Concatenated Traveling Waves

Xiao-Biao Lin and Steve Schecter North Carolina State University

Thanks to NSF for support.

Outline

I. Traveling waves for reaction-diffusion equations
II. Concatenated traveling waves

References

X.-B. Lin and S., Stability of concatenated traveling waves, J. Dynam. Differential Equations, to appear.
X.-B. Lin and S., Stability of concatenated traveling waves: Alternate approaches, J. Differential Eqs. 259 (2015), 3144-3177.

I. Traveling waves for reaction-diffusion equations

Reaction-diffusion equation:

$$
u_{t}=u_{x x}+f(u), \quad x \in \mathbb{R}, \quad u \in \mathbb{R}^{n}, \quad f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

Traveling wave:

$$
q(\xi), \quad \xi=x-c t, \quad q(\pm \infty)=e_{ \pm}, \quad q(\xi) \rightarrow e_{ \pm} \text {exponentially as } \xi \rightarrow \pm \infty
$$

Change of variables: $x \rightarrow \xi=x-c t$:

$$
u_{t}=u_{\xi \xi}+c u_{\xi}+f(u)
$$

The traveling wave $q(\xi)$ is a stationary solution: it satisfies

$$
0=u_{\xi \xi}+c u_{\xi}+f(u)
$$

To study stability, linearize at the stationary solution $q(\xi)$:

$$
U_{t}=L U=U_{\xi \xi}+c U_{\xi}+D f(q(\xi)) U
$$

Regard L as a linear operator on $L^{2}(\mathbb{R})$ (for example).
Spectrum: $\lambda \in \sigma(L)$ if $L-\lambda I$ does not have a bounded inverse.
The traveling wave is spectrally stability if for some $v<0$,

$$
\sigma(L) \subset\{\lambda: \operatorname{Re} \lambda<v\}
$$

except for a simple eigenvalue at 0 .
(The eigenfunction is q^{\prime}. Reflects the fact that traveling waves can be shifted.)
Consequences of spectral stability:
(1) Linearized stability: Every solution of $U_{t}=L U$ decays exponentially to a multiple of q^{\prime}.
(2) Nonlinear stability: Every solution of $u_{t}=u_{\xi \xi}+c u_{\xi}+f(u)$ that starts near q decays exponentially to a shift of q.

Checking spectral stability

$$
U_{t}=L U=U_{\xi \xi}+c U_{\xi}+D f(q(\xi)) U, \quad q(\xi) \rightarrow q_{ \pm} \text {as } \xi \rightarrow \pm \infty .
$$

1. Find the essential spectrum of L by finding the dispersion relation for the constant coefficient equations

$$
\left.U_{t}=L_{ \pm} U=U_{\xi \xi}+c U_{\xi}+D f\left(q_{ \pm}\right)\right) U
$$

Get collection of curves $\lambda=\lambda_{i}(\mu) . L-\lambda I$ is not Fredholm iff λ belongs to one of these curves.

Rightmost boundary $=$ Fredholm border of L.

2. To the right of the Fredholm border of L, write $(L-\lambda I) U=0$ as a first-order system:

$$
\binom{U}{V}_{\xi}=\left(\begin{array}{cc}
0 & I \\
\lambda I-D f(q(\xi)) & -c I
\end{array}\right)\binom{U}{V} \quad \text { or } \quad X_{\xi}=A(\xi, \lambda) X
$$

$A(-\infty, \lambda)$ and $A(\infty, \lambda)$ are hyperbolic matrices of the same type.
$X_{\xi}=A(\xi) X$ has an exponential dichotomy on an interval if there exist two complementary spaces of solutions

- one consists of solutions that decrease exponentially at the right;
- the other consists of solutions that decrease exponentially at the left.

Important fact: exponential dichotomies persist under perturbation.

For λ to the right of the Fredholm border, $X_{\xi}=A(\xi, \lambda) X$ has

- exponential dichotomy on $(-\infty, 0]$, with projections $P_{s}^{-}(\xi)+P_{u}^{-}(\xi)=I$;
- exponential dichotomy on $[0, \infty)$, with projections $P_{s}^{+}(\xi)+P_{u}^{+}(\xi)=I$.

Two cases:

(a) $R P_{u}^{-}(0, \lambda)$ and $R P_{s}^{+}(0, \lambda)=\{0\}$ are complementary: exponential dichotomy on $\mathbb{R}, \lambda \notin \sigma(L)$.

One can use the dichotomy and variation of constants to invert the operator:

$$
\begin{aligned}
(L-\lambda I) U & =h \quad \Leftrightarrow \quad X_{\xi}=A(\lambda, u) X_{\xi}+(0, h) \quad \Leftrightarrow \\
X(\xi) & =\int_{-\infty}^{\xi} T(\xi, \eta, \lambda) P_{s}^{+}(\eta)(0, h(\eta)) d \eta+\int_{\infty}^{\xi} T(\xi, \eta, \lambda) P_{u}^{-}(\eta)(0, h(\eta)) d \eta .
\end{aligned}
$$

(b) $R P_{u}^{-}(0, \lambda)$ and $R P_{s}^{+}(0, \lambda)$ intersect: no exponential dichotomy on \mathbb{R}, λ is an eigenvalue of L.

Case (b) occurs for $\lambda=0$.

II. Concatenated traveling waves

Approximate picture:

Concatenated wave structure with two waves:
(1) $q_{1}\left(x-c_{1} t\right)$ connects e_{0} to e_{1},
(2) $q_{2}\left(x-c_{2} t\right)$ connects e_{1} to e_{2},
(3) $c_{1}<c_{2}$.

