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1. Introduction

A convection–di$usion system in one space dimension is a partial di"erential equa-
tion of the form

ut + A(u)ux = (B(u)ux)x: (1.1)

Here u∈Rn, and A(u) and B(u) are n×n matrices that we shall assume are C2 functions
of u. If we ignore di"usion, we have the convection system

ut + A(u)ux = 0: (1.2)

If A(u) =Df(u) for some 4ux function f : Rn → Rn, then Eq. (1.2) becomes

ut + f(u)x = 0; (1.3)

a system of conservation laws, while Eq. (1.1) becomes

ut + f(u)x = (B(u)ux)x; (1.4)

a system of viscous conservation laws. The conservation law case occurs more often
in applications and is far better studied; see [5] and [12]. However, equations of the
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form (1.2) and (1.1) that are not in conservation form arise in models of two-phase
4ow [13,10], deformation of elastic–plastic solids [14], and other applications.

One is forced to consider weak solutions of Eq. (1.3) or Eq. (1.2), since their
solutions can become discontinuous even for analytic initial data. For a system of
conservation laws (1.3), weak solutions are easily deFned. If

u(x) =

{
u− for x¡ 0;

u+ for x¿ 0
(1.5)

is a step function, then in the sense of distributions, f(u)x is the measure

(f(u+) − f(u−))�(x): (1.6)

This leads to the Rankine–Hugoniot condition: A step function whose discontinuity
propagates with speed s,

u(x; t) =

{
u− for x¡ st;

u+ for x¿ st
(1.7)

is a weak solution of Eq. (1.3) provided

f(u+) − f(u−) − s(u+ − u−) = 0: (1.8)

A step function (1.7) that satisFes (1.8), and is thus a weak solution of Eq. (1.3), is
called a shock wave.

Unfortunately, the notion of a weak solution of a system of conservation laws is
too generous; in particular, too many step function (1.7) satisfy the Rankine–Hugoniot
condition (1.8), so that initial value problems with discontinuous initial data can have
multiple solutions. The most successful remedy that has been proposed appears to be
the viscous pro2le criterion. The idea is that a system in the form of Eq. (1.3) typically
arises by assuming that the viscous term in a system in the form of Eq. (1.4) is small,
and then setting it to zero.

According to the viscous proFle criterion, a step function (1.7) is to be regarded as
a solution of Eq. (1.3) provided the viscous system (1.4) has a traveling-wave solution
u(x − st) with u(±∞) = u±; u′(±∞) = 0. If such a traveling wave exists, one easily
checks that u((x − st)=�) is a traveling-wave solution of

ut + f(u)x = �(B(u)ux)x: (1.9)

As � → 0, u((x − st)=�) converges to the discontinuous function (1.7). The viscous
proFle criterion thus accords with our intuition that solutions of Eq. (1.3) should be
limits, as the viscosity coeIcient � approaches 0, of solutions of Eq. (1.9).

A traveling-wave solution u(x − st) of Eq. (1.4) satisFes the ordinary di"erential
equation

(Df(u) − sI)u′ = (B(u)u′)′: (1.10)

Integrating and using the boundary conditions u(−∞) = u−, u′(−∞) = 0, yields

B(u)u′ =f(u) − f(u−) − s(u− u−): (1.11)
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Fig. 1. Geometry of the Majda–Pego Theorem.

Assuming B(u) is invertible in a region of interest, we have

u′ =B(u)−1{f(u) − f(u−) − s(u− u−)} (1.12)

an ordinary di"erential equation with parameters (u−; s) and an equilibrium at u= u−.
The traveling wave u(x−st) corresponds to a solution u(�) of Eq. (1.12) that goes from
the equilibrium u− at �= − ∞ to a second equilibrium u+ at �= + ∞. Since u+ must
be an equilibrium of Eq. (1.12), we recover the Rankine–Hugoniot condition (1.8).

For further insight we consider the bifurcation diagram of Eq. (1.12) with u−
Fxed and s the parameter. Let us assume that f is strictly hyperbolic at u−, i.e.,
Df(u−) has n distinct real eigenvalues �1 ¡ · · ·¡�n, with corresponding right eigen-
vectors r1; : : : ; rn. Under certain assumptions on B(u−) (the Majda–Pego conditions)
and D2f(u−) (genuine nonlinearity), Majda and Pego showed in [9] that the extended
system

u′ =B(u)−1{f(u) − f(u−) − s(u− u−)}; (1.13)

s′ = 0 (1.14)

has a two-dimensional center manifold at each (u; s) = (u−; �i). The 4ow of Eqs.
(1.13) and (1.14) on this center manifold exhibits a transcritical bifurcation as pictured
in Fig. 1. Thus for each i= 1; : : : ; n, there emanates from u− a one-sided curve of states
u+(s), s¡�i, such that for each s in the domain of u+(s) there is a solution u(�)
of Eq. (1.12) going from u− to u+(s). Moreover, if we write s= �i + �, then

u+(s) = u− + k�ri + o(�) (1.15)

for a certain nonzero constant k. We shall refer to this result, Theorem 3:1 of [9], as
the Majda–Pego Theorem. The equilibria u+ in Fig. 1 with s¿�i satisfy the Rankine–
Hugoniot condition but not the viscous proFle criterion.

The curves u+(s) for s close to �i are independent of the di"usion matrix B(u),
provided B(u) satisFes appropriate conditions, and are in fact the right states of shock
waves (1.7) that satisfy the Lax admissibility criterion [5]. However, Majda and Pego
also show that other B(u) will reverse the 4ow in Fig. 1, causing the opposite half-curve
of states u+ to become admissible. There are also other circumstances in which the
shock waves admissible under the viscous proFle criterion depend heavily on B(u) [1].
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If Eq. (1.2) is not in conservation form, it is not clear how to deFne weak solutions.
The basic problem is how to view A(u)ux as a measure when u(x) is given by (1.5);
apparently we must multiply a step function by a delta function. Dal Maso et al.
[2] proposed a neat solution whose power is demonstrated in [7] and [8]. We Frst
deFne a Fxed family of paths connecting states in Rn, � : [0; 1] × Rn × Rn → Rn,
�(0; u−; u+) = u−, �(1; u−; u+) = u+. Then, in the case of a step function (1.5), we
associate with A(u)ux the measure c�(x), where

c=
∫ 1

0
A(�(�))�′(�) d�

and �(�) =�(�; u−; u+). This leads to the DLM condition: A step function (1.7) is
considered to be a weak solution of Eq. (1.2) provided∫ 1

0
A(�(�))�′(�) d�− s(u+ − u−) = 0: (1.16)

Such a step function is again called a shock wave. Notice that if A(u) =Df(u) for a 4ux
function f, then c=f(u+)−f(u−), consistent with (1.6). In this case the admissibility
criterion (1.16) reduces to the Rankine–Hugoniot condition (1.8), independent of the
choice of �. However, when Eq. (1.2) is not in conservation form, the admissibility
criterion (1.16) depends on the choice of �.

