξ, ·)
s
∗ Û(ξ, ·)

)

(s).(4.7)

We shall regard (4.6) as a linear differential equation in ξ on the Banach space

H
(k+0.5)×k
0 (R+, γ), 0 ≤ k ≤ 0.25, which is a space of functions of t. Because of

Lemma 2.2, the choice k = 0.25 is most natural, but some of our arguments will
require this greater generality.
We wish to regard (4.7) as a linear differential equation in ξ on a space of functions

of s.
We recall that a function f(s) is in the Hardy-Lebesgue class H(γ), γ ∈ R, if

(1) f(s) is analytic in ℜ(s) > γ;
(2) supσ>γ(

∫∞

−∞
‖f(σ + iω)‖2 dω)1/2 < ∞.

H(γ) is a Banach space with norm defined by the left side of (2).
According to the Paley-Wiener Theorem [28], u(t) ∈ L2(R+, γ) if and only if its

Laplace transform û(s) ∈ H(γ), and the mapping u → û is a Banach space isomor-
phism.
For k, k1, k2 ≥ 0 and γ ∈ R, let

Hk(γ) = {u(s) : u(s) and (s− γ)ku(s) ∈ H(γ)},

‖u‖Hk(γ) = ‖u‖H(γ) + ‖(s− γ)ku‖H(γ),

Hk1×k2(γ) = Hk1(γ)×Hk2(γ).

An equivalent norm on Hk(γ) is

‖u‖Hk(γ) = sup
σ>γ

(
∫ ∞

−∞

‖u(σ + iω)‖2(1 + |σ + iω|2k) dω

)1/2

.

It can be shown that u(t) ∈ Hk
0 (R

+, γ) if and only if û(s) ∈ Hk(γ), and the mapping
u → û is a Banach space isomorphism. It follows that (u, v) ∈ Hk1×k2

0 (R+, γ), k1, k2 ≥
0, if and only if (û, v̂) ∈ Hk1×k2(γ), and the mapping (u, v) → (û, v̂) is a Banach space
isomorphism.
We shall regard (4.7) as a linear differential equation in ξ on the Banach space

H(k+0.5)×k(γ), 0 ≤ k ≤ 0.25.
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The following lemmas is a consequence of the fact that L is an isomorphism from

H
(k+0.5)×k
0 (R+, γ) to H(k+0.5)×k(γ).

Lemma 4.2. The following are equivalent.

(1) (4.7) has an exponential dichotomy on H(k+0.5)×k(γ) for ξ ∈ I, with projections
Ps(ξ) + Pu(ξ) = I and solution operator T (ξ, ζ).

(2) (4.6) has an exponential dichotomy on H
(k+0.5)×k
0 (R+, γ) for ξ ∈ I, with pro-

jections P̌s(ξ) + P̌u(ξ) = I and solution operator Ť (ξ, ζ).

Moreover, P̌j(ξ) = L−1Pj(ξ)L, j = s, u; Ť (ξ, ζ) = L−1T (ξ, ζ)L for ξ, ζ ∈ I; and the
constants K, ρ for the two dichotomies are equal.

An important question is whether the solution operator Ť (ξ, ζ) can be used to
define a solution to (4.4) that is in H2,1. For now we deal with this question by
making a definition.

Definition 4.2. (1) We say that (4.4) has property (S) on [a,∞) if (4.6) has an
exponential dichotomy on H0.75×0.25

0 (R+, γ) for ξ ∈ [a,∞), with projections P̌s(ξ) +
P̌u(ξ) = I and solution operator Ť (ξ, ζ), and there is a number C > 0 such that the
following is true. Let ξ0 ≥ a and let φ ∈ RP̌s(ξ0). For ξ > ξ0, define (U, V )(ξ, t) =
Ť (ξ, ξ0)φ. Then U ∈ H2,1

0 ((ξ0,∞)× R+, γ) and is a solution to (4.4). Moreover,

‖U‖H2,1((ξ0,∞)×R+,γ) ≤ C‖φ‖H0.75×0.25(R+,γ).

(2) Similarly, we say that (4.4) has property (S) on (−∞, a] if (4.6) has an exponen-
tial dichotomy onH0.75×0.25

0 (R+, γ) for ξ ∈ (−∞, a], with projections P̌s(ξ)+P̌u(ξ) = I
and solution operator Ť (ξ, ζ), and there is a number C > 0 such that the following
is true. Let ξ0 ≤ a and let φ ∈ RP̌u(ξ0). For ξ < ξ0, define (U, V )(ξ, t) = Ť (ξ, ξ0)φ.
Then U ∈ H2,1

0 ((−∞, ξ0)× R
+, γ) and is a solution to (4.4). Moreover,

‖U‖H2,1((−∞,ξ0)×R+,γ) ≤ C‖φ‖H0.75×0.25(R+,γ).

Lemma 4.3. (1) Assume that (4.4) has property (S) on [a,∞). Let x0 ≥ a and
c ≤ 0. Then there is a number C̃ > 0, which depends only on the constants K, α of
the dichotomy, such that

‖U |ℓ(x0,c)‖H0.75×0.25(R+,γ) ≤ C̃(1 + |c|)e−α(x0−a)‖φ‖H0.75×0.25(R+,γ).

(2) Assume that (4.4) has property (S) on (−∞, a]. Let x0 ≤ a and c ≥ 0. Then
there is a number C̃ > 0, which depends only on the constants K, α of the dichotomy,
such that

‖U |ℓ(x0,c)‖H0.75×0.25(R+,γ) ≤ C̃(1 + |c|)e−α(a−x0)‖φ‖H0.75×0.25(R+,γ).

