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I. Traveling waves for reaction-diffusion equations

Reaction-diffusion equation:

ut = uxx+ f (u), x ∈ R, u ∈ Rn, f : Rn→ Rn

Traveling wave:

q(ξ), ξ = x− ct, q(±∞) = e±, q(ξ)→ e± exponentially as ξ→±∞

ξ

y

e
-

e+

Change of variables: x→ ξ = x− ct:

ut = uξξ+ cuξ+ f (u)
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The traveling wave q(ξ) is a stationary solution: it satisfies

0 = uξξ+ cuξ+ f (u)

To study stability, linearize at the stationary solution q(ξ):

Ut = LU =Uξξ+ cUξ+D f (q(ξ))U

Regard L as a linear operator on L2(R) (for example).

Spectrum: λ ∈ σ(L) if L−λI does not have a bounded inverse.

The traveling wave is spectrally stability if for some ν < 0,

σ(L)⊂ {λ : Reλ < ν}
except for a simple eigenvalue at 0.

(The eigenfunction is q′. Reflects the fact that traveling waves can be shifted.)

Consequences of spectral stability:

(1) Linearized stability: Every solution of Ut = LU decays exponentially to a mul-
tiple of q′.

(2) Nonlinear stability: Every solution of ut = uξξ + cuξ + f (u) that starts near q
decays exponentially to a shift of q.
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Checking spectral stability

Ut = LU =Uξξ+ cUξ+D f (q(ξ))U, q(ξ)→ q± as ξ→±∞.

1. Find the essential spectrum of L by finding the dispersion relation for the
constant coefficient equations

Ut = L±U =Uξξ+ cUξ+D f (q±))U.

Get collection of curves λ = λi(µ). L−λI is not Fredholm iff λ belongs to one of
these curves.

Rightmost boundary = Fredholm border of L.

Re λ

Im λ
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2. To the right of the Fredholm border of L, write (L−λI)U = 0 as a first-order
system: (

U
V

)
ξ

=

(
0 I

λI−D f (q(ξ)) −cI

)(
U
V

)
or Xξ = A(ξ,λ)X

A(−∞,λ) and A(∞,λ) are hyperbolic matrices of the same type.

Xξ = A(ξ)X has an exponential dichotomy on an interval if there exist two com-
plementary spaces of solutions

• one consists of solutions that decrease exponentially at the right;
• the other consists of solutions that decrease exponentially at the left.

Important fact: exponential dichotomies persist under perturbation.

For λ to the right of the Fredholm border, Xξ = A(ξ,λ)X has

• exponential dichotomy on (−∞,0], with projections P−s (ξ)+P−u (ξ) = I;
• exponential dichotomy on [0,∞), with projections P+

s (ξ)+P+
u (ξ) = I.
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Two cases:

ξ
0

RP (0)u

RP (0)s

ξ
0

+

−
RP (0)uRP (0)∩s

+ −

(a) (b)

(a) RP−u (0,λ) and RP+
s (0,λ) = {0} are complementary: exponential dichotomy

on R, λ /∈ σ(L).

One can use the dichotomy and variation of constants to invert the operator:

(L−λI)U = h ⇔ Xξ = A(λ,u)Xξ+(0,h) ⇔

X(ξ) =
∫

ξ

−∞

T (ξ,η,λ)P+
s (η)(0,h(η))dη+

∫
ξ

∞

T (ξ,η,λ)P−u (η)(0,h(η))dη.

(b) RP−u (0,λ) and RP+
s (0,λ) intersect: no exponential dichotomy on R, λ is an

eigenvalue of L.

Case (b) occurs for λ = 0.
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II. Concatenated traveling waves

Approximate picture:
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Concatenated wave structure with two waves:

(1) q1(x− c1t) connects e0 to e1,

(2) q2(x− c2t) connects e1 to e2,

(3) c1 < c2.

Assume each traveling wave is spectrally stable.

Are there solutions that look like the picture? Are they stable?
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Answers: yes and yes.