LeFloch [6] observed that shock waves (1.7) for Eq. (1.2), admissible under the
DLM criterion, are limits of traveling-wave solutions of

ut + A(u)ux = �(B(u)ux)x (1.17)

as � → 0, provided the paths � are chosen appropriately. Indeed, let u(x − st) be a
traveling-wave solution of Eq. (1.1) with u(±∞) = u±, u′(±∞) = 0. Then

(A(u) − sI)u′ = (B(u)u′)′: (1.18)

Integration from �= − ∞ to �= + ∞ yields∫ +∞

−∞
A(u(�))u′(�) d�− s(u+ − u−) = 0: (1.19)

Now u((x − st)=�) is a traveling-wave solution of Eq. (1.17), which converges, as
� → 0, to the step function (1.7). Let  : (0; 1) → R be a bijection with  ′ ¿ 0,
and deFne �(�) =�(�; u−; u+) to be u( (�)). Then (1.7) satisFes the DLM condition
(1.16). Indeed, the integral in Eq. (1.16) is that in Eq. (1.19) after the change of
variables �=  (�).

LeFloch’s observation leads to the question of what traveling waves exist for
Eq. (1.1). Let us consider the analog of the strictly hyperbolic situation for conserva-
tion laws. Suppose that A(u−) has n distinct real eigenvalues �1 ¡ · · ·¡�n, with right
eigenvectors r1; : : : ; rn. LeFloch conjectured in [6] that under appropriate assumptions,
the situation should be the same as that for conservation laws. In other words, for
each i= 1; : : : ; n there should exist a one-sided curve u+(s), s¡�i, emanating from u−
parallel to the vector ri, such that for each s, Eq. (1.1) has a traveling-wave solution
u(x − st) going from u− to u+(s).
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Traveling-wave solutions of Eq. (1.1) are not as easily studied as those of Eq. (1.4)
because the ordinary di"erential equation (1.18), unlike (1.10), cannot in general be
integrated once. Moreover, the ODE (1.18), when converted to a Frst-order system on
R2n, has an n-dimensional plane of equilibria for each value of the parameter s, and is
thus quite degenerate. Nevertheless LeFloch’s conjecture was proved by Sainsaulieu in
[11] using a Fxed-point argument in a function space to Fnd the connecting orbits. For
invertible B(u), Sainsaulieu’s result is precisely analogous to the Majda–Pego theorem.
In addition, Sainsaulieu is able to treat certain degenerate di"usion matrices B(u), which
provides new information even in the conservation law case.

Our goal in this paper is to rederive Sainsaulieu’s results using a more standard
approach, center manifold reduction. Indeed, part of Sainsaulieu’s argument is reminis-
cent of a proof of the center manifold theorem. The greater simplicity and geometric
insight of the center manifold approach compensate, I hope, for the lack of novelty of
the results.

The traveling-wave solutions of Eq. (1.1) that are found by Sainsaulieu’s approach
or ours stay near the left state u− for all time, and have u′ near zero for all time.
In addition to Fnding curves of right states of such waves, Sainsaulieu addresses the
question of whether there are others. We shall address this question only when A(u)
is strictly hyperbolic and B(u)≡ I . Our argument, which is inspired by work of Peter
Szmolyan on a di"erent problem, emphasizes another aspect of the geometry of the
situation.

The remainder of this paper is organized as follows. In Section 2 we Fnd traveling
waves for the viscous Burger’s equation without integrating the traveling-wave equa-
tion. The geometry of our approach is clearest in this simple context, which does not
require center manifold reduction. In Section 3 we review the center manifold theo-
rem. In Section 4 we Fnd traveling waves assuming A(u) is strictly hyperbolic and
B(u)≡ I , which eliminates distracting algebra. In Section 5 we address uniqueness of
the traveling waves in the same situation. In Section 6 we Fnd traveling waves for
general invertible B(u), and in Section 7 for the degenerate di"usions considered by
Sainsaulieu. Theorems are stated precisely at the beginning of Sections 4, 5, 6 and 7.
In Section 8 we make some concluding remarks about the statements of some results
in [11].

2. Viscous Burger’s equation

Consider the viscous Burger’s equation,

ut + uux = uxx; (2.1)

with u∈R. We look for a traveling-wave solution u(x − st) with u(−∞) equal to a
Fxed state u−, u(+∞) close to u−, u′(±∞) = 0, and s close to u−. Thus we write

u= u(x − st) = u− + v(x − st); (2.2)

s= u− + �; (2.3)



40 S. Schecter / Nonlinear Analysis 49 (2002) 35–59

with

v(−∞) = 0; v′(−∞) = 0;

v(+∞) ∼ 0; v′(+∞) = 0;

� ∼ 0:

Substituting (2.2) and (2.3) into Eq. (2.1), we obtain

−(u− + �)v′ + (u− + v)v′ = v′′;

which simpliFes to

(v− �)v′ = v′′:

Usually this equation is integrated once. However, to provide a model for our later
work, we let w= v′ and obtain the system

v′ =w; (2.4)

w′ = (v− �)w: (2.5)

This is an autonomous ordinary di"erential equation on R2 with a parameter � and, for
each �, the line of equilibria w= 0. For � near 0 we wish to Fnd solutions (v(�); w(�))
such that

v(−∞) = 0; w(−∞) = 0;

v(+∞) ∼ 0; w(+∞) = 0:

Invariant curves of system (2.4), (2.5) are easily found by dividing w′ by v′ and
integrating:

dw
dv

=
w′

v′
=

(v− �)w
w

= v− �;

w= 1
2v

2 − �v + w0: (2.6)

To draw the phase portrait of system (2.4), (2.5) for Fxed �, we draw the curves (2.6)
in the vw-plane, indicate the equilibria on the line w= 0, and draw arrows to denote
the direction of 4ow. From (2.4), the 4ow is to the right in w¿ 0 and to the left in
w¡ 0 (see Fig. 2).

From the pictures we see that for each �¡ 0 there is a solution as desired. More
algebraically, to Fnd v(+∞) we note that the curve (2.6) that passes through (v; w) =
(0; 0) is

w= 1
2v

2 − �v= v
(

1
2v− �

)
:

This curve reintersects the line of equilibria w= 0 at v= 2�. Thus v(+∞) = 2�, and
only for �¡ 0 does the 4ow go from the equilibrium (0; 0) to the equilibrium (2�; 0).

Finally, we note that for s= u− + �, �¡ 0, we have

u+ = u− + v(+∞) = u− + 2�:

This is a “curve” u+(s) of right states of traveling waves with left state u− and speed s.
In this simple example the construction works for all �¡ 0, not just small �.
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Fig. 2. Flow of the traveling-wave system (2.4), (2.5) for Burger’s equation.