Proof. We just prove (1). The mapping that takes φ ∈ H0.75×0.25
0 (R+, γ), thought of

as a space of functions on the line x = a, to U |ℓ(x0,c) ∈ H0.75×0.25
0 (R+, γ), thought of

as a space of functions on the line ℓ(x0, c), is a composition of three mappings:

φ → U |x=x0
from H0.75×0.25

0 (R+, γ) to H0.75×0.25
0 (R+, γ);

U |x=x0
→ U |(x0,∞)×R+ from H0.75×0.25

0 (R+, γ) to H2,1
0 ((x0,∞)× R

+, γ);

U |(x0,∞)×R+ → U |ℓ(x0,c) from H2,1
0 ((x0,∞)× R

+, γ) to H0.75×0.25
0 (R+, γ).
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The norm of the first map is at most Ke−α(b−a), the norm of the second is given by
Definition 4.2 (1), and the norm of the third is given by Lemma 2.2. �

4.3. A(ξ) independent of t. Following [10], we introduce the following families of
norms on Cn and Cn × Cn.

Definition 4.3. Let ‖u‖ denote the usual norm on Cn. For s ∈ C and k1 ≥ 0, let
Ek1(s) denote Cn with the norm

‖u‖Ek1(s) = (1 + |s|k1)‖u‖,

and let Ek1×k2(s) denote Cn × Cn with the norm

‖(u, v)‖Ek1×k2(s) = (1 + |s|k1)‖u‖+ (1 + |s|k2)‖v‖.

We can use these norms to define equivalent norms on Hk1(γ) and Hk1×k2(γ):

‖u‖Hk1(γ) = sup
σ>γ

(
∫ ∞

−∞

‖u(σ + iω)‖2Ek1(σ+iω) dω

)1/2

,(4.8)

‖(u, v)‖Hk1×k2(γ) = sup
σ>γ

(
∫ ∞

−∞

‖(u, v)(σ + iω)‖2Ek1×k2 (σ+iω) dω

)1/2

.(4.9)

If A(ξ, t) = A(ξ) is independent of time t, then (4.4), (4.6), and (4.7) simplify to

Ut = Uξξ + cUξ + A(ξ)U, (U, Uξ)(ξ, 0) = 0;(4.10)

Uξ = V, Vξ = Ut − cV − A(ξ)U, (U, V )(ξ, 0) = (0, 0);(4.11)

Ûξ = V̂ , V̂ξ = sÛ − cV̂ − A(ξ)Û .(4.12)

We can regard (4.12) either as an ordinary differential equation on a space of functions
of s, or as a family of ordinary differential equations in ξ ∈ I on Cn, with parameter
s in a set S ⊂ C, having solution operator T (ξ, ζ, s).

Definition 4.4. We say that (4.12) has an s-dependent exponential dichotomy for
s ∈ S and ξ ∈ I if for each s ∈ S, (4.12) has an exponential dichotomy on Cn × Cn

for ξ ∈ I, and in addition the projections Pj(ξ, s), j = s, u, are analytic in s for fixed
ξ. In the dichotomy, the constants K(s) and ρ(s) depend on s.
We say that (4.12) has a uniform exponential dichotomy on the spaces E(k+0.5)×k(s)

for s ∈ S and ξ ∈ I if it has an s-dependent exponential dichotomy, and there are
constants K,α > 0 such that, when norms in the spaces E(k+0.5)×k(s) are used,

(1) each K(s) ≤ K, and
(2) ρ(s) = α(1 + |s|0.5).

The following lemma is proved in [10] (Lemma 3.1).

Lemma 4.4. Let 0 ≤ k ≤ 0.25. Suppose (4.12) has a uniform exponential di-
chotomy on the spaces E(k+0.5)×k(s) for ℜ(s) ≥ γ and ξ ∈ I. Then (4.12) has an
exponential dichotomy on H(k+0.5)×k(γ) for ξ ∈ I with projections derived from those
in E(k+0.5)×k(s), multiplicative constant K, and exponent α. Moreover, (4.10) has
property (S) on both [a,∞) and (−∞, a].
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4.4. A(ξ, t) has small dependence on t. If A(ξ, t) = A(ξ) + B(ξ, t), then (4.4),
(4.6), and (4.7) become

Ut = Uξξ + cUξ + A(ξ)U +B(ξ, t)U, (U, Uξ)(ξ, 0) = 0;(4.13)

Uξ = V, Vξ = Ut − cV −A(ξ)U −B(ξ, t)U, (U, V )(ξ, 0) = (0, 0),(4.14)

Ûξ = V̂ , V̂ξ = sÛ − cV̂ −A(ξ)Û −
(

B̂(ξ, ·)
s
∗ Û(ξ, ·)

)

(s).(4.15)

Lemma 4.5. Let 0 ≤ k ≤ 0.25. Suppose the t-independent system (4.11) has an

exponential dichotomy on H
(k+0.5)×k
0 (R+, γ) for ℜ(s) ≥ γ and ξ ∈ I. Let K > 0 and

α > 0 be the constant and exponential for the dichotomy. Let K̃ > K and 0 < α̃ < α.
Then there is a constant δ > 0 such that the following is true. If B(ξ, t) defines a
bounded, piecewise continuous mapping from ξ ∈ R to C1(R+), with sup ‖B(ξ, t)‖ < δ
and sup ‖Bt(ξ, t)‖ < δ, then the system (4.14) also has an exponential dichotomy on

H
(k+0.5)×k
0 (R+, γ) for ξ ∈ I, with constant K̃ and exponent α̃.

Proof. It is straightforward to show that for every ξ, the mapping U(·) → B(ξ, ·)U(·)
satisfies

(4.16) ‖B(ξ, ·)U(·)‖L2(R+,γ) ≤ δ‖U‖L2(R+,γ), ‖B(ξ, ·)U(·)‖H1
0
(R+,γ) ≤ 2δ‖U‖H1

0
(R+,γ).

