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Abstract
We show the existence of travelling wave solutions for a lubrication model of
surfactant-driven flow of a thin liquid film down an inclined plane, in various
parameter regimes. Our arguments use geometric singular perturbation theory.
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1. Introduction

We study the flow of a thin liquid film down an inclined plane in the presence of a surfactant
that is insoluble and therefore remains on the liquid surface. The governing system of partial
differential equations includes an equation for the fluid height and an equation for the surfactant
concentration. After an initial normalization, the system contains three parameters, which are
proportional to deviation of the inclined plane from the perpendicular, the capillary number of
the liquid and the diffusion constant of the surfactant. The model includes the Marangoni force,
a tangential force at the liquid surface due to spatial variation in the surfactant concentration.
The reader who is unfamiliar with the Marangoni force can observe its effect by placing a
small piece of paper in a pan of water and adding a drop of dishwashing liquid.

The system of partial differential equations in one space dimension is
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In these equations, x increases as one descends the inclined plane; h is the height of the
liquid film; ! is the concentration of the surfactant on the liquid surface; α (respectively, β)
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is proportional to the sine (respectively, cosine) of the smaller angle that the inclined plane
makes with the horizontal; C is proportional to the capillary number of the liquid and D is
proportional to the diffusion constant of the surfactant. We assume α and h are positive, so
the plane is not horizontal and is not dry anywhere; !, β, C and D are nonnegative. After an
initial normalization, α can be made equal to 1.

Our work is motivated by the papers [10, 11], where the reader will find discussion
of the physical background and references to the literature. The focus of these papers
is the existence of travelling wave solutions (h(ξ), !(ξ)), ξ = x − st , for which
h(−∞) = hL > hR = h(∞) are given and

∫ ∞
−∞ !(ξ) dξ is finite. The latter

condition means that the total amount of surfactant is finite; the integral is an invariant
of the system. For certain values of the parameters, hL, and hR , the authors of these
papers find that there is a one-parameter family of such travelling waves, parametrized
by

∫ ∞
−∞ !(ξ) dξ . In other words, given the amount of surfactant, there is a travelling

wave.
The authors of [10, 11] consider cases in which at least one of the parameters C, D and β

is zero. Our interest in this paper is the case in which all three of these parameters are positive.
Another contrast with [10, 11] is that we make extensive use of geometric singular perturbation
theory [6–8].

For the same range of hL and hR considered in [10, 11] we show, in certain parts of
parameter space, the existence of a one-parameter family of travelling waves, and describe
the outstanding features of these waves. In other parts of parameter space we elucidate the
underlying geometry but are not able to provide existence proofs.

We note that the paper [11] includes a numerical simulation of the partial differential
equation (1.1)–(1.2) with C, D and β all positive in which a travelling wave clearly develops
(figures 17 and 18 of [11]). Thus there is numerical evidence that the travelling waves
we study are asymptotically stable, at least in part of parameter space. As far as we
know, there has not yet been a systematic numerical investigation of parameter space to
determine whether stability persists, nor is there yet a proof of stability for any parameter
values.

The plan of the paper is as follows. We begin, in section 2, by deriving three normalizations
of system (1.1)–(1.2), and we describe six regions of parameter space that we will study
in some detail; see figure 1. In section 3 we derive the travelling wave system as a
first-order system in R4. In section 6 we examine equilibria and invariant spaces for the
travelling wave system in R4. The travelling waves we seek correspond to solutions of
the travelling wave system that connect two equilibria. The equilibria have unstable and
stable manifolds of dimensions 3 and 3, respectively, so if they meet transversally, they
do so in a two-dimensional manifold, which represents a one-parameter family of travelling
waves.

In section 4, we show numerical computations of some travelling waves, in order to
familiarize the reader with their typical features. These features include, for certain values of
the parameters and amount of surfactant: (1) nonmonotonicity of h(ξ), leading to a capillary
ridge; (2) a four-step appearance to the graph of h(ξ) and (3) both presence and absence of
oscillations in the graph of h(ξ), depending on the parameter values.

In section 5 we derive some preliminary results. One is a compactification of the travelling
wave system at ! = ∞ that is convenient for studying travelling waves with large !, i.e. large
concentrations of surfactant. Two other preliminary results give existence and transversality
of connecting orbits for a class of first-order systems in R3. These systems correspond to the
third-order equation

...

h −Bḣ + F(h) = 0 with B ! 0, F(h) = 0 at two points, and F(h) < 0
if and only if h is between those points. There is a literature on existence of connecting orbits
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for systems in this class, which we review. The transversality result seems to be new. It states
that if F has a unique critical point and, along the connecting orbit, h(t) passes through that
point only once, then the connecting orbit represents a transversal intersection of the unstable
and stable manifolds of two equilibria.