3. Center Manifold Theorem

Consider an ordinary di"erential equation z′ =f(z) on Rq with f(0) = 0. Assume
that f is Cp with p ¿ 1. The center subspace of Df(0) is the subspace of Rq

spanned by all eigenvectors and generalized eigenvectors of Df(0) corresponding to
eigenvalues with real part zero. The Center Manifold Theorem states that the system
z′ =f(z) has a locally invariant Cp manifold through 0 that is tangent at 0 to the center
subspace of Df(0). Moreover, any solution of z′ =f(z) that stays near the origin for
−∞¡t¡+∞ lies in this manifold, which is called a center manifold for the system.

Suppose a linear change of coordinates puts z′ =f(z) into the triangular form

x′ =Mx + Py + m(x; y); (3.1)

y′ =Ny + n(x; y); (3.2)

where m and n are Cp functions that are o(‖(x; y)‖). Suppose, that the spectrum of M
is contained in {�: Re �= 0}, and the spectrum of N is contained in {�: Re � 
= 0}.
Then the center subspace of the linearization of this system at the origin is x-space.
Hence, according to the Center Manifold Theorem, there is a Cp function y= g(x),
deFned on a neighborhood of 0 in x-space, with g(0) = 0 and Dg(0) = 0, such that the
manifold {(x; y): y= g(x)} is a center manifold for system (3.1), (3.2).



42 S. Schecter / Nonlinear Analysis 49 (2002) 35–59

The di"erential equation (3.1), (3.2) restricted to this manifold is the Cp system

x′ =Mx + Pg(x) + m(x; g(x)):

The Center Manifold Theorem can be applied to a di"erential equation with para-
meters z′ =f(z; )) if one Frst appends the system )′ = 0.

Early proofs of the Center Manifold Theorem only showed that center manifolds are
Cp−1. For a modern proof that shows they are Cp, see [15]. For examples of the use
of the Center Manifold Theorem in concrete problems, see [4].

4. Identity di�usion matrix

In this section we consider the convection–di"usion system (1.1) with A(u) strictly
hyperbolic and B(u)≡ I . Thus, we consider the system

ut + A(u)ux = uxx: (4.1)

Recall that the matrix A(u−) is strictly hyperbolic if it has n distinct real eigenvalues
�1 ¡ · · ·¡�n. Let ‘1; : : : ; ‘n and r1; : : : ; rn denote corresponding left and right eigen-
vectors, chosen so that ‘iri = 1 for i= 1; : : : ; n. The jth characteristic Feld is genuinely
nonlinear at u− if ‘j(DA(u−)rj)rj 
= 0. After replacing rj by −rj and ‘j by −‘j if
necessary, we may assume that ‘j(DA(u−)rj)rj ¿ 0.

Theorem 4.1. In Eq. (4:1) assume:
(1) A(u) is a C2 function of u.
(2) A(u−) is strictly hyperbolic.
(3) The jth characteristic 2eld is genuinely nonlinear at u−.
Let aj = ‘j(DA(u−)rj)rj ¿ 0. Then for small �¡ 0 there exists a traveling-wave
solution u(x − st) of Eq. (4:1); s= �j + �; with

u(−∞) = u−;

u′(−∞) = 0;

u(+∞) = u− +
2
aj

�rj + o(�);

u′(+∞) = 0;

and

u(�) ∼ u− and u′(�) ∼ 0 for −∞¡�¡ + ∞:

The formula for u(+∞) gives a curve u+(s) of right states of traveling waves with
left state u− and speed s.

Proof. We shall do the case j = 1. Let

u= u(x − st) = u− + v(x − st); (4.2)

s= �1 + �; (4.3)
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with

v(−∞) = 0; v′(−∞) = 0; (4.4)

v(+∞) ∼ 0; v′(+∞) = 0; (4.5)

� ∼ 0; (4.6)

and

v(�) ∼ 0 and v′(�) ∼ 0 for −∞¡�¡ + ∞: (4.7)

Substituting (4.2) and (4.3) into Eq. (4.1), we obtain

(A(u− + v) − (�1 + �)I)v′ = v′′: (4.8)

Let C(v) =A(u− + v) − �1I . Then Eq. (4.8) becomes

(C(v) − �I)v′ = v′′; (4.9)

where:
(1′) C(v) is a C2 function of v.
(2′) C(0) has distinct real eigenvalues 0; �2 − �1; : : : ; �n − �1, with corresponding left

and right eigenvectors ‘1; : : : ; ‘n and r1; : : : ; rn.
(3′) ‘1(DC(0)r1)r1 = a1 ¿ 0.

In Eq. (4.9) let w= v′. We obtain the system

v′ =w; (4.10)

w′ = (C(v) − �I)w: (4.11)

Since � is a parameter and we wish to use center manifold reduction, we append
equation

�′ = 0: (4.12)

System (4.10)–(4.12) is a C2 autonomous ODE on R2n+1 with the (n+1)-dimensional
plane of equilibria w= 0. For � near 0 we want to Fnd solutions (v(�); w(�); �) such
that

v(−∞) = 0; w(−∞) = 0; (4.13)

v(+∞) ∼ 0; w(+∞) = 0; (4.14)

and

v(�) ∼ 0 and w(�) ∼ 0 for −∞¡�¡ + ∞: (4.15)

Such solutions must lie in the center manifold of (v; w; �) = (0; 0; 0).
Let R= (r1; : : : ; rn), an n× n matrix, so that

R−1 =




‘1

...

‘n


 : (4.16)
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Make the change of variables v=Rx and w=Ry. Then system (4.10)–(4.12) becomes
the C2 system

x′ =y; (4.17)

y′ =R−1(C(Rx) − �I)Ry; (4.18)

�′ = 0: (4.19)

The linearization of system (4.17)–(4.19) at the equilibrium (x; y; �) = (0; 0; 0) is

x′ =y; (4.20)

y′ =R−1C(0)Ry; (4.21)

�′ = 0: (4.22)

Notice that R−1C(0)R is a diagonal matrix with entries 0; �2 − �1; : : : ; �n − �1.
The characteristic polynomial of the linear system (4.20)–(4.22) has 0 as a root of

multiplicity n+2 and has no other roots on the imaginary axis. The (n+2)-dimensional
generalized eigenspace for the eigenvalue 0 is xy1�-space. The center manifold is
therefore tangent to this space, so its equations are

yi = gi(x; y1; �); i= 2; : : : ; n;

with each gi a C2 function, gi(0; 0; 0) = 0, and Dgi(0; 0; 0) = 0. However, all points
(x; 0; �) are equilibria, hence are in the center manifold. Therefore we must have
gi(x; 0; �)≡ 0 for i= 2; : : : ; n. Hence

yi =y1hi(x; y1; �); i= 2; : : : ; n; (4.23)

with each hi a C1 function such that y1hi is C2, and hi(0; 0; 0) = 0 because
Dgi(0; 0; 0) = 0.