Doug Wright, Separating dissipative pulses: the exit manifold, J. Dynam. Differential
Equations 21 (2009), 315–328.

Sabrina Selle, Decomposition and stability of multifronts and multipulses, thesis,
University of Bielefeld, 2009.

Idea:

• Look for solutions near the sum

u = q1(x− y1− c1t)+q2(x− y2− c2t)− e1, y1 << y2.

We looked for an alternate approach that would not “smear” the the effect of
each wave on the other.

We hoped a different approach would be easier to use with less restrictive
assumptions.
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Our approach is based on concatenated waves and spatial dynamics (Laplace
transform and exponential dichotomies).

Previous uses of Laplace transform and exponential dichotomies to study stability
of traveling waves:

Xiao-Biao Lin, Local and global existence of multiple waves near formal approxima-
tions, Nonlinear dynamical systems and chaos (Groningen, 1995), 385–404, Progr.
Nonlinear Differential Equations Appl. 19, Birkhauser, Basel, 1996.

Jens Rottmann-Matthes, Linear stability of traveling waves in first-order hyperbolic
PDEs, J. Dynam. Differential Equations 23 (2011), 365–393.

G. Kreiss, H-O. Kreiss, and N. A. Petersson, On the convergence of solutions of
nonlinear hyperbolic-parabolic systems, SIAM J. Numer. Anal. 31 (1994), 1577–
1604.
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Stability of the concatenated wave structure:
definitions and results for two waves

Realization of the concatenated wave structure: let y = 1
2(y1+ y2), c = 1

2(c1+ c2).

y1 y2
x

x=y1+c1t x=y2+c2t

I1 I2

x=y+ct

Ω1 Ω2

y

Γ

Realization = q j(x− y j− c jt) for (x, t) ∈Ω j.

Discontinuous along Γ, but discontinuity decays exponentially as t→ ∞.

In Ω j it is natural to replace x with the moving coordinate ξ j = x− y j− c jt.

In ξ1t-coordinates, Ω1 corresponds to

0
ξ

1

~

t

y-y1

Ω 1
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ut = uxx+ f (u),

Notation:

• Initial condition: uex
0 (x)

• Solution: uex(x, t)

• Solution in Ω̃ j in ξ jt-coordinates: ũex
j (ξ j, t)

Definition. The concatenated wave structure is exponentially stable provided for
each ε > 0 there exist χ > 0 and δ > 0 for which the following is true. Suppose
y2− y1 > χ and ‖uex

0 (x)− q j(x− y j)‖H1(I j)
< δ for j = 1,2. Then uex(x, t) can be

written in each Ω̃ j as

ũex
j (ξ j, t) = q j(ξ j +β j(t))+Yj(ξ j, t),

where β̇ j(t) and Yj(ξ j, t) decay exponentially, and in appropriate function spaces
have norms less than ε.

Notice β j(t) approaches a finite limit.

Theorem. If each traveling wave (A1) approaches its end states exponentially and
(A2) is spectrally stable, then the concatenated wave structure is exponentially sta-
ble.
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The theorem follows from a linear result

Equation in Ω̃ j:
ut = uξξ+ c juξ+ f (u)

Decomposition of solution in Ω̃ j:

ũex
j (ξ, t) = q j(ξ+β j(t))+Yj(ξ, t)

Substitute the solution into the equation and expand q j(ξ+β) and f (u) about q j(ξ)

q′j(ξ)β̇ j +∂tYj = ∂ξξYj + c j∂ξYj +D f (q j(ξ))Yj +Fj(ξ,Yj,β j, β̇ j)

Iinitial condition on I j treated analogously:

ũex
j (ξ,0) = q j(ξ+β j(0))+Yj(ξ,0) = q j(ξ)+β j(0)q′j(ξ)+G j(ξ,β j(0))+Yj(ξ,0)

Jump condition across Γ treated analogously:

0 = [ũex
j ](Γ) = [q j(ξ j +β j)](Γ)+ [Yj](Γ)

= [q j(ξ j)](Γ)+ [β jq′j(ξ j)](Γ)+ [G j(ξ j,β j)](Γ)+ [Yj](Γ).