Expressed as the interpolation of two spaces, Hk
0 (R

+, γ) = [L2(R+, γ), H1
0(R

+, γ)]k.
Therefore we can use the interpolation inequality [15, 16] to show that

‖B(ξ, ·)‖Hk
0
(R+,γ) ≤ (‖B(ξ, ·)‖L2(R+,γ))

1−k · (‖B(ξ, ·)‖H1
0
(R+,γ))

k ≤ 2δ.

If δ is sufficiently small, all the conditions in Theorem 4.1 are satisfied. Hence the

perturbed system (4.14) has an exponential dichotomy on H
(k+0.5)×k
0 (R+, γ) for ξ ∈

I. �

Suppose that for both k = 0 and k = 0.25, the t-independent system (4.12) has
a uniform exponential dichotomy on the spaces E0.5×0(s) for ℜ(s) ≥ γ and ξ ∈ R.
We may assume that these dichotomies have the same constant K > 0 and exponent
α > 0. By Lemma 4.4 and 4.2, for both k = 0 and k = 0.25, the system (4.12) has an

exponential dichotomy on H
(k+0.5)×k
0 (R+, γ) for ξ ∈ R with constant K and exponent

α. Therefore the hypotheses of Lemma 4.5 are satisfied for k = 0 and k = 0.25 with
I = R. Let K̃ > K and 0 < α̃ < α, and let δ > 0 be a number given by Lemma 4.5
that works for both k = 0 and k = 0.25.

Lemma 4.6. In the above situation, assume sup ‖B(ξ, t)‖ < δ and sup ‖Bt(ξ, t)‖ < δ.
Let a ∈ R. Then (4.13) has property (S) on both [a,∞) and (−∞, a].

Proof. We shall only consider the interval [a,∞).
By Lemmas 4.5 and 4.2, the perturbed system (4.15) has an exponential dichotomy

on H0.75×0.25(γ) for ξ ∈ R with constant K̃ and exponent α̃. Let Ps(ξ) and Pu(ξ)
denote the projections for this dichotomy, . Let ξ0 ≥ a; let φ ∈ RP̌s(ξ0), so that

φ̂ ∈ RPs(ξ0); and let (Û , V̂ )(ξ) = T (ξ, ξ0)φ̂ for ξ ≥ ξ0. Then

(4.17) ‖(Û , V̂ )(ξ)‖H0.5×0(γ) ≤ ‖(Û , V̂ )(ξ)‖H0.75×0.25(γ) ≤ K̃e−α̃(ξ−ξ0)‖φ̂‖H0.75×0.25(γ).
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For ℜ(s) ≥ γ, let

g(ξ, s) =

{

(

B̂(ξ, ·)
s
∗ Û(ξ, ·)

)

(s), ξ ≥ ξ0,

0, ξ < ξ0.

Rewrite (4.15) as the first-order system

(4.18)

(

Û

V̂

)

ξ

=

(

0 I
sI − A(ξ) −c

)(

Û

V̂

)

+

(

0
g(ξ, s)

)

For fixed s, we can regard (4.18) as a diferential equation on E0.5×0(s), in which
case we regard (0, g(ξ, s)) as an element of E0.5×0(s). We denote the solution operator
for (4.12), with parameter s, by T (ξ, ζ, s), and we denote the projections for the
dichotomy on E0.5×0(s) by Ps(ξ, s) and Pu(ξ, s).
Alternatively, we can regard (4.18) as a differential equation on the function space

H0.5×0(γ). Using (4.16), (4.17), and the isomorphisms provided by Laplace transform,
for σ > γ we have

(4.19)
‖g(ξ, σ + i·)‖L2(R) ≤ ‖g(ξ, ·)‖H(γ) = ‖B(ξ, ·)U(ξ, ·)‖L2(R+,γ) ≤ δ‖U(ξ, ·)‖L2(R+,γ)

≤ ‖(U, V )(ξ, ·)‖H0.5×0(R+,γ) ≤ ‖(U, V )(ξ, ·)‖H0.75×0.25(R+,γ)

≤ δK̃e−α̃(ξ−ξ0)‖φ‖H0.75×0.25(R+,γ).

Now (4.12) has an exponential dichotomy on H0.5×0(γ) for ξ ∈ R, with projections
derived from those on E0.5×0(s). Since (4.19) implies that (0, g(ξ, ·)) is bounded in
H0.5×0(γ), if we regard g as given in (4.18), then the unique solution of (4.18) that is
bounded in H0.5×0(γ) for ξ ≥ ξ0 is given by

(4.20) (Û , V̂ )(ξ, s) = T (ξ, ξ0, s)Ps(ξ0, s)φ̂(s) +

∫ ξ

ξ0

T (ξ, ζ, s)Ps(ζ, s)(0, g(ζ, s)) dζ

+

∫ ξ

∞

T (ξ, ζ, s)Pu(ζ, s)(0, g(ζ, s)) dζ.

Therefore the previously defined function (Û , V̂ ) is given by this formula. Then

(U, V ) = L−1(Û , V̂ ) can be expressed as (U (1), V (1))+(U (2), V (2))+(U (3), V (3)), where
(U (j), V (j)) is the inverse Laplace transforms of the jth summand of (4.20).
By Lemma 4.4, U (1) ∈ H2,1

0 ((ξ0,∞)×R+, γ) and has norm bounded by a constant
times ‖φ‖H0.5×0

0
(R+,γ), which is in turn bounded by a constant times ‖φ‖H0.75×0.25

0
(R+,γ).