The di"erential equation (4.17)–(4.19), restricted to the center manifold, becomes

x′1 =y1; (4.24)

x′2 =y1h2; (4.25)

...

x′n =y1hn; (4.26)

y′
1 = ‘1(C(Rx) − �I)R(y1; y1h2; : : : ; y1hn)�; (4.27)

�′ = 0: (4.28)

Using ‘1C(0) = 0 and hi(0; 0; 0) = 0, Eq. (4.27) can be expanded as follows:

y′
1 = y1‘1(C(0) + DC(0)Rx + · · · − �I)R(1; h2; : : : ; hn)�

= y1‘1{(DC(0)Rx − �I)R(1; 0; : : : ; 0)� + · · ·}
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= y1‘1

{(
n∑

i = 1

xiDC(0)ri − �I

)
r1 + · · ·

}

= y1

(
n∑

i = 1

aixi − � + · · ·
)

;

where ai = ‘1(DC(0)ri)r1, so a1 ¿ 0 by (3′), and “+ · · ·” indicates higher-order terms.
Eqs. (4.24)–(4.27) constitute a C2 autonomous ODE on Rn+1 with a parameter �.

For each � we have the n-dimensional plane of equilibria y1 = 0. For � near 0 we wish
to Fnd solutions that go from the equilibrium (x; y1) = (0; 0) to a nearby equilibrium
(x; 0).

To Fnd invariant curves of system (4.24)–(4.27), we Frst divide Eqs. (4.25)–(4.27)
by Eq. (4.24):

dx2

dx1
=

x′2
x′1

= h2; (4.29)

...

dxn

dx1
=

x′n
x′1

= hn; (4.30)

dy1

dx1
=

y′
1

x′1
=

n∑
i = 1

aixi − � + · · · : (4.31)

Eqs. (4.29)–(4.31) are a C1 nonautonomous ODE on Rn with x1 playing the role of
time and � a parameter.

We are interested in solutions

(x2(x1; �); : : : ; xn(x1; �); y1(x1; �))

with

(x2(0; �); : : : ; xn(0; �); y1(0; �)) = (0; : : : ; 0; 0):

These solutions of course have the form

x2 = x1�2(x1; �); (4.32)

...

xn = x1�n(x1; �); (4.33)

y1 = x1 (x1; �): (4.34)

Here each �i and  are C1 by Lemma 4.2, which will be proved at the end of
this section. Since hi(0; 0; 0) = 0 for i= 2; : : : ; n, we have �i(0; 0) = 0 for i= 2; : : : ; n.
Similarly,  (0; 0) = 0. We can easily calculate  to Frst order by substituting Eq. (4.34)
into Eq. (4.31). We obtain

 (x1; �) =
a1

2
x1 − � + · · · : (4.35)
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Fig. 3. The curves y1 = x1 (x1; �).

For each � the curve given by Eqs. (4.32)–(4.34) passes through (x; y1) = (0; 0);
that is how it was chosen. It again meets the plane of equilibria y1 = 0 where  = 0.
Since a1 
= 0 by assumption, we can solve the equation  (x1; �) = 0 for x1 near the
origin by the Implicit Function Theorem:

x1 =
2
a1

� + o(�): (4.36)

Since a1 ¿ 0, the curves y1 = x1 (x1; �) are as pictured in Fig. 3. Since x′1 =y1, only
for �¡ 0 does the connection go from the origin to the nearby equilibrium with y1 = 0.

Substituting formula (4.36) into Eqs. (4.32) and (4.33) and recalling that �i(0; 0) = 0
for i= 2; : : : ; n, we obtain

xi = o(�); i= 2; : : : ; n: (4.37)

Eqs. (4.36) and (4.37) yield the desired formula for u(+∞) after the change of vari-
ables v=Rx.

Lemma 4.2. Consider the nonautonomous parameterized family of ODEs dx=dt =
f(t; x; )), with f :R × Rn × Rp → Rn a C1 function. Let x= 0(t; )) be the family
of solutions with 0(0; )) = 0. Then 0(t; )) = t1(t; )) with 1(t; )) a C1 function.

Proof. Since a C1 ODE has a C1 4ow, 0(t; )) is C1. Moreover

0(t; )) =
∫ t

0
f(�; 0(�; )); )) d�

=
∫ 1

0
f(t2; 0(t2; )); )) t d2

= t
∫ 1

0
f(t2; 0(t2; )); )) d2

= t1(t; ));

where 1(t; )) is C1 because f and 0 are.
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5. Uniqueness

In Eq. (4.1), if A(u) is a C2 function of u, A(u−) is strictly hyperbolic, and all
n characteristic Felds are genuinely nonlinear at u−, then Theorem 4.1 asserts the
existence of n one-sided curves ui(s), s¡�i, emanating from u−. For each s in the
domain of ui(s), there is a traveling-wave solution u(x − st) for Eq. (4.1) such that

u(−∞) = u−; u′(−∞) = 0; (5.1)

u(+∞) = ui(s); u′(+∞) = 0; (5.2)

and

u(�) ∼ u− and u′(�) ∼ 0 for −∞¡�¡ + ∞: (5.3)

In this section we shall show

Theorem 5.1. Under the above assumptions; there is an 3¿ 0 such that if u(x − st)
is a traveling-wave solution of Eq. (4:1) such that

u(−∞) = u−; u′(−∞) = 0;

‖u(+∞) − u−‖¡3; u′(+∞) = 0;

and

‖u(�) − u−‖¡3 and ‖u′(�)‖¡3 for −∞¡�¡ + ∞;

then there is a number �0 such that u(x− st+�0) is one of the traveling waves whose
existence is given by Theorem 4:1.

Proof. We look for traveling-wave solutions u(x − st) of Eq. (4.1) satisfying (5.1)–
(5.3). Then

(A(u) − sI)u′ = u′′:

Letting w= u′, we obtain the system

u′ =w; (5.4)

w′ = (A(u) − sI)w: (5.5)

We append equation

s′ = 0: (5.6)

System (5.4)–(5.6) is a C2 autonomous ODE on R2n+1 with the (n + 1)-dimensional
plane of equilibria P = {(u; w; s): w= 0}. Each 2n-dimensional plane s= constant is
invariant. We must Fnd solutions (u(�); w(�); s) of (5.4)–(5.6) such that
(1) lim�→−∞ (u(�); w(�); s) = (u−; 0; s),
(2) lim�→+∞ (u(�); w(�); s) = (u+; 0; s) with u+ ∼ u−, and
(3) u(�) ∼ u− and u′(�) ∼ 0 for −∞¡�¡ + ∞.
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Since (u(�); w(�); s) is a solution of system (5.4)–(5.6) if and only if the shift (u(�+
�0); w(� + �0); s) is a solution, we shall ignore such shifts in the following.