In section 7 we show that for any positive parameter values, connecting orbits of the
travelling wave system with ! small exist, provided the transversality condition just mentioned
holds within the three-dimensional invariant space ! = 0.

In sections 8–13 we investigate the six regions of parameter space in some detail. For
each of the six regions, we work with one of the three normalizations of (1.1)–(1.2). We fix
hL and hR in the range considered in [10, 11] and study the existence of connecting orbits.

In each region at least one normalized parameter is small. Our method is always to allow
the small normalized parameters to approach 0, possibly with some rescalings, and look at
the limit. In region 1 we explain some of the geometry but are not able to prove anything.
In regions 2 and 4 there is a two-dimensional normally hyperbolic invariant manifold on
which connecting orbits with max ! arbitrary exist. In region 3, if a transversality condition
holds, then again connecting orbits with max ! arbitrary exist, but they do not stay in a two-
dimensional normally hyperbolic invariant manifold.

Regions 5 and 6 are the most interesting from the point of view of geometric singular
perturbation theory. In both regions a two-dimensional invariant manifold loses normal
hyperbolicity when ! and a parameter become 0. In this situation ! and the parameter must
be simultaneously rescaled. In geometric singular perturbation theory this procedure is called
blowing-up [5, 9]. Typically one obtains a system on a neighbourhood of a sphere, which must
be studied in several coordinate patches. In our situations, however, we are able to choose
coordinates in which the connecting orbits lie in a single coordinate patch, which we believe
makes the analysis easier to follow.

In regions 5 and 6, we do not show that for fixed parameter values, connecting orbits
with max ! arbitrary exist. Instead, in region 5 (respectively, region 6), connecting orbits
with max ! " η−1 (respectively, η " max ! " η−1) are proved to exist, where η → 0 as a
parameter goes to 0.

In region 5 the connecting orbits again lie in a two-dimensional invariant manifold, but
in the limit this manifold becomes two planes at right angles to each other, with normally
hyperbolic equilibria along the line of intersection. Tracking solutions as they pass near such a
line of equilibria requires what the second author has called a ‘corner lemma’ [16]. We prove
such a lemma appropriate to the present situation in section 12.3.

In region 6 the connecting orbits begin and end in the three-dimensional unstable and
stable manifolds of the equilibria, and their middle portions lie near (not in) two-dimensional
invariant manifolds like those for region 5. However, the line of equilibria in the limit is not
normally hyperbolic. Thus two additional complications are introduced. A corner lemma
appropriate to this situation is proved in section 15.

The proofs of the corner lemmas follow an outline based on Deng’s lemma that was
recently used to prove a general exchange lemma [17].

Complex eigenvalues at an equilibrium of the travelling wave equation correspond to
travelling waves that oscillate at the end that corresponds to that equilibrium. They occur in
regions 1 and 3. Complex eigenvalues are discussed in section 6.

We conclude the paper by discussing in section 16 the resemblance between the travelling
waves in the various regions and the travelling waves, described in [11], in nearby parts of
parameter space where one parameter is 0.
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Figure 1. The equivalence classes include lines through the origin in D̃β̃-space; curves C̃ =
constant · D̃3 in C̃D̃-space and curves C̃ = constant · β̃3 in C̃β̃-space. The normalized coordinate
systems (N1), (N2) and (N3) are shown, as are regions 1–6 described below. Each region is coloured
in the coordinate system in which it is analysed.

2. Partial differential equations and normalizations

The scaling

x̃ = αx, t̃ = α2t (2.1)

converts (1.1)–(1.2) to the following equivalent system, in which we have dropped the tildes
over the scaled variables:
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In (2.2)–(2.3), C̃ = α2C, D̃ = D and β̃ = β. Note that α has become 1.
In (2.2)–(2.3), the system with parameters (C̃, D̃, β̃) is considered equivalent to the system

with parameters (Ĉ, D̂, β̂) if the first can be converted to the second by scaling the variables
x, t and !; we avoid scaling h in order to keep the values of hL and hR fixed. The scaling is
necessarily of the form

x̂ = kx, t̂ = kt, !̂ = k!, (2.4)

with k > 0. Then Ĉ = k3C̃, D̂ = kD̃ and β̂ = kβ̃. The equivalence class of each point other
than the origin in {(C̃, D̃, β̃) : C̃ ! 0, D̃ ! 0, β̃ ! 0} is a curve. See figure 1.

By an appropriate choice of k we can make C̃, D̃ or β̃ equal to 1. We thus obtain three
two-parameter normalizations of (1.1)–(1.2). They are system (2.2)–(2.3) with the parameters

(N1) C̃1 = 1, D̃1 = α− 2
3 C− 1

3 D and β̃1 = α− 2
3 C− 1

3 β or
(N2) C̃2 = α2CD−3, D̃2 = 1, β̃2 = D−1β or
(N3) C̃3 = α2Cβ−3, D̃3 = Dβ−1 and β̃3 = 1.