To show that U (j) ∈ H2,1
0 ((ξ0,∞) × R+, γ), j = 2, 3, we shall show that e−γtU (j),

e−γtU
(j)
t , e−γtU

(j)
ξ , and e−γtU

(j)
ξξ are in L2((ξ0,∞)× R+, γ).

We shall treat only U (2). Motivated by the proof of Lemma 3.8 in [10], we use the
uniform exponential dichotomy of (4.12) on the spaces E0.5×0(s) for ξ ∈ R to estimate

(4.21) ‖T (ξ, ζ, s)Ps(ζ, s)(0, g(ζ, s))‖E0.5×0(s) ≤ Ke−α(1+|s|0.5)(ξ−ζ)‖(0, g(ζ, s))‖E0.5×0(s)

= Ke−α(1+|s|0.5)(ξ−ζ)‖g(ζ, s)‖, ξ ≥ ζ,
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where ‖ · ‖ is the usal norm on Cn. Let

h(ξ) =

{

e−α(1+|s|0.5)ξ, ξ ≥ 0,

0, ξ < 0.

Then from (4.21),

‖Û (2)(ξ, s)‖ ≤ (1 + |s|0.5)−1‖(Û (2), V̂ (2))(ξ, s)‖E0.5×0(s)

≤ (1 + |s|0.5)−1

∫ ξ

ξ0

Ke−α(1+|s|0.5)(ξ−ζ)‖g(ζ, s)‖ dζ = K(1 + |s|0.5)−1(h ∗ ‖g(·, s)‖)(ξ).

From Young’s inequality for convolutions,

(4.22)

‖Û (2)(·, s)‖L2 ≤ K(1 + |s|0.5)−1‖h‖L1‖g(·, s)‖L2 ≤ K(1 + |s|0.5)−2α−1‖g(·, s)‖L2

≤ K(1 + |s|)−1α−1‖g(·, s)‖L2.

Next we fix σ > γ and show that Û (2) and, sÛ (2), as functions of (ξ, s) with s = σ+iω,
ω ∈ R, are in L2((ξ0,∞)× R). Using (4.22) and (4.19), we have

∫ ∞

−∞

∫ ∞

ξ0

(1 + |σ + iω|)2‖Û (2)(ξ, σ + iω)‖2 dξdω ≤ K2α−2

∫ ∞

−∞

‖g(·, σ + iω)‖2L2 dω

= K2α−2

∫ ∞

ξ0

∫ ∞

−∞

‖g(ξ, σ + iω)‖2 dωdξ ≤ K2α−2

∫ ∞

ξ0

‖g(ξ, ·)‖2H(γ) dω

≤ K2α−2δ2K̃2

∫ ∞

ξ0

e−2α̃(ξ−ξ0)‖φ‖2H0.75×0.25(R+,γ) dω.

Therefore

(1+|σ+iω|)‖Û (2)(·, σ+i·)‖L2((ξ0,∞)×R) ≤ C2‖φ‖H0.75×0.25(R+,γ), C2 = Kα−1δK̃(2α̃)−0.5.

Taking the inverse Laplace transform, we have

‖e−σtU (2)‖L2((ξ0,∞)×R) + ‖e−σtU
(2)
t ‖L2((ξ0,∞)×R) ≤ C2‖φ‖H0.75×0.25(R+,γ).

Letting σ → γ, we obtain the same estimate with σ replaced by γ.
A similar argument yields

‖e−γtU
(2)
ξ ‖L2((ξ0,∞)×R) = ‖e−γtV (2)‖L2((ξ0,∞)×R) ≤ C2‖φ‖H0.75×0.25(R+,γ).

Finally, a similar estimate for ‖e−γtU
(2)
ξξ ‖L2((ξ0,∞)×R) = ‖e−γtV

(2)
ξ ‖L2((ξ0,∞)×R) follows

from the estimates for U (2), U
(2)
t , and V (2) by noting that (U (2), V (2)) is a solution of

(4.14), and using the second differential equation to estimate ‖e−γtV
(2)
ξ ‖L2((ξ0,∞)×R).

The proof is completed by noting that all constants are independent of ξ0. �
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4.5. Exponential dichotomies for the Laplace transform of (1.3). In this sub-
section we consider the Laplace transform of the linear differential equation (1.3),
which we write as a system:

(4.23) Ûξ = V̂ , V̂ξ = (sI −Df(qj(ξ)))Û − cjV̂ , ξ ∈ R.

For each fixed s we regard (4.23) as defining a differential equation on Cn × Cn.
Hypothesis (A2) implies that (4.23) has an s-dependent exponential dichotomy for
ℜ(s) ≥ η, s 6= 0.

Lemma 4.7. Assume (A2). Fix γ, η ≤ γ < 0, let ǫ > 0, and let Sǫ = {s : ℜ(s) ≥
γ and |s| ≥ ǫ}. Then (4.23) has a uniform exponential dichotomy on the spaces
E0.75×0.25(s) for s ∈ Sǫ and ξ ∈ R. The multiplicative constant K(ǫ) depends on ǫ
and approaches infinity as ǫ → 0, but for some α > 0, the exponent is α(1 + |s|0.5)
independent of ǫ.
Moreover, let Ps(ej−1, s) and Pu(ej , s) be the spectral projections at the two limiting

points (ej−1, 0) and (ej, 0). Then there are constants M > 0, N > 0, δ1 > 0, and
δ2 > 0 such that for s ∈ Sǫ, 0 < ǫ < M ,

(4.24)

‖Ps(ξ, s)− Ps(ej−1, s)‖ ≤
16K2(ǫ)δk
α(1 + |s|0.5)

, ξ ≤ −N,

‖Pu(ξ, s)− Pu(ej, s)‖ ≤
16K2(ǫ)δk
α(1 + |s|0.5)

, ξ ≥ N,

where k = 1 for |s| ≥ M , and k = 2 for ǫ ≤ |s| < M .