Fj = O
(
|Yj|2+ |Yj||β j|+ |β j||β̇ j|

)
, G j = O(β2

j(t))
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Nonlinear system

(N1) In Ω̃ j, (Yj,β j) satisfies

∂tYj +q′j(ξ)β̇ j = L jYj +Fj(ξ,Yj,β j, β̇ j)

Yj(ξ,0)+β j(0)q′j(ξ) = ũex
j (ξ,0)−q j(ξ)−G j(ξ,β j(0))

(N2) Along Γ

[Yj](Γ)+ [β jq′j(ξ j)](Γ) =−[q j(ξ j)](Γ)− [G j(ξ j,β j)](Γ)

[Yjξ](Γ)+ [β jq′′j(ξ j)](Γ) =−[q′j(ξ j)](Γ)− [G jξ(ξ j,β j)](Γ).

Linear system

(L1) In Ω̃ j, (Yj,β j) satisfies

∂tYj +q′j(ξ)β̇ j = L jYj +h j(ξ, t)
Yj(ξ,0)+β j(0)q′j(ξ) = w j(ξ)

(L2) Along Γ

[(Yj,Yjξ)](Γ)+ [(β jq′j(ξ j),β jq′′j(ξ j))] = J j.

Assume the compatibility condition

[(w j,w jξ)](x j) = J j(0).
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Function spaces we use (after Lions and Magenes)

Solution space: H2,1(Ω) = {u : Ω→ Rn | u,ux,uxx and ut ∈ L2(Ω}
H2,1(Ω,γ) = {u : Ω→ Rn | e−γtu ∈ H2,1(Ω)}

Trace space: H0.75×0.25(R+) = H0.75(R+)×H0.25(R+)

H0.75×0.25(R+,γ) = H0.75(R+,γ)×H0.25(R+,γ).

X1(R+,γ) = {u : R+→ Rn | e−γtu̇ ∈ L2(R+)}; |u|X1(R+,γ) = |u(0)|+ |e−γtu̇|L2(R+).

Y = space of “solutions” (Y1,β1,Y2,β2), Yj ∈ H2,1(Ω̃ j,γ), β j ∈ X1(R+,γ)).

Z = space of inhomogeneous terms (h1,h2,w1,w2,J), h j ∈ L2(Ω̃ j,γ), w j ∈H1(I j),
J ∈ H0.75×0.25(R+,γ) such that the compatibility condition is satisfied.

Linear Theorem. Assume (A1)–(A2) and y2 >> y1. Fix γ, η ≤ γ < 0. Then the
linear problem with (h1,h2,w1,w2,J) ∈ Z has a solution (Y1,β1,Y2,β2) in Y given
by a bounded linear mapping

L : Z→ Y , L(h1,h2,w1,w2,J) = (Y1,β1,Y2,β2).

The bound is independent of y1, y2.

Nonlinear result follows from the linear result by a contraction mapping argument,
with a further restriction on γ.
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Proof of the linear theorem: step 1: ignore the jump

Linear system without the jump condition

(L1) In Ω̃ j, (Yj,β j) satisfies

∂tYj +q′j(ξ)β̇ j = L jYj +h j(ξ, t)
Yj(ξ,0)+β j(0)q′j(ξ) = w j(ξ)

Proposition. Assume (A1)–(A2). Fix γ, η ≤ γ < 0. Then the linear problem
(L1) with (h1,h2,w1,w2) ∈ L2(Ω̃1,γ)× L2(Ω̃2,γ)×H1(I1)×H1(I2) has a solution
(Y1,β1,Y2,β2) ∈ Y that is given by a bounded linear mapping

L(1)(h1,h2,w1,w2) = (Y1,β1,Y2,β2).

The bound is independent of y1, y2 provided y2− y1 ≥ ε > 0.

Proof. Extend h j et w j to R2 and R, solve using the semigroup etL j. Note the effect
of the eigenvalue 0.