Assume each traveling wave is spectrally stable.
Are there solutions that look like the picture? Are they stable?

Answers: yes and yes.

Doug Wright, Separating dissipative pulses: the exit manifold, J. Dynam. Differential Equations 21 (2009), 315-328.

Sabrina Selle, Decomposition and stability of multifronts and multipulses, thesis, University of Bielefeld, 2009.

Idea:

- Look for solutions near the sum

$$
u=q_{1}\left(x-y_{1}-c_{1} t\right)+q_{2}\left(x-y_{2}-c_{2} t\right)-e_{1}, \quad y_{1} \ll y_{2} .
$$

We looked for an alternate approach that would not "smear" the the effect of each wave on the other.

We hoped a different approach would be easier to use with less restrictive assumptions.

Our approach is based on concatenated waves and spatial dynamics (Laplace transform and exponential dichotomies).

Previous uses of Laplace transform and exponential dichotomies to study stability of traveling waves:

Xiao-Biao Lin, Local and global existence of multiple waves near formal approximations, Nonlinear dynamical systems and chaos (Groningen, 1995), 385-404, Progr. Nonlinear Differential Equations Appl. 19, Birkhauser, Basel, 1996.

Jens Rottmann-Matthes, Linear stability of traveling waves in first-order hyperbolic PDEs, J. Dynam. Differential Equations 23 (2011), 365-393.
G. Kreiss, H-O. Kreiss, and N. A. Petersson, On the convergence of solutions of nonlinear hyperbolic-parabolic systems, SIAM J. Numer. Anal. 31 (1994), 15771604.

Stability of the concatenated wave structure: definitions and results for two waves

Realization of the concatenated wave structure: let $\bar{y}=\frac{1}{2}\left(y_{1}+y_{2}\right), \bar{c}=\frac{1}{2}\left(c_{1}+c_{2}\right)$.

Realization $=q_{j}\left(x-y_{j}-c_{j} t\right)$ for $(x, t) \in \Omega_{j}$.
Discontinuous along Γ, but discontinuity decays exponentially as $t \rightarrow \infty$. In Ω_{j} it is natural to replace x with the moving coordinate $\xi_{j}=x-y_{j}-c_{j} t$. In $\xi_{1} t$-coordinates, Ω_{1} corresponds to

$$
u_{t}=u_{x x}+f(u)
$$

Notation:

- Initial condition: $u_{0}^{e x}(x)$
- Solution: $u^{e x}(x, t)$
- Solution in $\tilde{\Omega}_{j}$ in $\xi_{j} t$-coordinates: $\tilde{u}_{j}^{e x}\left(\xi_{j}, t\right)$

Definition. The concatenated wave structure is exponentially stable provided for each $\varepsilon>0$ there exist $\chi>0$ and $\delta>0$ for which the following is true. Suppose $y_{2}-y_{1}>\chi$ and $\left\|u_{0}^{e x}(x)-q_{j}\left(x-y_{j}\right)\right\|_{H^{1}\left(I_{j}\right)}<\delta$ for $j=1,2$. Then $u^{e x}(x, t)$ can be written in each $\tilde{\Omega}_{j}$ as

$$
\tilde{u}_{j}^{e x}\left(\xi_{j}, t\right)=q_{j}\left(\xi_{j}+\beta_{j}(t)\right)+Y_{j}\left(\xi_{j}, t\right),
$$

where $\dot{\beta}_{j}(t)$ and $Y_{j}\left(\xi_{j}, t\right)$ decay exponentially, and in appropriate function spaces have norms less than ε.

Notice $\beta_{j}(t)$ approaches a finite limit.
Theorem. If each traveling wave (A1) approaches its end states exponentially and (A2) is spectrally stable, then the concatenated wave structure is exponentially stable.

The theorem follows from a linear result

Equation in $\tilde{\Omega}_{j}$:

$$
u_{t}=u_{\xi \xi}+c_{j} u_{\xi}+f(u)
$$

Decomposition of solution in $\tilde{\Omega}_{j}$:

$$
\tilde{u}_{j}^{e x}(\xi, t)=q_{j}\left(\xi+\beta_{j}(t)\right)+Y_{j}(\xi, t)
$$

Substitute the solution into the equation and expand $q_{j}(\xi+\beta)$ and $f(u)$ about $q_{j}(\xi)$

$$
q_{j}^{\prime}(\xi) \dot{\beta}_{j}+\partial_{t} Y_{j}=\partial_{\xi \xi} Y_{j}+c_{j} \partial_{\xi} Y_{j}+D f\left(q_{j}(\xi)\right) Y_{j}+F_{j}\left(\xi, Y_{j}, \beta_{j}, \dot{\beta}_{j}\right)
$$

linitial condition on I_{j} treated analogously:

$$
\tilde{u}_{j}^{e x}(\xi, 0)=q_{j}\left(\xi+\beta_{j}(0)\right)+Y_{j}(\xi, 0)=q_{j}(\xi)+\beta_{j}(0) q_{j}^{\prime}(\xi)+G_{j}\left(\xi, \beta_{j}(0)\right)+Y_{j}(\xi, 0)
$$