Proof. The proof is adapted from that of [10], see also [13].
Step 1: exponential dichotomy for |s| ≥ M . Let M > 0. For s ∈ SM , we treat

(4.23) as a perturbation to the system

(4.25) Ûξ = V̂ , V̂ξ = sÛ − cjV̂ .

From [10], (4.25) has a uniform exponential dichotomy on the spaces E0.75×0.25(s) for
ℜ(s) ≥ γ and ξ ∈ R, with multiplicative constant K0 and exponent ρ0 = α0(1+|s|0.5).
Let s ∈ SM . Let δ1 = supξ |Df(qj(ξ))|. Although δ1 is not small, the conditions

C1δ1 < 1 and C2δ1 < 1 in Theorem 4.1 can be satisfied if we choose ρ̃ = α0

2
(1+ |s|0.5).

Then ρ0 − ρ̃ = α0

2
(1 + |s|0.5) is large for s ∈ SM with M is sufficiently large. Hence

for s ∈ SM with M sufficiently large, (4.3) in Theorem 4.1 is satisfied, so (4.23) has

an s-dependent exponential dichotomy for ξ ∈ R. The multiplicative constant K̃ is
independent of s, and the exponent is ρ̃ = α0

2
(1+|s|0.5). The projections satisfy (4.24)

with k = 1. Thus we in fact have a uniform exponential dichotomy on the spaces
E0.75×0.25(s) for s ∈ SM and ξ ∈ R.
Step 2: exponential dichotomy for 0 < |s| ≤ M . Using M found in step

1, we consider the spectral equation (4.23) with s in the compact set {s : ℜ(s) ≥
γ and |s| ≤ M}.
Consider the constant-coefficient systems

(4.26) Ûξ = V̂ , V̂ξ = (sI −Df(ek))Û − cjV̂ , k = j − 1, j.
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in which s is a parameter. Hypothesis (A2) implies that these systems have n eigen-
values with positive real part and n eigenvalues with negative real part. For s in
the compact set {s : ℜ(s) ≥ γ and |s| ≤ M}, the systems (4.26) have exponential
dichotomies for ξ ∈ R with the common exponent ρ1 > 0 and the common multi-
plicative constant K > 0.
Let N > 0, and let

(4.27) δ2 = max(sup{‖Df(qj(ξ))−Df(ej−1)‖ : ξ ≤ −N},

sup{‖Df(qj(ξ))−Df(ej)‖ : ξ ≥ N}).

As N → ∞, δ2 → 0, so for N sufficiently large, (4.3) in Theorem 4.1 is satisfied.
Therefore, for ℜ(s) ≥ γ and |s| ≤ M , (4.23) has exponential dichotomies in ξ ≤ −N
and in N ≤ ξ. The dichotomies are not unique, but the unstable subspace Eu(ξ, s),
ξ ≤ −N , and the stable subspace Es(ξ, s), ξ ≥ N , are unique and depend analytically
on s. We shall use them to construct an exponential dichotomy on R.
We extend Eu(ξ, s), ξ ≤ −N , and Es(ξ, s), ξ ≥ N , to ξ ∈ R by defining

Eu(ξ, s) = T (ξ,−N, s)Eu(−N, s) for −N ≤ ξ ≤ ∞,

Es(ξ, s) = T (ξ, N, s)Es(N, s) for −∞ ≤ ξ ≤ N.

From (A2), if ℜ(s) ≥ γ and 0 < |s| ≤ M , T (N,−N, s)Eu(−N, s) is transverse to
Es(N, s). The dichotomy has been extended to ξ ∈ R for ℜ(s) ≥ γ and 0 < |s| ≤ M .
The exponent of the dichotomy can be taken to be α1(1+ |s|0.5) with α1 independent
of s.
For 0 < ǫ < M , in the compact set {s : ℜ(s) ≥ γ and ǫ ≤ |s| ≤ M}, the

angle between Eu(±N−, s) and Es(±N+, s) is bounded below by a constant that
approaches 0 as ǫ → 0. Thus, the multiplicative constant K1(ǫ) for the dichotomy on
{s : ℜ(s) ≥ γ and ǫ ≤ |s| ≤ M} approaches infinity as ǫ → 0.
Step 3: completion of proof. We combine the two cases and select α =

min{α0

2
, α1}. Then (4.23) has a uniform exponential dichotomy on the spaces E0.75×0.25(s)

for s ∈ Sǫ and ξ ∈ R. The exponent is α(1 + |s|0.5). The multiplicative constant is
K(ǫ) = max(K̃,K1(ǫ)).
The fact that the exponential dichotomy is analytic in s follows from a simple

perturbation argument. Assume that for a given s0 ∈ C, the system (4.23) has an
exponential dichotomy on R. Then the contraction mapping principle can be used to
find the stable and unstable subspaces of (4.23) for |s− s0| < ǫ. Since the equation
depends analytically on s, so do the stable and unstable subspaces. �

5. Proof of the Tail Lemma 3.3

The proof of the Tail Lemma uses the material in Subsection 4.4.
Fix j. We use coordinates (ξ, t), ξ = x− xj − c̄jt. Notice that

ξj = x− yj − cjt = ξ + xj − yj + (c̄j − cj)t = ξ + xj − yj +
1

2
(cj+1 − cj)t,
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ξj+1 = x− yj+1 − cj+1t = ξ + xj+1 − yj+1 + (c̄j+1 − cj+1)t

= ξ + xj+1 − yj+1 −
1

2
(cj+1 − cj)t.