We use a family of extension operators L2(Ω)→ L2(R2) and H1(I)→ H1(R)
that is uniformly bounded independent of Ω and I.
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Proof of the linear theorem: step 2: deal with the jump

Given J̃ ∈H0.75×0.25
0 (R+,γ) find (Y1,β1,Y2,β2)∈Y such that the functions U j(ξ j, t)=

Yj(ξ j, t)+β jq′j(ξ j) satisfy

Ut = L jU, (ξ, t) = (ξ j, t) ∈ Ω̃ j,(1)
U(ξ,0) = 0, ξ = ξ j ∈ I j,(2)

[(U j,U jξ)](Γ) = J̃.(3)

This linear problem has zero forcing and initial condition zero.

Jump Theorem. Assume (A1)–(A2) and y2 >> y1. Fix γ, η ≤ γ < 0. Then the
linear problem (1)–(3) has a solution (Y1,β1,Y2,β2) ∈ Y that is given by a bounded
linear mapping

L(2)(J̃) = (Y1,β1,Y2,β2).

The bound is independent of y1, y2.

Proof of the linear theorem: Add the solutions given by the previous proposition
and the jump theorem.
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Proof of the Jump Theorem: two lemmas

1. Tail Lemma

y1 y2

x

Λ1 Λ2

y1+N y2−N
y

Γ

M1 M2

+ −

Let φ ∈ H0.75×0.25
0 (R+,γ). On Λ1∪Λ2, we look for U(x, t) that satisfies

Ut =Uxx+D f (q1(x− y1− c1t))U, (x, t) in Λ1,(4)
Ut =Uxx+D f (q2(x− y2− c2t))U, (x, t) in Λ2,(5)
U(x,0) = 0, [U,Ux](Γ) = φ.(6)

The solution should decay exponentially in t as t→∞ and in x as (x, t) moves away
from Γ.

On Λ1∪Λ2, independent of y1 and y2, D f (q1(x− y1− c1t)) and D f (q2(x− y2−
c2t)) are close to D f (e1).
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y1 y2

x

Λ1 Λ2

y1+N y2−N
y

Γ

M1 M2

+ −

Tail Lemma. Assume (A1)–(A2). Fix γ, η ≤ γ < 0. Then there is a number N > 0
such that if y2− y1 > 2N, then the linear problem (4)–(6) has a solution U(x, t) in
H2,1

0 (Λ1∪Λ2,γ) that is given by a bounded linear mapping

L(3) : H0.75×0.25
0 (R+,γ)→ H2,1

0 (Λ1∪Λ2,γ).

The bound is independent of y1, y2. There are numbers C > 0 and α > 0, indepen-
dent of y1, y2, such that

‖U |M+
1
‖+‖U |M−2 ‖ ≤C(e−α(y−y1−N)+ e−α(y2−N−y))‖φ‖,

where all the norms are in H0.75×0.25
0 (R+,γ).

U decays exponentially in t, but we cannot guarantee that the solution con-
tinues to decay in x, essentially because of the eigenvalue 0.
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1. Interior Lemma

The Tail Lemma deals with the discontinuity along Γ but leaves smaller dis-
continuities along M+

1 and M−2 . The Interior Lemma deals with them but leaves
even smaller discontinuities along Γ.

To deal with the jump on M+
1 , we use x1t-coordinates:

y1
x

y1+N
y

ΓM1
+

0 ξy−y1
1

t

N

Γ
~MN

Let φ ∈ H0.75×0.25
0 (R+,γ). Consider the problem

Ut = L1U, (ξ, t) ∈ R×R+ \MN,(7)
U(ξ,0) = 0, [(U,Uξ)](MN) = φ.(8)
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y1
x

y1+N
y

ΓM1
+

0 ξy−y1
1

t

N

Γ
~MN

Interior Lemma. Assume (A1)–(A2). Fix γ, η≤ γ < 0. Assume y2−y1 > 2N. Then
the linear problem (7)–(8) has a solution U = Y1(ξ, t)+β1(t)q′1(ξ) with
(1) Y1 ∈ H2,1

0 (R×R+ \MN,γ),
(2) β1 ∈ X1

0 (R+,γ).
The solution is given by a bounded linear mapping

L(4) : H0.75×0.25
0 (R+,γ)→ H2,1

0 (R×R+ \MN)×X1
0 (R+,γ), L(4)(φ) = (Y1,β1).