Jump condition across Γ treated analogously:

$$
\begin{gathered}
0=\left[\tilde{u}_{j}^{e x}\right](\Gamma)=\left[q_{j}\left(\xi_{j}+\beta_{j}\right)\right](\Gamma)+\left[Y_{j}\right](\Gamma) \\
\quad=\left[q_{j}\left(\xi_{j}\right)\right](\Gamma)+\left[\beta_{j} q_{j}^{\prime}\left(\xi_{j}\right)\right](\Gamma)+\left[G_{j}\left(\xi_{j}, \beta_{j}\right)\right](\Gamma)+\left[Y_{j}\right](\Gamma) . \\
F_{j}=O\left(\left|Y_{j}\right|^{2}+\left|Y_{j}\right|\left|\beta_{j}\right|+\left|\beta_{j}\right|\left|\dot{\beta}_{j}\right|\right), \quad G_{j}=O\left(\beta_{j}^{2}(t)\right)
\end{gathered}
$$

Nonlinear system

(N1) In $\tilde{\Omega}_{j},\left(Y_{j}, \beta_{j}\right)$ satisfies

$$
\begin{gathered}
\partial_{t} Y_{j}+q_{j}^{\prime}(\xi) \dot{\beta}_{j}=L_{j} Y_{j}+F_{j}\left(\xi, Y_{j}, \beta_{j}, \dot{\beta}_{j}\right) \\
Y_{j}(\xi, 0)+\beta_{j}(0) q_{j}^{\prime}(\xi)=\tilde{u}_{j}^{e x}(\xi, 0)-q_{j}(\xi)-G_{j}\left(\xi, \beta_{j}(0)\right)
\end{gathered}
$$

(N2) Along Γ

$$
\begin{aligned}
{\left[Y_{j}\right](\Gamma)+\left[\beta_{j} q_{j}^{\prime}\left(\xi_{j}\right)\right](\Gamma) } & =-\left[q_{j}\left(\xi_{j}\right)\right](\Gamma)-\left[G_{j}\left(\xi_{j}, \beta_{j}\right)\right](\Gamma) \\
{\left[Y_{j \xi}\right](\Gamma)+\left[\beta_{j} q_{j}^{\prime \prime}\left(\xi_{j}\right)\right](\Gamma) } & =-\left[q_{j}^{\prime}\left(\xi_{j}\right)\right](\Gamma)-\left[G_{j \xi}\left(\xi_{j}, \beta_{j}\right)\right](\Gamma) .
\end{aligned}
$$

Linear system

(L1) In $\tilde{\Omega}_{j},\left(Y_{j}, \beta_{j}\right)$ satisfies

$$
\begin{gathered}
\partial_{t} Y_{j}+q_{j}^{\prime}(\xi) \dot{\beta}_{j}=L_{j} Y_{j}+h_{j}(\xi, t) \\
Y_{j}(\xi, 0)+\beta_{j}(0) q_{j}^{\prime}(\xi)=w_{j}(\xi)
\end{gathered}
$$

(L2) Along Γ

$$
\left[\left(Y_{j}, Y_{j \xi}\right)\right](\Gamma)+\left[\left(\beta_{j} q_{j}^{\prime}\left(\xi_{j}\right), \beta_{j} q_{j}^{\prime \prime}\left(\xi_{j}\right)\right)\right]=J_{j} .
$$

Assume the compatibility condition

$$
\left[\left(w_{j}, w_{j \xi}\right)\right]\left(x_{j}\right)=J_{j}(0)
$$

Function spaces we use (after Lions and Magenes)

Solution space: $H^{2,1}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R}^{n} \mid u, u_{x}, u_{x x}\right.$ and $u_{t} \in L^{2}(\Omega\}$

$$
H^{2,1}(\Omega, \gamma)=\left\{u: \Omega \rightarrow \mathbb{R}^{n} \mid e^{-\gamma t} u \in H^{2,1}(\Omega)\right\}
$$

Trace space: $H^{0.75 \times 0.25}\left(\mathbb{R}^{+}\right)=H^{0.75}\left(\mathbb{R}^{+}\right) \times H^{0.25}\left(\mathbb{R}^{+}\right)$

$$
H^{0.75 \times 0.25}\left(\mathbb{R}^{+}, \gamma\right)=H^{0.75}\left(\mathbb{R}^{+}, \gamma\right) \times H^{0.25}\left(\mathbb{R}^{+}, \gamma\right)
$$

$$
X^{1}\left(\mathbb{R}^{+}, \gamma\right)=\left\{u: \mathbb{R}^{+} \rightarrow \mathbb{R}^{n} \mid e^{-\gamma t} \dot{u} \in L^{2}\left(\mathbb{R}^{+}\right)\right\} ;|u|_{X^{1}\left(\mathbb{R}^{+}, \gamma\right)}=|u(0)|+\left|e^{-\gamma t} \dot{u}\right|_{L^{2}\left(\mathbb{R}^{+}\right)}
$$

$\mathcal{Y}=$ space of "solutions" $\left.\left(Y_{1}, \beta_{1}, Y_{2}, \beta_{2}\right), Y_{j} \in H^{2,1}\left(\tilde{\Omega}_{j}, \gamma\right), \beta_{j} \in X^{1}\left(\mathbb{R}^{+}, \gamma\right)\right)$.
$\mathcal{Z}=$ space of inhomogeneous terms $\left(h_{1}, h_{2}, w_{1}, w_{2}, J\right), h_{j} \in L^{2}\left(\tilde{\Omega}_{j}, \gamma\right), w_{j} \in H^{1}\left(I_{j}\right)$, $J \in H^{0.75 \times 0.25}\left(\mathbb{R}^{+}, \gamma\right)$ such that the compatibility condition is satisfied.