The line Γj becomes ξ = 0. The lines M+
j and M−

j+1 become

M̃+
j = {(ξ, t) : ξ = yj − xj +N −

1

2
(cj+1 − cj)t, t ≥ 0},

M̃−
j+1 = {(ξ, t) : ξ = yj+1 − xj −N +

1

2
(cj+1 − cj)t, t ≥ 0}.

Between M̃+
j and ξ = 0, (3.10) becomes

Ut = Uξξ + c̄jUξ + A(ξ, t)U, A(ξ, t) = Df(qj(ξ + xj − yj +
1

2
(cj+1 − cj)t).

Between ξ = 0 and M̃−
j+1 and , (3.11) becomes

Ut = Uξξ + c̄j+1Uξ + A(ξ, t)U, A(ξ, t) = Df(qj+1(ξ + xj+1 − yj+1 −
1

2
(cj+1 − cj)t).

Let K and µ be the constants from (A1′). We claim that for (ξ, t) between M̃+
j

and ξ = 0, and between ξ = 0 and M̃−
j+1, ‖A(ξ, t)−Df(ej)‖ ≤ Ke−µN and At(ξ, t) ≤

Ke−µN .
To see this, first note that for yj − xj +N ≤ ξ < 0 and t ≥ 0,

‖A(ξ, t)−Df(ej)‖ ≤ Ke−µ(ξ+xj−yj+
1

2
(cj+1−cj)t) ≤ Ke−µ(ξ+xj−yj) ≤ Ke−µN .

Then note that for ξ < yj−xj+N and (ξ, t) above M̃+
j , ξ+xj−yj+

1
2
(cj+1−cj)t ≥ N ,

so

‖A(ξ, t)−Df(ej)‖ ≤ Ke−µ(ξ+xj−yj+
1

2
(cj+1−cj)t) ≤ Ke−µN .

Similarly, At(ξ, t) ≤ Ke−µN . Analogous arguments apply to the right of ξ = 0.
Using smooth cut-off function, we can extend A(ξ, t) to all of (R \ {0}) × R+, so

that for all (ξ, t), ‖A(ξ, t)−Df(ej)‖ ≤ Ke−µN and At(ξ, t) ≤ Ke−µN . (K may have
to be increased slightly independent of N .)
It is shown in [10] that the system

Ûξ = V̂ , V̂ξ = sÛ − c̄jV̂ −Df(ej)Û

has a uniform exponential dichotomy on the spaces E(k+0.5)×k(s), 0 ≤ k ≤ 0.25, for
ℜ(s) ≥ γ and ξ ∈ R. By Lemmas 4.4, 4.2, and 4.5, for N sufficiently large, the linear
system

Uξ = V, Vξ = Ut − c̄jV −A(ξ, t)U

has an exponential dichotomy on H
(k+0.5)×k
0 (γ) for ξ ∈ R, with, for each k, constants

K̃ and α̃ that are independent of yj, yj+1. The estimate (3.13) follows from Lemma
4.3. The remainder of the Tail Lemma follows from Lemma 4.6.
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6. Proof of the Interior Lemma 3.4

The proof of the Interior Lemma uses the material in Subsection 4.5.
After Laplace transform, the system (3.14)–(3.15) becomes

(6.1) 0 = Ûξξ + cjÛξ − sÛ +Df(qj(ξ))Û , [(Û , Ûξ)](Ma) = φ̂(s).

Writing (6.1) as a first-order system, we obtain

(6.2) Ûξ = V̂ , V̂ξ = (sI −Df(qj(ξ)))Û − cjV̂ , [(Û , V̂ )](Ma) = φ̂(s).

Since the jump φ(t) is in H0.75×0.25
0 (γ), φ̂(s) is in H0.75×0.25(γ). We look for solutions

of (6.2) that decay to zero as ξ moves away from Ma.
Equivalently, we can rewrite U(ξ, t) in (3.14) as U(ξ, t) = Y (ξ, t) + β(t)q′(ξ) with

PjY (·, t) = 0 for each t. The system (3.14)–(3.15) becomes

Yt = Yξξ+cjYξ+Df(qj(ξ))Y−β̇(t)q′j(ξ), Y (ξ, 0) = 0, β(0) = 0, [(Y, Yξ)](Ma) = φ̂(s).

Write h(t) = β̇(t). Then taking the Laplace transform, we obtain

(6.3) Ŷξξ + cjŶξ +Df(qj(ξ))Ŷ − sŶ = ĥ(s)q′(ξ), [(Ŷ , Ŷξ)](a) = φ̂(s),

with Pj Ŷ (·, s) = 0 for each t. Written as a first order system, (6.3) becomes

(6.4) (Ŷ , Ẑ)ξ = (Ẑ, (sI −Df(qj(ξ)))Ŷ − cjẐ) + (0, ĥ(s)q′j(ξ)), [(Ŷ , Ẑ)](a) = φ̂(s).

Step 1: |s| ≥ ǫ. Let ǫ > 0. We shall show that for ℜ(s) ≥ η and |s| ≥ ǫ,

system (6.2) has a unique solution (Û , V̂ )(ξ, s) that decays exponentially as ξ → ±∞.
Moreover, the solution depends analytically on s, and there are constants C1(ǫ) > 0
and α1(ǫ) > 0 such that for ℜ(s) ≥ η, |s| ≥ ǫ, and ρ1(ǫ) = α1(ǫ)(1 + |s|0.5), the
solution satisfies

(6.5) ‖(Û , V̂ )(ξ, s)‖E0.72×0.25(s) ≤ C1(ǫ)e
−ρ1(ǫ)|ξ−a|‖φ̂(s)‖E0.75×0.25(s).