Let L= {(u; w; s): u= u− and w= 0}, a line in P. Then according to (1)–(3) we
are looking for solutions (u(�); w(�); s) of (5.4)–(5.6) that approach a point of L as
� → −∞, that approach a point in P near L as � → +∞, and that stay near L for
all time.

At any point (u0; 0; s0)∈P, let u= u0 + v and s= s0 + �. Then the linearization of
system (5.4)–(5.6) at (u0; 0; s0) is

v′ =w; w′ = (A(u0) − s0I)w; �′ = 0:

This linear system has v�-space as an invariant subspace on which it is identically
0 (corresponding to the plane of equilibria P). If no eigenvalue of A(u0) − s0I is 0,
then there is a complementary invariant subspace on which the eigenvalues are those
of A(u0) − s0I .

According to Theorem 4.1, emanating from each point (u−; 0; �i)∈L is a one-sided
curve (ui(s); 0; s), s¡�i, in P, such that for each s in the domain of ui(s), there
is a solution of the system (5.4)–(5.6) that goes from (u−; 0; s) to (ui(s); 0; s) while
staying near L. Moreover, the proof actually shows that for suIciently small �¿ 0,
all solutions (u(�); w(�); s) of the system (5.4)–(5.6) that satisfy
(a) lim�→−∞ (u(�); w(�); s) = (u−; 0; s),
(b) lim�→+∞ (u(�); w(�); s) = (u+; 0; s) with ‖u+ − u−‖¡�,
(c) ‖u(�) − u−‖¡� and ‖w(�)‖¡� for −∞¡�¡ + ∞, and
(d) �i − �¡s¡�i + � for some i= 1; : : : ; n,
are given by the theorem.

Fix such a �¿ 0. Let 4¿ 0, and let

E0 = {(u; 0; s): ‖u− u−‖6 4 and s6 �1 − �};
E1 = {(u; 0; s): ‖u− u−‖6 4 and �1 + �6 s6 �2 − �};
...

En−1 = {(u; 0; s): ‖u− u−‖6 4 and �n−1 + �6 s6 �n − �};
En = {(u; 0; s): ‖u− u−‖6 4 and �n + �6 s};

Each of E0; : : : ;En is a closed n-dimensional manifold-with-corners consisting entirely
of equilibria; E1; : : : ;En−1 are compact. We shall assume 4 is suIciently small so
that each Ei is normally hyperbolic, which in this simple context just means that
for each (u; 0; s)∈Ei, A(u) − sI has no eigenvalue with real part 0. More precisely,
at (u; 0; s)∈Ei, A(u) − sI has n − i positive real eigenvalues and i negative real
eigenvalues.

Fig. 4 may be helpful in keeping track of the notation and geometry of this section.
It is supposed to show the case n= 2, but u-space and w-space are drawn as if they
were one-dimensional.
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Fig. 4. Notation and geometry in the case n= 2 for the proof of the uniqueness theorem; u-space and
w-space are drawn as if they were one-dimensional. The eigenvalues of A(u) are �1(u)¡�2(u). E0 is
normally repelling, E1 is normally of saddle type, and E2 is normally attracting.

By results of Fenichel [3], each Ei, i= 1; : : : ; n − 1 (the compact ones), has local
stable and unstable manifolds that Fber over Ei. This means: through each point (u; 0; s)
in Ei there is a manifold Ui(u; 0; s), of dimension n− i, consisting of orbits asymptotic
to (u; 0; s) in backward time, and a manifold Si, of dimension i, consisting of orbits
asymptotic to (u; 0; s) in forward time; the Ui(u; 0; s) Ft together to form a manifold
Ui of dimension 2n + 1 − i, the local unstable manifold of Ei, and the Si(u; 0; s) Ft
together to form a manifold Si of dimension n+1+ i, the local stable manifold of Ei;
Ui and Si intersect only along Ei; and there is a neighborhood Ni of Ei such that
any orbit in Ni that is backward asymptotic to Ei without leaving Ni is contained
in Ui, and any orbit in Ni that is forward asymptotic to Ei without leaving Ni is
contained in Si. Since Ui and Si intersect only along Ei, this implies that for each
(u−; 0; s)∈Ei, there is no solution of system (5.4)–(5.6) that approaches (u−; 0; s) in
backward time and approaches a point (u; 0; s)∈Ei in forward time while staying in
Ni. In particular, because of the compactness of Ei, there exists 3i ¿ 0 such that there
is no solution (u(�); w(�); s) of system (5.4)–(5.6) with �i + � 6 s 6 �i+1 − � that
satisFes (a)–(c) with � replaced by 3i.

The set E0, on which system (5.4)–(5.6) is normally repelling, is not compact.
Nevertheless, Fenichel’s results imply the existence of a neighborhood of E0 in uws-
space consisting entirely of a neighborhood of E0 in P and orbits that approach it in
backward time. Thus there is no solution (u(�); w(�); s) of system (5.4)–(5.6) with
s6 �1 − � that satisFes (a)–(b) with � replaced by 4.

Similarly, since En is normally attracting, there is no solution (u(�); w(�); s) of sys-
tem (5.4)–(5.6) with �n + �6 s that satisFes (1).

Letting 3= min(�; 4; 31; : : : ; 3n), the result is proved.
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6. Invertible di�usion matrix

In this section we consider the convection–di"usion system (1.1) with B(u−) invert-
ible. In the interest of generality, we do not assume that A(u−) is strictly hyperbolic.

Theorem 6.1. In Eq. (1:1) assume:
(1) A(u) and B(u) are C2 functions of u.
(2) A(u−) has a simple real eigenvalue �1 with left eigenvector ‘1; right eigenvector

r1; ‘1r1 = 1.
(3) ‘1(DA(u−)r1)r1 ¿ 0.
(4) B(u−) is invertible.
(5) ‘1B(u−)r1 ¿ 0.
(6) B(u−)−1(A(u−) − �1I) has no purely imaginary eigenvalues other than 0.
Let a1 = ‘1(DA(u−)r1)r1 ¿ 0 and b1 = ‘1B(u−)r1 ¿ 0. Then for small �¡ 0 there

exists a traveling-wave solution u(x − st) of Eq. (1:1); s= �1 + �, with

u(−∞) = u−;

u′(−∞) = 0;

u(+∞) = u− +
2b1

a1
�r1 + o(�);

u′(+∞) = 0; (6.1)

and

u(�) ∼ u− and u′(�) ∼ 0 for −∞¡�¡ + ∞:

Assumption (3) is genuine nonlinearity of one characteristic Feld. Assumptions
(4)–(6) are the Majda–Pego conditions. This theorem is analogous to the Majda–Pego
theorem for conservation laws, but the proof is di"erent. If assumption (5) is changed
to ‘1B(u−)r1 ¡ 0, then the traveling waves are deFned for �¿ 0; otherwise the con-
clusions of the theorem are unchanged.