Linear Theorem. Assume (A1)-(A2) and $y_{2} \gg y_{1}$. Fix $\gamma, \eta \leq \gamma<0$. Then the linear problem with $\left(h_{1}, h_{2}, w_{1}, w_{2}, J\right) \in Z$ has a solution $\left(Y_{1}, \beta_{1}, Y_{2}, \beta_{2}\right)$ in \mathcal{Y} given by a bounded linear mapping

$$
L: Z \rightarrow \mathcal{Y}, \quad L\left(h_{1}, h_{2}, w_{1}, w_{2}, J\right)=\left(Y_{1}, \beta_{1}, Y_{2}, \beta_{2}\right)
$$

The bound is independent of y_{1}, y_{2}.

Nonlinear result follows from the linear result by a contraction mapping argument, with a further restriction on γ.

Proof of the linear theorem: step 1: ignore the jump

Linear system without the jump condition
(L1) $\ln \tilde{\Omega}_{j},\left(Y_{j}, \beta_{j}\right)$ satisfies

$$
\begin{gathered}
\partial_{t} Y_{j}+q_{j}^{\prime}(\xi) \dot{\beta}_{j}=L_{j} Y_{j}+h_{j}(\xi, t) \\
Y_{j}(\xi, 0)+\beta_{j}(0) q_{j}^{\prime}(\xi)=w_{j}(\xi)
\end{gathered}
$$

Proposition. Assume (A1)-(A2). Fix $\gamma, \eta \leq \gamma<0$. Then the linear problem (L1) with $\left(h_{1}, h_{2}, w_{1}, w_{2}\right) \in L^{2}\left(\tilde{\Omega}_{1}, \gamma\right) \times L^{2}\left(\tilde{\Omega}_{2}, \gamma\right) \times H^{1}\left(I_{1}\right) \times H^{1}\left(I_{2}\right)$ has a solution $\left(Y_{1}, \beta_{1}, Y_{2}, \beta_{2}\right) \in \mathcal{Y}$ that is given by a bounded linear mapping

$$
L^{(1)}\left(h_{1}, h_{2}, w_{1}, w_{2}\right)=\left(Y_{1}, \beta_{1}, Y_{2}, \beta_{2}\right) .
$$

The bound is independent of y_{1}, y_{2} provided $y_{2}-y_{1} \geq \varepsilon>0$.

Proof. Extend h_{j} et w_{j} to \mathbb{R}^{2} and \mathbb{R}, solve using the semigroup $e^{t L_{j}}$. Note the effect of the eigenvalue 0 .

We use a family of extension operators $L^{2}(\Omega) \rightarrow L^{2}\left(\mathbb{R}^{2}\right)$ and $H^{1}(I) \rightarrow H^{1}(\mathbb{R})$ that is uniformly bounded independent of Ω and I.

Proof of the linear theorem: step 2: deal with the jump

Given $\tilde{J} \in H_{0}^{0.75 \times 0.25}\left(\mathbb{R}^{+}, \gamma\right)$ find $\left(Y_{1}, \beta_{1}, Y_{2}, \beta_{2}\right) \in \mathcal{Y}$ such that the functions $U_{j}\left(\xi_{j}, t\right)=$ $Y_{j}\left(\xi_{j}, t\right)+\beta_{j} q_{j}^{\prime}\left(\xi_{j}\right)$ satisfy

$$
\begin{gather*}
U_{t}=L_{j} U, \quad(\xi, t)=\left(\xi_{j}, t\right) \in \tilde{\Omega}_{j} \tag{1}\\
U(\xi, 0)=0, \quad \xi=\xi_{j} \in I_{j} \tag{2}\\
{\left[\left(U_{j}, U_{j \xi}\right)\right](\Gamma)=\tilde{J}} \tag{3}
\end{gather*}
$$

This linear problem has zero forcing and initial condition zero.

Jump Theorem. Assume (A1)-(A2) and $y_{2} \gg y_{1}$. Fix $\gamma, \eta \leq \gamma<0$. Then the linear problem (1)-(3) has a solution $\left(Y_{1}, \beta_{1}, Y_{2}, \beta_{2}\right) \in \mathcal{Y}$ that is given by a bounded linear mapping

$$
L^{(2)}(\widetilde{J})=\left(Y_{1}, \beta_{1}, Y_{2}, \beta_{2}\right)
$$

The bound is independent of y_{1}, y_{2}.

Proof of the linear theorem: Add the solutions given by the previous proposition and the jump theorem.

Proof of the Jump Theorem: two lemmas

1. Tail Lemma

Let $\phi \in H_{0}^{0.75 \times 0.25}\left(\mathbb{R}^{+}, \gamma\right)$. On $\Lambda_{1} \cup \Lambda_{2}$, we look for $U(x, t)$ that satisfies

$$
\begin{array}{ll}
U_{t}=U_{x x}+D f\left(q_{1}\left(x-y_{1}-c_{1} t\right)\right) U, & (x, t) \text { in } \Lambda_{1}, \\
U_{t}=U_{x x}+D f\left(q_{2}\left(x-y_{2}-c_{2} t\right)\right) U, & (x, t) \text { in } \Lambda_{2}, \\
U(x, 0)=0, \quad\left[U, U_{x}\right](\Gamma)=\phi . &
\end{array}
$$

The solution should decay exponentially in t as $t \rightarrow \infty$ and in x as (x, t) moves away from Γ.