To prove this result, we note that by Lemma 4.7, for ℜ(s) ≥ η and |s| ≥ ǫ,
the system (4.23) has a uniform exponential dichotomy on the spaces E0.75×0.25(s)
for ξ ∈ R. Let T (ξ, ζ, s) denote the solution operator, and let the projections be
Ps(ξ, s) + Pu(ξ, s) = I. The unique solution of (6.1) that decays as ξ → ±∞ is then

(6.6)
(Û , V̂ )(ξ, s) = −T (ξ, a, s)Pu(a, s)φ̂(s), ξ ≤ a,

(Û , V̂ )(ξ, s) = T (ξ, a, s)Ps(a, s)φ̂(s), ξ ≥ a.

Estimate (6.5) follows from the definition of uniform exponential dichotomy.
Step 2: |s| ≤ ǫ. We shall show that there exists ǫ > 0 such that for |s| ≤ ǫ,

(6.4) has a unique solution ((Ŷ , Ẑ)(ξ, s), h(s)) such that Pj Ŷ (·, s) = 0 for each s

and (Ŷ , Ẑ)(ξ, s) decays exponentially as ξ → ±∞. Moreover, the solution depends
analytically on s, and there are constants C2 > 0 and α2 > 0 such that for |s| ≤ ǫ
and ρ2 = α2(1 + |s|0.5), the solution satisfies

‖(Ŷ , Ẑ)(ξ, s)‖E0.72×0.25(s) ≤ C2e
−ρ2|ξ−a|‖φ̂(s)‖E0.72×0.25(s).(6.7)

To prove this result, we note that for each small s, there exist two exponential
dichotomies for (4.23) one for ξ ≤ a, the other for ξ ≥ a. We denote the projections
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by P−
s (ξ, s)+P−

u (ξ, s) = I for ξ ≤ a and P+
s (ξ, s)+P+

u (ξ, s) = I for ξ ≥ a. The spaces
E−

u (ξ, s) = RP−
u (ξ, s) and E+

s (ξ, s) = RP+
s (ξ, s) are uniquely defined and depend

analytically on s. Complementary invariant spaces, and hence the projections, can
be chosen to depend analytically on s. Assumption (A2) implies that RP−

u (ξ, s) ∩
RP+

s (ξ, s) = {0} for s 6= 0, and RP−
u (ξ, 0) ∩RP+

s (ξ, 0) is spanned by (γ′(ξ), γ′′(ξ)).
Bounded solutions of (6.4) can be expressed as follows:

(6.8)

for ξ ≤ a, (Ŷ , Ẑ)(ξ, s) = T (ξ, a, s)P−
u (a, s)(Ŷ , Ẑ)(a−, s)

+

∫ ξ

−∞

T (ξ, ζ, s)P−
s (ζ, s)(0, ĥ(s)q

′
j(ζ))dζ +

∫ ξ

a

T (ξ, ζ, s)P−
u (ζ, s)(0, ĥ(s)q

′
j(ζ))dζ ;

for ξ ≥ a, (Ŷ , Ẑ)(ξ, s) = T (ξ, a, s)P+
s (a, s)(Ŷ , Ẑ)(a+, s)

+

∫ ξ

a

T (ξ, ζ, s)P+
s (ζ, s)(0, ĥ(s)q

′
j(ζ))dζ +

∫ ξ

∞

T (ξ, ζ, s)P+
u (ζ, s)(0, ĥ(s)q

′
j(ζ))dζ.

Let

µ−
u (a, s) = P−

u (a, s)(Ŷ , Ẑ)(a−, s), µ+
s (a, s) = P+

s (a, s)(Ŷ , Ẑ)(a+, s),

v(s) =

∫ a

−∞

T (a, ζ, s)P−
s (ζ, s)(0, q

′
j(ζ))dζ +

∫ ∞

a

T (a, ζ, s)P+
u (ζ, s)(0, q′j(ζ))dζ.

From (6.8), the jump condition at ξ = a is satisfied provided

(6.9) µ+
s (a, s)− µ−

u (a, s)− h(s)v(s) = φ̂(s).

We have Pj Ŷ = 0 provided

(6.10)

∫ ∞

−∞

< zj(ξ), Ŷj(ξ, s) > dξ = 0 for each s.

For each s we regard the left-hand side of (6.9) as a linear map

L1(s) : E
−
u (a, s)× E+

s (a, s)× R → R
2n, (µ−

u , µ
+
s , h) → µ+

s − µ−
u − hv(s).

Moreover, since Ŷj(ξ, s) depends linearly on (µ−
u (a, s), µ

+
s (a, s), h(s)) through (6.8),

for each s we can regard the left-hand side of (6.10) as a linear map

L2(s) : E
−
u (a, s)× E+

s (a, s)× R → R, (µ−
u , µ

+
s , h) →

∫ ∞

−∞

< zj(ξ), Ŷj(ξ, s) > dξ.

Define L(s) : E−
u (a, s) × E+

s (a, s) × R → R
2n × R by L(s) = (L1(s), L2(s)). L(s)

depends analytically on s. Since dim E−
u (a, s) + dim E+

s (a, s) = 2n, L(s) is a linear
map from a space of dimension 2n+1 to a space of the same dimension. The formula
(6.8) gives a solution to (6.3) if and only if (µ−

u (a, s), µ
+
s (a, s), h(s)) is a solution of

(6.11) L(s)(µ−
u , µ

+
s , h) = (φ̂(s), 0).