The formula for u(+∞) gives a curve u+(s) of right states of traveling waves with
left state u− and speed s.

Proof. We make substitutions (4.2) and (4.3), where v and � satisfy Eqs. (4.4)–(4.7),
in Eq. (1.1). We obtain

(A(u− + v) − (�1 + �)I)v′ = (B(u− + v)v′)′: (6.2)

Let C(v) =A(u− + v) − �1I and E(v) =B(u− + v). Then Eq. (6.2) becomes

(C(v) − �I)v′ = (E(v)v′)′; (6.3)

where
(1′) C(v) and E(v) are C2 functions of v.
(2′) C(0) has a simple real eigenvalue 0 with left eigenvector ‘1, right eigenvector r1,

‘1r1 = 1.
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(3′) ‘1(DC(0)r1)r1 = a1 ¿ 0.
(4′) E(0) is invertible.
(5′) ‘1E(0)r1 = b1 ¿ 0.
(6′) E(0)−1C(0) has no purely imaginary eigenvalues other than 0.

Let E(v) =E(0)Ẽ(v), so that Ẽ(0) = I . Let

w= Ẽ(v)v′: (6.4)

Then

E(0)w′ = (E(0)w)′ = (E(0)Ẽ(v)v′)′ = (E(v)v′)′: (6.5)

From Eqs. (6.3)–(6.5) we obtain system

v′ = Ẽ(v)−1w; (6.6)

w′ =E(0)−1(C(v) − �I)Ẽ(v)−1w: (6.7)

We append equation

�′ = 0: (6.8)

System (6.6)–(6.8) is a C2 autonomous ODE on R2n+1 with (n+1)-dimensional plane
of equilibria w= 0. For � near 0 we want to Fnd solutions (v(�); w(�); �) that satisfy
(4.13)–(4.15). Such solutions must lie in the center manifold of (v; w; �) = (0; 0; 0).

By (4′) and (5′) we can choose a basis S = (s1; : : : ; sn) for Rn such that
(a) s1 = 1

b1
r1, so ‘1E(0)s1 = 1.

(b) ‘1E(0)si = 0 for i= 2; : : : ; n.
Make the change of variables v= Sx and w= Sy. Then system (6.6)–(6.8) becomes
the C2 system

x′ = S−1Ẽ(Sx)−1Sy; (6.9)

y′ = S−1E(0)−1(C(Sx) − �I)Ẽ(Sx)−1Sy; (6.10)

�′ = 0: (6.11)

Since Ẽ(0) = I , the linearization of system (6.9)–(6.11) at the equilibrium (x; y; �) =
(0; 0; 0) is

x′ =y; (6.12)

y′ = S−1E(0)−1C(0)Sy; (6.13)

�′ = 0: (6.14)

The characteristic polynomial of the linear system (6.12)–(6.14) is p(�) = �n+1q(�),
where q(�) is the characteristic polynomial of E(0)−1C(0). By (2′), 0 is an eigenvalue
of E(0)−1C(0) with one-dimensional eigenspace spanned by r1. Moreover, E(0)−1C(0)
has no generalized eigenvectors for the eigenvalue 0. To see this, suppose there is a
vector v such that E(0)−1C(0)v= r1. Then C(0)v=E(0)r1. Multiplication by ‘1 yields
0 = ‘1E(0)r1, which contradicts (5′). Thus q(�) has a simple root �= 0, and by (6′)
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there are no other pure imaginary roots. Thus the center subspace of the linear system
(6.12)–(6.14) is the (n + 2)-dimensional generalized eigenspace for the eigenvalue 0,
which is xy1�-space. Since all points (x; 0; �) are equilibria of system (6.6)–(6.8),
as in Section 4, the equations for the center manifold are (4.23) with each hi a C1

function such that y1hi is C2, and hi(0; 0; 0) = 0.
The di"erential equation (6.9)–(6.11), restricted to the center manifold, is obtained

as in Section 4. Note that to obtain y′
1, we simply replace S−1E(0)−1 = (E(0)S)−1 on

the right-hand side of Eq. (6.13) by its Frst row; by (a) and (b), this is ‘1. Thus we
obtain the C2 system

x′1 =y1; (6.15)

x′2 =y1h2; (6.16)

...

x′n =y1hn; (6.17)

y′
1 = ‘1(C(Sx) − �I)Ẽ(Sx)−1S(y1; y1h2; : : : ; y1hn)� (6.18)

�′ = 0: (6.19)

Using ‘1C(0) = 0 and hi(0; 0; 0) = 0, Eq. (6.18) can be expanded as follows:

y′
1 = y1‘1(C(0) + DC(0)Sx + · · · − �I)(I + · · ·)S(1; h2; : : : ; hn)�

= y1‘1(DC(0)Sx + · · · − �I)(I + · · ·)S(1; h2; : : : ; hn)�

= y1‘1{(DC(0)Sx − �I)S(1; 0; : : : ; 0)� + · · ·}

= y1‘1

{(
n∑

i = 1

xiDC(0)si − �I

)
s1 + · · ·

}

= y1

(
n∑

i = 1

cixi − 1
b1

� + · · ·
)

;

where ci = ‘1(DC(0)si)s1. In particular, c1 = a1=b2
1 
= 0.

Since a1 ¿ 0 and b1 ¿ 0, the remainder of the proof is similar to that of Theo-
rem 4.1.

7. Degenerate di�usion

In this section, following Sainsaulieu, we consider the convection–di"usion system
(1.1) and assume that the Frst p equations contain no di"usion terms. Thus we write
u= (u1; u2) with u1 ∈Rp, u2 ∈Rq, and p + q= n;

A(u) =

(
A1(u) A2(u)

A3(u) A4(u)

)
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with A1 a p×p matrix, A2 a p× q matrix, A3 a q×p matrix, and A4 a q× q matrix;
and

B(u) =

(
0 0

B1(u) B2(u)

)
(7.1)

with B1 a q × p matrix and B2 a q × q matrix. As in Section 6, in the interest of
generality we do not assume that A(u−) is strictly hyperbolic.