On $\Lambda_{1} \cup \Lambda_{2}$, independent of y_{1} and $y_{2}, D f\left(q_{1}\left(x-y_{1}-c_{1} t\right)\right)$ and $D f\left(q_{2}\left(x-y_{2}-\right.\right.$ $\left.c_{2} t\right)$) are close to $D f\left(e_{1}\right)$.

Tail Lemma. Assume (A1)-(A2). Fix $\gamma, \eta \leq \gamma<0$. Then there is a number $N>0$ such that if $y_{2}-y_{1}>2 N$, then the linear problem (4)-(6) has a solution $U(x, t)$ in $H_{0}^{2,1}\left(\Lambda_{1} \cup \Lambda_{2}, \gamma\right)$ that is given by a bounded linear mapping

$$
L^{(3)}: H_{0}^{0.75 \times 0.25}\left(\mathbb{R}^{+}, \gamma\right) \rightarrow H_{0}^{2,1}\left(\Lambda_{1} \cup \Lambda_{2}, \gamma\right)
$$

The bound is independent of y_{1}, y_{2}. There are numbers $C>0$ and $\alpha>0$, independent of y_{1}, y_{2}, such that

$$
\left\|\left.U\right|_{M_{1}^{+}}\right\|+\left\|\left.U\right|_{M_{2}^{-}}\right\| \leq C\left(e^{-\alpha\left(\bar{y}-y_{1}-N\right)}+e^{-\alpha\left(y_{2}-N-\bar{y}\right)}\right)\|\phi\|
$$

where all the norms are in $H_{0}^{0.75 \times 0.25}\left(\mathbb{R}^{+}, \gamma\right)$.
U decays exponentially in t, but we cannot guarantee that the solution continues to decay in x, essentially because of the eigenvalue 0 .

1. Interior Lemma

The Tail Lemma deals with the discontinuity along Γ but leaves smaller discontinuities along M_{1}^{+}and M_{2}^{-}. The Interior Lemma deals with them but leaves even smaller discontinuities along Γ.

To deal with the jump on M_{1}^{+}, we use $x_{1} t$-coordinates:

Let $\phi \in H_{0}^{0.75 \times 0.25}\left(\mathbb{R}^{+}, \gamma\right)$. Consider the problem

$$
\begin{align*}
& U_{t}=L_{1} U, \quad(\xi, t) \in \mathbb{R} \times \mathbb{R}^{+} \backslash M_{N}, \tag{7}\\
& U(\xi, 0)=0, \quad\left[\left(U, U_{\xi}\right)\right]\left(M_{N}\right)=\phi \tag{8}
\end{align*}
$$

Interior Lemma. Assume (A1)-(A2). Fix $\gamma, \eta \leq \gamma<0$. Assume $y_{2}-y_{1}>2 N$. Then the linear problem (7)-(8) has a solution $U=Y_{1}(\xi, t)+\beta_{1}(t) q_{1}^{\prime}(\xi)$ with
(1) $Y_{1} \in H_{0}^{2,1}\left(\mathbb{R} \times \mathbb{R}^{+} \backslash M_{N}, \gamma\right)$,
(2) $\beta_{1} \in X_{0}^{1}\left(\mathbb{R}^{+}, \gamma\right)$.

The solution is given by a bounded linear mapping

$$
L^{(4)}: H_{0}^{0.75 \times 0.25}\left(\mathbb{R}^{+}, \gamma\right) \rightarrow H_{0}^{2,1}\left(\mathbb{R} \times \mathbb{R}^{+} \backslash M_{N}\right) \times X_{0}^{1}\left(\mathbb{R}^{+}, \gamma\right), \quad L^{(4)}(\phi)=\left(Y_{1}, \beta_{1}\right)
$$

The bound is independent of y_{1}, y_{2}. There are numbers $C>0$ and $\alpha>0$, independent of y_{1}, y_{2}, such that

$$
\left\|\left.\tilde{U}\right|_{\Gamma}\right\| \leq C e^{-\alpha\left(\bar{y}-y_{1}-N\right)}\|\phi\|,
$$

where all the norms are in $H_{0}^{0.75 \times 0.25}\left(\mathbb{R}^{+}, \gamma\right)$.
U has a part that does not decay in t, essentially because of the eigenvalue 0 .

Proof of the jump theorem: Add an infinite series of solutions given by the tail lemma and the interior lemma.

Proving the Lemmas

1. Laplace transform

Consider a second-order linear partial differential equation with zero initial conditions:

$$
U_{t}=U_{\xi \xi}+c U_{\xi}+A(\xi, t) U, \quad(\xi, t) \in I \times \mathbb{R}^{+}, \quad U(\xi, 0)=0
$$

Apply Laplace transform \mathcal{L} in t, write $\hat{U}(\xi, s)=\mathcal{L} U(\xi, t)$:

$$
\left.s \hat{U}=\hat{U}_{\xi \xi}+c \hat{U}_{\xi}+(\hat{A}(\xi, \cdot))^{s} \hat{U}(\xi, \cdot)\right)(s)
$$

Convert both equations first-order systems in ξ :

$$
\begin{align*}
& U_{\xi}=V, \quad V_{\xi}=U_{t}-c V-A(\xi, t) U, \quad(U, V)(\xi, 0)=(0,0) \tag{9}\\
& \hat{U}_{\xi}=\hat{V}, \quad \hat{V}_{\xi}=s \hat{U}-c \hat{V}-(\hat{A}(\xi, \cdot) * \hat{U}(\xi, \cdot))(s) \tag{10}
\end{align*}
$$

We regard (9) as a linear differential equation in ξ on the Banach space $H_{0}^{0.75 \times 0.25}\left(\mathbb{R}^{+}, \gamma\right)$, a space of functions of t (spatial dynamics).