The bound is independent of y1, y2. There are numbers C > 0 and α > 0, indepen-
dent of y1, y2, such that

‖Ũ |Γ‖ ≤Ce−α(ȳ−y1−N)‖φ‖,
where all the norms are in H0.75×0.25

0 (R+,γ).

U has a part that does not decay in t, essentially because of the eigenvalue 0.
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Proof of the jump theorem: Add an infinite series of solutions given by the tail
lemma and the interior lemma.
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Proving the Lemmas

1. Laplace transform

Consider a second-order linear partial differential equation with zero initial condi-
tions:

Ut =Uξξ+ cUξ+A(ξ, t)U, (ξ, t) ∈ I×R+, U(ξ,0) = 0.

Apply Laplace transform L in t, write Û(ξ,s) = LU(ξ, t):

sÛ = Ûξξ+ cÛξ+
(

Â(ξ, ·) s∗Û(ξ, ·)
)
(s).

Convert both equations first-order systems in ξ:

Uξ =V, Vξ =Ut− cV −A(ξ, t)U, (U,V )(ξ,0) = (0,0)(9)

Ûξ = V̂ , V̂ξ = sÛ− cV̂ −
(

Â(ξ, ·) s∗Û(ξ, ·)
)
(s)(10)

We regard (9) as a linear differential equation in ξ on the Banach space
H0.75×0.25

0 (R+,γ), a space of functions of t (spatial dynamics).

We regard (10) as a linear differential equation in ξ on the Hardy-Lebesgue space
that corresponds to it, H 0.75×0.25(γ).
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2. Hardy-Lebesgue spaces

f (s) is in the Hardy-Lebesgue space H (γ),γ ∈ R, if

(1) f (s) is analytic in ℜ(s)> γ;
(2) supσ>γ(

∫
∞

−∞
| f (σ+ iω)|2dω)1/2 < ∞.

H (γ) is a Banach space with norm defined by (2).

For k ≥ 0 and γ ∈ R, define

H k(γ) = {u(s) : u(s) and (s− γ)ku(s) ∈H (γ)}.

Paley-Wiener Theorem.

• u(t) ∈ L2(R+,γ)⇐⇒ û(s) ∈H (γ).
• u(t) ∈ Hk

0(R+,γ)⇐⇒ û(s) ∈H k(γ).
• (u,v) ∈ Hk1×k2

0 (R+,γ)⇐⇒ (û, v̂) ∈H k1×k2(γ).

In each case, the mapping u→ û is a Banach space isomorphism

The Hardy-Lebesgue space that corresponds to H0.75×0.25
0 (R+,γ) is H 0.75×0.25(γ).



25

3. Exponential dichtomies in H0.75×0.25
0 (R+,γ) corespond to exponential di-

chotomies in H 0.75×0.25(γ)

Uξ =V, Vξ =Ut− cV −A(ξ, t)U, (U,V )(ξ,0) = (0,0)(9)

Ûξ = V̂ , V̂ξ = sÛ− cV̂ −
(

Â(ξ, ·) s∗Û(ξ, ·)
)
(s)(10)

Lemma. Assume (10) has an exponential dichotomy on H 0.75×0.25(γ) for ξ ∈ I.
Then (9) has an exponential dichotomy on H0.75×0.25

0 (R+,γ) for ξ∈ I, with the same
constants K, α. The projections and solution maps are related by Laplace trans-
form. In addition, u(ξ, t) ∈ H2,1

0 (I×R+,γ).
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4. Proving exponential dichotomies on Hardy-Lebesgue spaces if A(ξ, t) is
independent of t

If A(ξ, t) = A(ξ) is independent of time t, then (10) simplifies to

(11) Ûξ = V̂ , V̂ξ = sÛ− cV̂ −A(ξ)Û .