Theorem 7.1. In Eq. (1:1) with the above assumptions and notation; assume:
(1) A(u) and B(u) are C2 functions of u.
(2) A(u−) has a simple real eigenvalue � with left eigenvector ‘; right eigenvector r;

‘r = 1.
(3) A1(u−) − �I is invertible.
(4) ‘(DA(u−)r)r ¿ 0.
(5) −B1(u−)(A1(u−) − �I)−1A2(u−) + B2(u−) is invertible.
(6) ‘B(u−)r ¿ 0.
(7) For each nonzero real !; the equation (A(u−) − �I)v= i!B(u−)v has only the

trivial solution.
Let a= ‘(DA(u−)r)r ¿ 0 and b= ‘B(u−)r ¿ 0. Then for small �¡ 0 there exists

a traveling-wave solution u(x − st) of Eq. (4:1); s= � + �; with

u(−∞) = u−;

u′(−∞) = 0;

u(+∞) = u− +
2b
a
�r + o(�);

u′(+∞) = 0; (7.2)

and

u(�) ∼ u− and u′(�) ∼ 0 for −∞¡�¡ + ∞:

Assumption (4) is genuine nonlinearity of one characteristic Feld. Assumptions
(5)–(7) are analogous to assumptions (4)–(6) of Theorem 6.1. If assumption (6) is
changed to ‘B(u−)r ¡ 0, then the traveling waves are deFned for �¿ 0; otherwise the
conclusions of the theorem are unchanged. Assumption (3) is special to the degenerate
di"usion case.

The formula for u(+∞) gives a curve u+(s) of right states of traveling waves with
left state u− and speed s.

Proof. Substituting u= u(x − st) into Eq. (1.1) yields

(A1(u) − sI)u1′ + A2(u)u2′ = 0; (7.3)

A3(u)u1′ + (A4(u) − sI)u2′ = (B1(u)u1′ + B2(u)u2′)′: (7.4)
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For (u; s) near (u−; �) we can invert A1(u)−sI by (3). Thus Eq. (7.3) can be rewritten

u1′ = − (A1(u) − sI)−1A2(u)u2′: (7.5)

Substituting (7.5) into Eq. (7.4) yields

{−A3(u)(A1(u) − sI)−1A2(u) + A4(u) − sI}u2′

= {(−B1(u)(A1(u) − sI)−1A2(u) + B2(u))u2′}′: (7.6)

In Eqs. (7.5) and (7.6), let u(�) = u− + v(�) and s= � + �, where v and � satisfy
Eqs. (4.4)–(4.7). We obtain the C2 system

v1′ =G(v; �)v2′ ; (7.7)

C(v; �)v2′ = (E(v; �)v2′)′ (7.8)

with

G(v; �) = − {A1(u− + v) − (� + �)I}−1A2(u− + v);

C(v; �) = −A3(u− + v){A1(u− + v) − (� + �)I}−1A2(u− + v)

+A4(u− + v) − (� + �)I;

E(v; �) = − B1(u− + v){A1(u− + v) − (� + �)I}−1A2(u− + v) + B2(u− + v):

Notice E(0; 0) is invertible by assumption (5). Let E(v; �) =E(0; 0)Ẽ(v; �), so that
Ẽ(0; 0) = I . Let

w2 = Ẽ(v; �)v2′: (7.9)

Then

E(0; 0)w2′ = (E(0; 0)w2)′ = (E(0; 0)Ẽ(v; �)v2′)′ = (E(v; �)v2′)′: (7.10)

From Eqs. (7.7)–(7.10) we obtain the system

v1′ =G(v; �)Ẽ(v; �)−1w2; (7.11)

v2′ = Ẽ(v; �)−1w2; (7.12)

w2′ =E(0; 0)−1C(v; �)Ẽ(v; �)−1w2: (7.13)

We append equation

�′ = 0: (7.14)

System (7.11)–(7.14) is a C2 autonomous ODE on Rn+q+1 with the (n+1)-dimensional
plane of equilibria w2 = 0. We want to Fnd solutions (v(�); w2(�); �) that stay near the
origin for all time and satisfy

v(−∞) = 0; w2(−∞) = 0;

v(+∞) ∼ 0; w2(+∞) = 0:

Such solutions must lie in the center manifold of (v; w2; �) = (0; 0; 0).
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We collect some facts about C(0; 0) and E(0; 0). They are analogs of assumptions
(2), (4), (6), and (7).

Lemma 7.2. C(0; 0) has an eigenvalue 0 with one-dimensional eigenspace. A left
eigenvector is ‘2 and a right eigenvector is r2.

Proof. We write equation

(A(u−) − �I)v= 0 (7.15)

as the system

(A1(u−) − �I)v1 + A2(u−)v2 = 0; (7.16)

A3(u−)v1 + (A4(u−) − �I)v2 = 0: (7.17)

Since A1(u−) − �I is invertible by (3), we can solve Eq. (7.16) for v1 and substitute
the answer into Eq. (7.17). We Fnd that v= (v1; v2) is a solution of Eq. (7.15) if and
only if

v1 = − (A1(u−) − �I)−1A2(u−)v2; (7.18)

C(0; 0)v2 = 0: (7.19)

It then follows from (2) that the only solutions of Eq. (7.19) are multiples of r2.
Similarly, we write equation

z(A(u−) − �I) = 0 (7.20)

as the system

z1(A1(u−) − �I) + z2A3(u−) = 0;

z1A2(u−) + z2(A4(u−) − �I) = 0:

Thus z = (z1; z2) is a solution of Eq. (7.20) if and only if

z1 = − z2A3(u−)(A1(u−) − �I)−1; (7.21)

z2C(0; 0) = 0: (7.22)

It then follows from (2) that the only solutions of Eq. (7.22) are multiples of ‘2.

Lemma 7.3. ‘2(D1C(0; 0)r)r2 = a¿ 0.

Proof. From Eq. (7.18)

r1 = − (A1(u−) − �I)−1A2(u−)r2: (7.23)

From Eq. (7.21)

‘1 = − ‘2A3(u−)(A1(u−) − �I)−1: (7.24)
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Now

a= ‘(DA(u−)r)r = (‘1 ‘2)

(
DA1(u−)r DA2(u−)r

DA3(u−)r DA4(u−)r

)(
r1

r2

)
: (7.25)

Substitute Eqs. (7.23) and (7.24) into Eq. (7.25), multiply out, and compare to

‘2(D1C(0; 0)r)r2 = ‘2{−DA3(u1)r(A1(u−) − �I)−1A2(u−)

+A3(u−)(A1(u−) − �I)−1DA1(u−)r(A1(u−) − �I)−1A2(u−)

−A3(u−)(A1(u−) − �I)−1DA2(u−)r + DA4(u1)r}r2:

Lemma 7.4. ‘2E(0; 0)r2 = b¿ 0.

Proof. From (6) we have

(‘1 ‘2)

(
0 0

B1(u−) B2(u−)

)(
r1

r2

)
= b¿ 0;

i.e.,

‘2(B1(u−)r1 + B2(u−)r2) = b¿ 0: (7.27)

Substituting (7.23) into (7.27) yields the result.