We regard (10) as a linear differential equation in ξ on the Hardy-Lebesgue space that corresponds to it, $\mathcal{H}^{0.75 \times 0.25}(\gamma)$.

2. Hardy-Lebesgue spaces

$f(s)$ is in the Hardy-Lebesgue space $\mathcal{H}(\gamma), \gamma \in \mathbb{R}$, if
(1) $f(s)$ is analytic in $\mathfrak{R}(s)>\gamma$;
(2) $\sup _{\sigma>\gamma}\left(\int_{-\infty}^{\infty}|f(\sigma+i \omega)|^{2} d \omega\right)^{1 / 2}<\infty$.
$\mathcal{H}(\gamma)$ is a Banach space with norm defined by (2).
For $k \geq 0$ and $\gamma \in \mathbb{R}$, define

$$
\mathcal{H}^{k}(\gamma)=\left\{u(s): u(s) \text { and }(s-\gamma)^{k} u(s) \in \mathcal{H}(\gamma)\right\} .
$$

Paley-Wiener Theorem.

- $u(t) \in L^{2}\left(\mathbb{R}^{+}, \gamma\right) \Longleftrightarrow \hat{u}(s) \in \mathcal{H}(\gamma)$.
- $u(t) \in H_{0}^{k}\left(\mathbb{R}^{+}, \gamma\right) \Longleftrightarrow \hat{u}(s) \in \mathcal{H}^{k}(\gamma)$.
- $(u, v) \in H_{0}^{k_{1} \times k_{2}}\left(\mathbb{R}^{+}, \gamma\right) \Longleftrightarrow(\hat{u}, \hat{v}) \in \mathcal{H}^{k_{1} \times k_{2}}(\gamma)$.

In each case, the mapping $u \rightarrow \hat{u}$ is a Banach space isomorphism
The Hardy-Lebesgue space that corresponds to $H_{0}^{0.75 \times 0.25}\left(\mathbb{R}^{+}, \gamma\right)$ is $\mathcal{H}^{0.75 \times 0.25}(\gamma)$.
3. Exponential dichtomies in $H_{0}^{0.75 \times 0.25}\left(\mathbb{R}^{+}, \gamma\right)$ corespond to exponential dichotomies in $\mathcal{H}^{0.75 \times 0.25}(\gamma)$

$$
\begin{array}{ll}
U_{\xi}=V, & V_{\xi}=U_{t}-c V-A(\xi, t) U, \quad(U, V)(\xi, 0)=(0,0) \tag{9}\\
\hat{U}_{\xi}=\hat{V}, & \hat{V}_{\xi}=s \hat{U}-c \hat{V}-(\hat{A}(\xi, \cdot) * \hat{U}(\xi, \cdot))(s)
\end{array}
$$

Lemma. Assume (10) has an exponential dichotomy on $\mathscr{H}^{0.75 \times 0.25}(\gamma)$ for $\xi \in I$. Then (9) has an exponential dichotomy on $H_{0}^{0.75 \times 0.25}\left(\mathbb{R}^{+}, \gamma\right)$ for $\xi \in I$, with the same constants K, α. The projections and solution maps are related by Laplace transform. In addition, $u(\xi, t) \in H_{0}^{2,1}\left(I \times \mathbb{R}_{+}, \gamma\right)$.
4. Proving exponential dichotomies on Hardy-Lebesgue spaces if $A(\xi, t)$ is independent of t

If $A(\xi, t)=A(\xi)$ is independent of time t, then (10) simplifies to

$$
\begin{equation*}
\hat{U}_{\xi}=\hat{V}, \quad \hat{V}_{\xi}=s \hat{U}-c \hat{V}-A(\xi) \hat{U} . \tag{11}
\end{equation*}
$$

We can regard (11) as a family of ordinary differential equations in $\xi \in I$ on \mathbb{C}^{n}, with s as a parameter in a set $\mathcal{S} \subset \mathbb{C}$, with solution operator $T(\xi, \zeta, s)$.

Let $|u|$ denote the usual norm on \mathbb{C}^{n}. Let $E^{k_{1} \times k_{2}}(s)$ denote $\mathbb{C}^{n} \times \mathbb{C}^{n}$ with the norm

$$
|(u, v)|_{E^{k_{1} \times k_{2}(s)}}=\left(1+|s|^{k_{1}}\right)|u|+\left(1+|s|^{k_{2}}\right)|v| .
$$

We say that (11) has a uniform exponential dichotomy on the spaces $E^{0.75 \times 0.25}(s)$ for $s \in \mathcal{S}$ and $\xi \in I$ if it has an exponential dichotomy for each s; the projections $P_{j}(\xi, s), j=s, u$, are analytic in s for fixed ξ; and there are constants $K, \alpha>0$ such that, when norms in the spaces $E^{0.75 \times 0.25}(s)$ are used,
(1) each $K(s) \leq K$, and
(2) $\rho(s)=\alpha\left(1+|s|^{0.5}\right)$.

$$
\begin{equation*}
\hat{U}_{\xi}=\hat{V}, \quad \hat{V}_{\xi}=s \hat{U}-c \hat{V}-A(\xi) \hat{U} . \tag{11}
\end{equation*}
$$

Lemma. Suppose (11) has a uniform exponential dichotomy on the spaces $E^{0.75 \times 0.25}(s)$ for $\mathfrak{R}(s) \geq \gamma$ and $\xi \in I$. Then (11) has an exponential dichotomy on $\mathcal{H}^{0.75 \times 0.25}(\gamma)$ for $\xi \in I$ with projections derived from those in $E^{0.75 \times 0.25}(s)$, multiplicative constant K, and exponent α.