We can regard (11) as a family of ordinary differential equations in ξ ∈ I on
Cn, with s as a parameter in a set S ⊂ C, with solution operator T (ξ,ζ,s).

Let |u| denote the usual norm on Cn. Let Ek1×k2(s) denote Cn×Cn with the norm

|(u,v)|Ek1×k2(s) = (1+ |s|k1)|u|+(1+ |s|k2)|v|.

We say that (11) has a uniform exponential dichotomy on the spaces E0.75×0.25(s)
for s ∈ S and ξ ∈ I if it has an exponential dichotomy for each s; the projections
Pj(ξ,s), j = s,u, are analytic in s for fixed ξ; and there are constants K,α > 0 such
that, when norms in the spaces E0.75×0.25(s) are used,

(1) each K(s)≤ K, and
(2) ρ(s) = α(1+ |s|0.5).
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(11) Ûξ = V̂ , V̂ξ = sÛ− cV̂ −A(ξ)Û .

Lemma. Suppose (11) has a uniform exponential dichotomy on the spaces E0.75×0.25(s)
for ℜ(s) ≥ γ and ξ ∈ I. Then (11) has an exponential dichotomy on H 0.75×0.25(γ)
for ξ ∈ I with projections derived from those in E0.75×0.25(s), multiplicative constant
K, and exponent α.
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5. Proof of the Tail Lemma

y1 y2

x

Λ1 Λ2

y1+N y2−N
y

Γ

M1 M2

+ −

Let φ ∈ H0.75×0.25
0 (R+,γ). On Λ1∪Λ2, we look for U(x, t) that satisfies

Ut =Uxx+D f (q1(x− y1− c1t))U, (x, t) in Λ1,

Ut =Uxx+D f (q2(x− y2− c2t))U, (x, t) in Λ2,

U(x,0) = 0, [U,Ux](Γ) = φ.

The solution should decay exponentially in t as t→∞ and in x as (x, t) moves away
from Γ.

For large N, independent of y1 and y2, on Λ1 ∪Λ2, D f (q1(x− y1− c1t)) and
D f (q2(x− y2− c2t)) are both near D f (e1).
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Ut =Uxx+D f (q1(x− y1− c1t))U, (x, t) in Λ1,

Ut =Uxx+D f (q2(x− y2− c2t))U, (x, t) in Λ2,

U(x,0) = 0, [U,Ux](Γ) = φ.

Make Γ vertical. The exponential dichotomy for Ut =Uxx+D f (e1)U
on H0.75×0.25

0 (R+,γ) persists. Decompose the jump.

y1 y2
ξ

y1+N y2−N
y

P (φ)s−P (φ)u
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6. Proof of the Interior Lemma

Step 1: |s| ≥ ε. System:

Ut = L1U, (ξ, t) ∈ R×R+ \MN,

U(ξ,0) = 0, [(U,Uξ)](MN) = φ.

Laplace transform:

(12) 0 = (L1− sI)Û , [(Û ,Ûξ)](MN) = φ̂(s).

Write as a first-order system:

(13) Ûξ = V̂ , V̂ξ = (sI−D f (q j(ξ)))Û− c jV̂ , [(Û ,V̂ )](MN) = φ̂(s).

φ̂(s) is in H 0.75×0.25(γ). Look for solutions of (13) that decay to zero as ξ moves
away from MN.

Let ε > 0. For ℜ(s)≥ η and |s| ≥ ε, system (13) has a unique solution (Û ,V̂ )(ξ,s)
that decays exponentially as ξ→±∞. The solution depends analytically on s, and
there are constants C1(ε) > 0 and α1(ε) > 0 such that for ℜ(s) ≥ η, |s| ≥ ε, and
ρ1(ε) = α1(ε)(1+ |s|0.5), the solution satisfies

‖(Û ,V̂ )(ξ,s)‖E0.72×0.25(s) ≤C1(ε)e−ρ1(ε)|ξ−N||φ̂(s)|E0.72×0.25(s).
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Step 2: |s| ≤ ε.
Ut = L1U, (ξ, t) ∈ R×R+ \MN,

U(ξ,0) = 0, [(U,Uξ)](MN) = φ.