Lemma 7.5. E(0; 0)−1C(0; 0) has no purely imaginary eigenvalues other than 0.

Proof. Suppose there is a nonzero vector v2 such that E(0; 0)−1C(0; 0)v2 = i!v2 with
! a nonzero real number. Then C(0; 0)v2 = i!E(0; 0)v2, i.e.,

{−A3(u−)(A1(u−) − �I)−1A2(u−) + A4(u−) − �I}v2

= i!{−(B1(u−)(A1(u−) − �I)−1A2(u−) + B2(u−)}v2:

Letting v1 = − (A1(u−) − �I)−1A2(u−)v2, we Fnd that(
A1(u−) − �I A2(u−)

A3(u−) A4(u−) − �I

)(
v1

v2

)
= i!

(
0 0

B1(u−) B2(u−)

)(
v1

v2

)
:

(7.29)

This contradicts (7).

Let R= (r1; : : : ; rn) be a basis for Rn such that r1 = (1=b)r and ‘ri = 0 for i= 2; : : : ; n.
Then the Frst row of R−1 is b‘.

Let S = (s1; : : : ; sq) be a basis for Rq such that
(a) s1 = (1=b)r2, so ‘2E(0; 0)s1 = 1.
(b) ‘2E(0; 0)si = 0 for i= 2; : : : ; q.
We can choose such a basis by (5) and Lemma 7.4.
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Make the change of variables v=Rx and w2 = Sy. Then system (7.11)–(7.14)
becomes

x′ =R−1

(
G(Rx; �)

I

)
Ẽ(Rx; �)−1Sy (7.30)

y′ = S−1E(0; 0)−1C(Rx; �)Ẽ(Rx; �)−1Sy; (7.31)

�′ = 0: (7.32)

The linearization of system (7.30)–(7.32) at the equilibrium (x; y; �) = (0; 0; 0) is

x′ =R−1

(
G(0; 0)

I

)
Sy; (7.33)

y′ = S−1E(0; 0)−1C(0; 0)Sy; (7.34)

�′ = 0: (7.35)

The characteristic polynomial of the linear system (7.33)–(7.35) is p(�) = �n+1q(�),
where q(�) is the characteristic polynomial of E(0; 0)−1C(0; 0). By Lemma 7.2, 0 is an
eigenvalue of E(0; 0)−1C(0; 0) with one-dimensional eigenspace spanned by r2. More-
over, E(0; 0)−1C(0; 0) has no generalized eigenvectors for the eigenvalue 0. For sup-
pose there is a vector v2 such that E(0; 0)−1C(0; 0)v2 = r2. Then C(0; 0)v2 =E(0; 0)r2.
By Lemma 7.2, multiplication by ‘2 yields 0 = ‘2E(0; 0)r2, which contradicts Lemma
7.4. Thus q(�) has a simple root �= 0, and by Lemma 7.5 there are no other pure
imaginary roots. Hence the center subspace of the linear system (7.33)–(7.35) is the
(n + 2)-dimensional generalized eigenspace for the eigenvalue 0, which is xy1�-space.
As in Sections 4 and 6, we Fnd that the equations for the center manifold are

yi =y1hi(x; y1; �); i= 2; : : : ; q; (7.36)

with each hi a C1 function such that y1hi is C2, and hi(0; 0; 0) = 0.
The di"erential equation (7.30)–(7.32), restricted to the center manifold, is the C2

system

x′ =R−1

(
G(Rx; �)

I

)
Ẽ(Rx; �)−1S(y1; y1h2; : : : ; y1hq)�; (7.37)

y′
1 = ‘2C(Rx; �)Ẽ(Rx; �)−1S(y1; y1h2; : : : ; y1hq)�; (7.38)

�′ = 0: (7.39)

Using hi(0; 0; 0) = 0, Eq. (7.23), and our knowledge of R−1, Eq. (7.37) can be expanded
as follows:

x′ = y1

(
R−1

(
G(0; 0)

I

)
S(1; 0; : : : ; 0) + · · ·

)

= y1

(
R−1

(
G(0; 0)

I

)
s1 + · · ·

)
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=
1
b
y1

(
R−1

(
r1

r2

)
+ · · ·

)

= y1{(1; 0; : : : ; 0)� + · · ·}:
Using ‘2C(0; 0) = 0 and hi(0; 0; 0) = 0, Eq. (7.38) can be expanded as follows:

y′
1 = y1‘2(C(0; 0) + D1C(0; 0)Rx + D2C(0; 0)� + · · ·)(I + · · ·)S(1; h2; : : : ; hq)�

= y1‘2(D1C(0; 0)Rx + D2C(0; 0)� + · · ·)(I + · · ·)S(1; h2; : : : ; hq)�

= y1‘2{(D1C(0; 0)Rx + D2C(0; 0)�)s1 + · · ·}
= y1‘2{(D1C(0; 0)(x1r1 + · · · + xnrn) + D2C(0; 0)�)s1 + · · ·}

= y1

(
n∑

i = 1

cixi + e� + · · ·
)

;

where ci = ‘2(D1C(0; 0)ri)s1 and e= ‘2D2C(0; 0)s1.
By Lemma 7.3, c1 = a=b2. Moreover, e= − 1=b, because using Eq. (7.24) and Eq.

(7.23) we have

‘2D2C(0; 0)r2 = ‘2(−A3(u−)(A1(u−) − �I)−2A2(u−) − I)r2

= ‘1(−r1) − ‘2r2 = − ‘r = − 1:

Since c1 ¿ 0 and e¡ 0, the remainder of the proof is similar to that of Theo-
rem 4.1.

8. Discussion

The reader may wish to compare the hypotheses of our Theorem 7.1 and its analog
in [11], Sainsaulieu’s Theorem 2:1. Sainsaulieu explicitly assumes our assumptions
(1)–(4) and (6). In addition, Sainsaulieu assumes

ker B(u−) ∩ (A(u−) − �I)−1 rangeB(u−) = {0}:
This assumption is clearly stated wrongly, since A(u−)−�I is not invertible. However,
Sainsaulieu uses this assumption to derive our assumption (5) in his Lemma 4.2; it
is this lemma that is then used in Sainsaulieu’s proof. Sainsaulieu does not state our
assumption (7) or any analog of it. However, his proof actually requires this assumption
(toward the bottom of p. 1296 of [11], where he says that a certain ODE has a unique
bounded solution).

To generalize our uniqueness result Theorem 5.1 to the case in which B(u−) is
invertible, one must confront the possibility that B(u−)−1(A(u−)− sI) has pure imagi-
nary eigenvalues at some s that is not an eigenvalue of A(u−). Sainsaulieu’s uniqueness
proof in Section 5 of [11] appears not to take this possibility into account.
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