We shall show that L(0) is invertible. It follows that L(s) is invertible for small s,
so for all small s there is a unique solution (µ−

u (a, s), µ
+
s (a, s), h(s)) of (6.11) that

depends analytically on s. The estimates in the Lemma follow from the formulas
(6.8) and the compactness of the set |s| ≤ ǫ.
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To prove that L(0) is invertible, we will show that its kernel is trivial. Let
(µ−

u , µ
+
s , h) belong to kerL(0). The adjoint equation of (4.23) has a bounded solution

Ψ = (cjzj − zjξ, zj). Ψ(a) is orthogonal to the codimension-one space E−
u (a, s) +

E+(a, s). In addition, we claim that < Ψ(a), v(0) >= 1:

< Ψ(a), v(0) >= Ψ(a)⊤v(0)

= Ψ(a)⊤
∫ a

−∞

T (a, ζ, 0)P−
s (ζ, 0)(0, q′j(ζ))dζ+Ψ(a)⊤

∫ ∞

a

T (a, ζ, 0)P+
u (ζ, 0)(0, q

′
j(ζ))dζ

=

∫ a

−∞

Ψ(ζ)⊤(0, q′j(ζ))dζ +

∫ ∞

a

Ψ(ζ)⊤(0, q′j(ζ))dζ

=

∫ a

−∞

zj(ζ)
⊤q′j(ζ)dζ +

∫ ∞

a

zj(ζ)
⊤q′j(ζ)dζ =

∫ ∞

−∞

< zj(ζ), q
′
j(ζ) > dζ = 1.

Hence we can multiply the equation L1(0)(µ
−
u , µ

+
s , h) = µ+

s − µ−
u − hv(0) = 0 by

Ψ(a)⊤ and obtain h = 0. Therefore µ+
s − µ−

u = 0. Since E−
u (a, 0) ∩ E+

s (a, 0) is
spanned by (q′j(a), q

′′
j (a)), there is a number k such that µ+

s = µ−
u = k(q′j(a), q

′′
j (a)).

With these values of (µ−
u , µ

+
s , h), the function (Ŷ (ξ, 0), Ẑ(ξ, 0) produced by (6.8) is

simply k(q′j(ξ), q
′′
j (ξ)). Then the equation L2(0)(µ

−
u , µ

+
s , h) = 0 reduces to

∫ ∞

−∞

< zj , kq
′
j >= k = 0.

We conclude that (µ−
u , µ

+
s , h) = (0, 0, 0). Thus L(0) has trivial kernel, so it is invert-

ible.
Step 3: combining solutions from Steps 1 and 2. Using ǫ > 0 given by Step

2, we consider (Û , V̂ )(ξ, s) defined by (6.1) for ℜs ≥ γ and |s| ≥ ǫ. For ℜs ≥ γ and
|s| ≥ ǫ, define

h(s) =

∫ ∞

−∞

< zj(ξ), Û(ξ, s) > ds,

Ŷ (ξ, s) = (I − Pj)Û(ξ, s) = Û(ξ, s)− h(s)q′j(ξ),

Ẑ(ξ, s) = V̂ (ξ, s)− h(s)q′′j (ξ).

For ℜs ≥ γ and |s| ≥ ǫ, ((Ŷ , Ẑ)(ξ, s), h(s)) is the unique solution of (6.4) such that

PjŶ = 0 and (Ŷ , Ẑ)(ξ, s) decays exponentially as ξ → ±∞. (Ŷ , Ẑ)(ξ, s) satisfies
(6.7) with C2 replaced by C1(ǫ) and ρ2 replaced by ρ1(ǫ).

We have now defined ((Ŷ , Ẑ)(ξ, s), h(s)) for all s with ℜs ≥ γ. These functions
have been defined twice for |s| = ǫ, but from their uniqueness, the two solutions agree.

Thus ((Ŷ , Ẑ)(ξ, s), h(s)) is analytic in ℜs ≥ γ.

Step 4: β̇(t). We shall show that β̇ ∈ L2(R+, γ) and that ‖β̇‖L2(R+,γ) is at most a
constant times ‖φ‖H0.75(R+,γ).
From Steps 1 and 3, for ℜs ≥ γ and |s| ≥ ǫ,

|h(s)| ≤ ‖z‖L2(R)‖Û(·, s)‖L2(R) ≤ ‖z‖L2(R)C1(ǫ)‖φ̂(s)‖E0.75×0.25(s)
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It follows easily that there is a constant C > 0 such that for ℜs ≥ γ,

|h(s)| ≤ C‖z‖L2(R)‖φ̂(s)‖E0.75×0.25(s).

Therefore

‖β̇‖L2(R+,γ) = ‖h‖H(γ) = sup
σ>γ

(
∫ ∞

−∞

|h(σ + iω)|2 dω

)
1

2

≤ C‖z‖L2(R) sup
σ>γ

(
∫ ∞

−∞

|φ̂(σ + iω)|2E0.75×0.25(σ+iω)dω

)
1

2

= C‖z‖L2(R)‖φ̂‖H0.75(γ) = C‖z‖L2(R)‖φ‖H0.75(R+,γ).

Step 5: (Y, Z)(ξ, t). Let C = max(C1(ǫ), C2), α = min(α1(ǫ), α2), and ρ =
α(1 + |s|0.5); then from Step 3, for ℜs ≥ γ,

‖(Ŷ , Ẑ)(ξ, s)‖E0.72×0.25(s) ≤ Ce−ρ|ξ−a|‖φ̂(s)‖E0.72×0.25(s).(6.12)

Thus on −∞ < ξ ≤ a (resp. on a ≤ ξ < ∞), (Ŷ , Ẑ)(ξ, s) satisfies the unstable
subspace part (resp. the stable subspace part) of the estimate required for a uniform
exponential dichotomy on the spaces E0.72×0.25(s) for ℜs ≥ γ. Then as in Lemma 4.4,
it follows that Y ∈ H2,1

0 (R× R+ \Ma, γ), and there is a constant Č such that

‖Y ‖H2,1
0

(R×R+\Ma,γ)
≤ Č‖φ‖H0.75×0.25(R+,γ)

Finally, estimate (3.16) in the Interior Lemma follows from Lemma 4.3.
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