Each two-parameter normal form can be thought of as a local cross-section to the equivalence
classes in C̃D̃β̃-space. See figure 1.
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The three normal forms are related as follows:

C̃2 = D̃−3
1 , β̃2 = D̃−1

1 β̃1; D̃1 = C̃
− 1

3
2 , β̃1 = C̃

− 1
3

2 β̃2; (2.5)

C̃3 = β̃−3
2 C̃2, D̃3 = β̃−1

2 ; C̃2 = C̃3D̃
−3
3 , β̃2 = D̃−1

3 ; (2.6)

C̃3 = β̃−3
1 , D̃3 = β̃−1

1 D̃1; D̃1 = C̃
− 1

3
3 D̃3, β̃1 = C̃

− 1
3

3 . (2.7)

Our goal is to study the existence and structure of travelling waves of (1.1)–(1.2) of the
form

(h(ξ), !(ξ)), ξ = x − st, h(−∞) = hL, h(∞) = hR, !(±∞) = 0. (2.8)

We have replaced the condition that
∫ ∞
−∞ !(ξ) dξ be finite with the condition !(±∞) = 0;

the latter implies the former if !(ξ) approaches 0 exponentially as ξ → ±∞, which will be
the case.

We are concerned only with C, D and β all positive. However, we are especially interested
in the limits C → 0, D → 0 and β → 0, as well as allowing more than one of these parameters
to approach 0 simultaneously. We shall study the cases in which one or two parameters
approach 0 by allowing one or two normalized parameters to approach 0 in system (2.2)–
(2.3) with parameters (N1), (N2) or (N3). By reinterpreting the results one of course obtains
considerable information about the limit in which all three of C, D, β approach 0.

We shall study the following six regions in some detail. We describe each region in only
the system of normalized parameters in which we shall study it. Formulae (2.5)–(2.7) and
figure 1 can be used to find the equivalent regions in the other systems. In the description of
each region, ηi > 0 and δi > 0 are small; if both are used, the choice of δi depends on ηi .

• Region 1: C̃1 = 1, 0 < D̃1 " δ1, 0 < β̃1 " η−1
1 .

• Region 2: 0 < C̃3 " δ2, η2 " D̃3 " η−1
2 , β̃3 = 1.

• Region 3: η3β̃
3
2 " C̃2 " η−1

3 β̃3
2 , D̃2 = 1, 0 < β̃2 " δ3.

• Region 4: η4β̃
5
2 " C̃2 " η−1

4 β̃5
2 , D̃2 = 1, 0 < β̃2 " δ4.

• Region 5: 0 < C̃3 " δ5D̃
2
3 , 0 < D̃3 " δ5, β̃3 = 1.

• Region 6: 0 < C̃3 " δ6, 0 < D̃3 " δ6C̃
1
2

3 , β̃3 = 1.

The numbers ηi and δi are chosen separately for each region, so, depending on these
choices, many of the regions may overlap. Figure 1 shows the regions for one way of choosing
the numbers ηi and δi . Regions 2 and 5 can overlap, as can regions 1 and 6; these pairs of
regions are shown as adjacent.

3. Travelling wave system

In the normalized system (2.2)–(2.3), we look for a solution of the form (2.8). After integration
we obtain the system of ODEs
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We now rewrite (3.1) and (3.2) as a first-order system. We first rewrite (3.1) and (3.2) as

β̃h′ − C̃h′′′ = 1
h3

(
h3 − 3sh − 3K1 − 3

2
h2!′

)
, (3.3)

β̃h′ − C̃h′′′ = 2
h2!

(
1
2
h2! − s! − h!!′ − D̃!′

)
. (3.4)

We equate the right-hand sides of (3.3) and (3.4), and solve for !′:

!′ = 2!

h

sh + 3K1

h! + 4D̃
. (3.5)

Next we substitute (3.5) into (3.3):

β̃h′ − C̃h′′′ = 1
h3

(
h3 − 3sh − 3K1 − 3h!

sh + 3K1

h! + 4D̃

)
. (3.6)

Writing (3.6), (3.5) as a first-order system, we obtain

h′ = u, (3.7)

u′ = v, (3.8)

C̃v′ = β̃u − 1
h3

(
h3 − 3sh − 3K1 − 3h!

sh + 3K1

h! + 4D̃

)
, (3.9)
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h
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h! + 4D̃
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To avoid the possibility of dividing by zero in a limit, we rescale by multiplying the right-hand
side of (3.7)–(3.10) by h! + 4D̃. Let

H(h) = 1
h3

(
h3 − 3sh − 3K1

)
, Q(h) = 2

h
(sh + 3K1),

P (h) = H(h) − 3
2h2

Q(h) = 1
h3

(
h3 − 6sh − 12K1

)
.