Let Pj = spectral projection of L2(R) onto < q′j >. Let U(ξ, t) =Y (ξ, t)+β(t)q′(ξ)
with PjY (·, t) = 0:

Yt + β̇(t)q′j(ξ) = L1Y, Y (ξ,0) = 0, β(0) = 0, [(Y,Yξ)](MN) = φ̂(s).

Write h(t) = β̇(t). Take Laplace transform:

(14) (L1− sI)Ŷ = ĥ(s)q′(ξ), [(Ŷ ,Ŷξ)](N) = φ̂(s),

Write as a first order system:

(15) (Ŷ , Ẑ)ξ = (Ẑ,(sI−D f (q j(ξ)))Ŷ −c jẐ)+(0, ĥ(s)q′j(ξ)), [(Ŷ , Ẑ)](N) = φ̂(s).

There exists ε> 0 such that for |s| ≤ ε, (15) has a unique solution ((Ŷ , Ẑ)(ξ,s), ĥ(s))
such that PjŶ (·,s) = 0 and (Ŷ , Ẑ)(ξ,s) decays exponentially as ξ → ±∞. The
solution depends analytically on s, and there are constants C2 > 0 and α2 > 0 such
that for |s| ≤ ε and ρ2 = α2(1+ |s|0.5), the solution satisfies

‖(Ŷ , Ẑ)(ξ,s)‖E0.72×0.25(s) ≤C2e−ρ2|ξ−N||φ̂(s)|E0.72×0.25(s).
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Proof: For each small s, there exist two exponential dichotomies for (15), for ξ≤ N
and for ξ ≥ N. Denote the projections by P−s (ξ,s)+P−u (ξ,s) = I for ξ ≤ N and
P+

s (ξ,s)+P+
u (ξ,s) = I for ξ≥ N.

Bounded solutions of (15) can be expressed as:

for ξ≤ N, (Ŷ , Ẑ)(ξ,s) = T (ξ,N,s)P−u (N,s)(Ŷ , Ẑ)(N−,s)

+
∫

ξ

−∞

T (ξ,ζ,s)P−s (ζ,s)(0, ĥ(s)q
′
j(ζ))dζ+

∫
ξ

N
T (ξ,ζ,s)P−u (ζ,s)(0, ĥ(s)q

′
j(ζ))dζ;

for ξ≥ N, (Ŷ , Ẑ)(ξ,s) = T (ξ,N,s)P+
s (N,s)(Ŷ , Ẑ)(N+,s)

+
∫

ξ

N
T (ξ,ζ,s)P+

s (ζ,s)(0, ĥ(s)q
′
j(ζ))dζ+

∫
ξ

∞

T (ξ,ζ,s)P+
u (ζ,s)(0, ĥ(s)q

′
j(ζ))dζ.

Let

µ−u (s) = P−u (N,s)(Ŷ , Ẑ)(N−,s), µ+
s (s) = P+

s (N,s)(Ŷ , Ẑ)(N+,s),

v(s) =
∫ N

−∞

T (N,ζ,s)P−s (ζ,s)(0,q
′
j(ζ))dζ+

∫
∞

N
T (N,ζ,s)P+

u (ζ,s)(0,q
′
j(ζ))dζ.

The jump condition at ξ = N is satisfied provided

µ+
s (s)−µ−u (s)− ĥ(s)v(s) = φ̂(s).
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µ+
s (s)−µ−u (s)− ĥ(s)v(s) = φ̂(s).

For each s this is 2n equations in the 2n+1 unknowns (µ−u ,µ
+
s ,h).

One more equation: P1Ŷ = 0.

Show invertibility at s = 0.

Step 3:

Express the solution from step 1 as Û(ξ,s) = Ŷ (ξ,s)+ ĥ(s)q′(ξ).

Combine the solutions from steps 1 and 2.

Invert the Laplace transform.