5. Proof of the Tail Lemma

Let $\phi \in H_{0}^{0.75 \times 0.25}\left(\mathbb{R}^{+}, \gamma\right)$. On $\Lambda_{1} \cup \Lambda_{2}$, we look for $U(x, t)$ that satisfies

$$
\begin{array}{ll}
U_{t}=U_{x x}+D f\left(q_{1}\left(x-y_{1}-c_{1} t\right)\right) U, & (x, t) \text { in } \Lambda_{1}, \\
U_{t}=U_{x x}+D f\left(q_{2}\left(x-y_{2}-c_{2} t\right)\right) U, & (x, t) \text { in } \Lambda_{2}, \\
U(x, 0)=0, \quad\left[U, U_{x}\right](\Gamma)=\phi . &
\end{array}
$$

The solution should decay exponentially in t as $t \rightarrow \infty$ and in x as (x, t) moves away from Γ.

For large N, independent of y_{1} and y_{2}, on $\Lambda_{1} \cup \Lambda_{2}, D f\left(q_{1}\left(x-y_{1}-c_{1} t\right)\right)$ and $D f\left(q_{2}\left(x-y_{2}-c_{2} t\right)\right)$ are both near $D f\left(e_{1}\right)$.

$$
\begin{array}{ll}
U_{t}=U_{x x}+D f\left(q_{1}\left(x-y_{1}-c_{1} t\right)\right) U, & (x, t) \text { in } \Lambda_{1}, \\
U_{t}=U_{x x}+D f\left(q_{2}\left(x-y_{2}-c_{2} t\right)\right) U, & (x, t) \text { in } \Lambda_{2}, \\
U(x, 0)=0, \quad\left[U, U_{x}\right](\Gamma)=\phi . &
\end{array}
$$

Make Γ vertical. The exponential dichotomy for $U_{t}=U_{x x}+D f\left(e_{1}\right) U$ on $H_{0}^{0.75 \times 0.25}\left(\mathbb{R}^{+}, \gamma\right)$ persists. Decompose the jump.

6. Proof of the Interior Lemma

Step 1: $|s| \geq \varepsilon$. System:

$$
\begin{aligned}
& U_{t}=L_{1} U, \quad(\xi, t) \in \mathbb{R} \times \mathbb{R}^{+} \backslash M_{N}, \\
& U(\xi, 0)=0, \quad\left[\left(U, U_{\xi}\right)\right]\left(M_{N}\right)=\phi
\end{aligned}
$$

Laplace transform:

$$
\begin{equation*}
0=\left(L_{1}-s I\right) \hat{U}, \quad\left[\left(\hat{U}, \hat{U}_{\xi}\right)\right]\left(M_{N}\right)=\hat{\phi}(s) \tag{12}
\end{equation*}
$$

Write as a first-order system:

$$
\begin{equation*}
\hat{U}_{\xi}=\hat{V}, \hat{V}_{\xi}=\left(s I-D f\left(q_{j}(\xi)\right)\right) \hat{U}-c_{j} \hat{V}, \quad[(\hat{U}, \hat{V})]\left(M_{N}\right)=\hat{\phi}(s) \tag{13}
\end{equation*}
$$

$\hat{\phi}(s)$ is in $\mathcal{H}^{0.75 \times 0.25}(\gamma)$. Look for solutions of (13) that decay to zero as ξ moves away from M_{N}.

Let $\varepsilon>0$. For $\mathfrak{R}(s) \geq \eta$ and $|s| \geq \varepsilon$, system (13) has a unique solution $(\hat{U}, \hat{V})(\xi, s)$ that decays exponentially as $\xi \rightarrow \pm \infty$. The solution depends analytically on s, and there are constants $C_{1}(\varepsilon)>0$ and $\alpha_{1}(\varepsilon)>0$ such that for $\Re(s) \geq \eta,|s| \geq \varepsilon$, and $\rho_{1}(\varepsilon)=\alpha_{1}(\varepsilon)\left(1+|s|^{0.5}\right)$, the solution satisfies

$$
\|(\hat{U}, \hat{V})(\xi, s)\|_{E^{0.72 \times 0.25}(s)} \leq C_{1}(\varepsilon) e^{-\rho_{1}(\varepsilon)|\xi-N|}|\hat{\phi}(s)|_{E^{0.72 \times 0.25}(s)}
$$

Step 2: $|s| \leq \varepsilon$.

$$
\begin{aligned}
& U_{t}=L_{1} U, \quad(\xi, t) \in \mathbb{R} \times \mathbb{R}^{+} \backslash M_{N}, \\
& U(\xi, 0)=0, \quad\left[\left(U, U_{\xi}\right)\right]\left(M_{N}\right)=\phi .
\end{aligned}
$$

Let $P_{j}=$ spectral projection of $L^{2}(\mathbb{R})$ onto $\left\langle q_{j}^{\prime}\right\rangle$. Let $U(\xi, t)=Y(\xi, t)+\beta(t) q^{\prime}(\xi)$ with $P_{j} Y(\cdot, t)=0$:

$$
Y_{t}+\dot{\beta}(t) q_{j}^{\prime}(\xi)=L_{1} Y, \quad Y(\xi, 0)=0, \beta(0)=0, \quad\left[\left(Y, Y_{\xi}\right)\right]\left(M_{N}\right)=\hat{\phi}(s) .
$$

Write $h(t)=\dot{\boldsymbol{\beta}}(t)$. Take Laplace transform:

$$
\begin{equation*}
\left(L_{1}-s I\right) \hat{Y}=\hat{h}(s) q^{\prime}(\xi), \quad\left[\left(\hat{Y}, \hat{Y}_{\xi}\right)\right](N)=\hat{\phi}(s), \tag{14}
\end{equation*}
$$

Write as a first order system:

$$
\begin{equation*}
(\hat{Y}, \hat{Z})_{\xi}=\left(\hat{Z},\left(s I-D f\left(q_{j}(\xi)\right)\right) \hat{Y}-c_{j} \hat{Z}\right)+\left(0, \hat{h}(s) q_{j}^{\prime}(\xi)\right),[(\hat{Y}, \hat{Z})](N)=\hat{\phi}(s) . \tag{15}
\end{equation*}
$$

There exists $\varepsilon>0$ such that for $|\hat{s}| \leq \varepsilon$, (15) has a unique solution $((\hat{Y}, \hat{Z})(\xi, s), \hat{h}(s))$ such that $P_{j} \hat{Y}(\cdot, s)=0$ and $(\hat{Y}, \hat{Z})(\xi, s)$ decays exponentially as $\xi \rightarrow \pm \infty$. The solution depends analytically on s, and there are constants $C_{2}>0$ and $\alpha_{2}>0$ such that for $|s| \leq \varepsilon$ and $\rho_{2}=\alpha_{2}\left(1+|s|^{0.5}\right)$, the solution satisfies

$$
\|(\hat{Y}, \hat{Z})(\xi, s)\|_{E^{0.72 \times 0.25(s)}} \leq C_{2} e^{-\rho_{2}|\xi-N|}|\hat{\phi}(s)|_{E^{0.72 \times 0.25(s)}} .
$$

Proof: For each small s, there exist two exponential dichotomies for (15), for $\xi \leq N$ and for $\xi \geq N$. Denote the projections by $P_{s}^{-}(\xi, s)+P_{u}^{-}(\xi, s)=I$ for $\xi \leq N$ and $P_{s}^{+}(\xi, s)+P_{u}^{+}(\xi, s)=I$ for $\xi \geq N$.

Bounded solutions of (15) can be expressed as:

$$
\begin{aligned}
& \text { for } \xi \leq N, \quad(\hat{Y}, \hat{Z})(\xi, s)=T(\xi, N, s) P_{u}^{-}(N, s)(\hat{Y}, \hat{Z})(N-, s) \\
& +\int_{-\infty}^{\xi} T(\xi, \zeta, s) P_{s}^{-}(\zeta, s)\left(0, \hat{h}(s) q_{j}^{\prime}(\zeta)\right) d \zeta+\int_{N}^{\xi} T(\xi, \zeta, s) P_{u}^{-}(\zeta, s)\left(0, \hat{h}(s) q_{j}^{\prime}(\zeta)\right) d \zeta ; \\
& \text { for } \xi \geq N, \quad(\hat{Y}, \hat{Z})(\xi, s)=T(\xi, N, s) P_{s}^{+}(N, s)(\hat{Y}, \hat{Z})(N+, s) \\
& +\int_{N}^{\xi} T(\xi, \zeta, s) P_{s}^{+}(\zeta, s)\left(0, \hat{h}(s) q_{j}^{\prime}(\zeta)\right) d \zeta+\int_{\infty}^{\xi} T(\xi, \zeta, s) P_{u}^{+}(\zeta, s)\left(0, \hat{h}(s) q_{j}^{\prime}(\zeta)\right) d \zeta .
\end{aligned}
$$

Let

$$
\begin{aligned}
\mu_{u}^{-}(s) & =P_{u}^{-}(N, s)(\hat{Y}, \hat{Z})(N-, s), \quad \mu_{s}^{+}(s)=P_{s}^{+}(N, s)(\hat{Y}, \hat{Z})(N+, s), \\
v(s) & =\int_{-\infty}^{N} T(N, \zeta, s) P_{s}^{-}(\zeta, s)\left(0, q_{j}^{\prime}(\zeta)\right) d \zeta+\int_{N}^{\infty} T(N, \zeta, s) P_{u}^{+}(\zeta, s)\left(0, q_{j}^{\prime}(\zeta)\right) d \zeta .
\end{aligned}
$$

The jump condition at $\xi=N$ is satisfied provided

$$
\mu_{s}^{+}(s)-\mu_{u}^{-}(s)-\hat{h}(s) v(s)=\hat{\phi}(s) .
$$

$$
\mu_{s}^{+}(s)-\mu_{u}^{-}(s)-\hat{h}(s) v(s)=\hat{\phi}(s) .
$$

For each s this is $2 n$ equations in the $2 n+1$ unknowns $\left(\mu_{u}^{-}, \mu_{s}^{+}, h\right)$.
One more equation: $P_{1} \hat{Y}=0$.
Show invertibility at $s=0$.

Step 3:

Express the solution from step 1 as $\hat{U}(\xi, s)=\hat{Y}(\xi, s)+\hat{h}(s) q^{\prime}(\xi)$.
Combine the solutions from steps 1 and 2.
Invert the Laplace transform.