We obtain the travelling wave system

ḣ = (h! + 4D̃)u, (3.11)

u̇ = (h! + 4D̃)v, (3.12)

C̃v̇ = h!
(
β̃u − P(h)

)
+ 4D̃

(
β̃u − H(h)

)
, (3.13)

!̇ = !Q(h). (3.14)

Note that s and K1 have been absorbed into P , Q and H . Thus hL and hR have been fixed;
however, C̃, D̃ and β̃ are parameters. We consider this system with h > 0, u and v arbitrary,
! ! 0.

We shall assume

0 < hR < hL < 1
2 (

√
3 − 1)hR. (3.15)

Then by [11] there are numbers h1, h∗ and h2, with

0 < hR < h2 < h∗ < hL < h1,

such that

H(h) = 1
h3

(h − hL)(h − hR)(h + hL + hR), Q(h) = 2s

h
(h − h∗),

P (h) = 1
h3

(h − h1)(h − h2)(h + h1 + h2).

See figure 2.
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Figure 2. The functions Q(h), H(h) and P(h).

We are interested in solutions of the travelling wave system (3.11)–(3.14) that satisfy the
boundary conditions

(h, u, v, !)(−∞) = (hL, 0, 0, 0), (h, u, v, !)(∞) = (hR, 0, 0, 0). (3.16)

These solutions correspond to travelling wave solutions of the system of PDEs (2.2)–(2.3) of
the form (2.8).

4. Numerical results

We consider the travelling wave system (3.11)–(3.14), with the boundary conditions (3.16). We
shall typically refer to the rescaled independent variable in this and other differential equations
as time t , with the hope that this will not cause confusion. To satisfy the boundary conditions,
we want solutions that lie in the unstable manifold of (hL, 0, 0, 0) and the stable manifold
of (hR, 0, 0, 0). Denote the linear approximations of these manifolds by Eu(hL, 0, 0, 0) and
Es(hR, 0, 0, 0); their equations are readily computable. In order to approximate solutions
numerically, we choose times T1 < T2 and search for solutions that lie in Eu(hL, 0, 0, 0)

at time T1 and in Es(hR, 0, 0, 0) at time T2. The error due to this approximation decays
exponentially as T1 and T2 increase; see [1] for the method of analysis. The numbers C̃, D̃, β̃,
hL, hR ,

∫ T2

T1
!(t) dt , T1 and T2 are regarded as parameters.

We set C̃ = D̃ = β̃ = 1, hL = 4, hR = 1 and
∫ T2

T1
!(t) dt = 0. The last choice

implies that ! ≡ 0, so equation (3.11) can temporarily be dropped. Using xpp (available
from http://www.math.pitt.edu/ bard/xpp/xpp.html) we found pictorially a solution of (3.12)–
(3.14) with ! = 0 that approximately connects (4, 0, 0) to (1, 0, 0). The time interval on
which the solution is defined gives T1 and T2. We now have an approximate solution of our
boundary value problem for certain values of the parameters. Using AUTO (available from
http://indy.cs.concordia.ca/auto) we can improve this solution and, in principle, continue it as
any of the parameters vary.

Figure 3 shows three computed travelling waves with hL = 4, hR = 1 and max !, which
is related to

∫ T2

T1
!(t) dt , between 2.06 and 2.17; the waves are shown as parametrized curves

in huv!-space projected into the h!-plane. In figure 3(a) the parameters are in or close to
region 1. The solution oscillates near (h, u, v, !) = (1, 0, 0, 0). This can be seen more clearly
when the solution is projected onto hu-space instead of h!-space; see figure 4. In figure 3(b)
the parameters are in or close to region 2. The projected solution approaches (4, 0) along the
!-axis but approaches (1, 0) from an oblique direction; there is no oscillation. In figure 3(c)
the parameters are in or close to region 5. The projected solution approaches both (4, 0) and
(1, 0) along the !-axis; there is no oscillation.
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Figure 3. Three computed travelling waves with hL = 4, hR = 1 and max ! between
2.06 and 2.17; the waves are shown as curves in the h!-plane that connect (4, 0) to (1, 0).
(a) (C̃, D̃, β̃) = (1.0, 0.361 644, 1.0). (b) (C̃, D̃, β̃) = (0.000 217 946, 1.0, 1.0). (c) (C̃, D̃, β̃) =
(0.000 067 147 7, 0.207 638, 1.0).

We refer to the portions of these curves that are near and approximately parallel to the !-
axis as ‘feet.’ Figures 3(a) and (c) have two feet; figure 3(b) has one. If we vary the parameters
in figure 3(b) a little, the projected solution continues to approach (1, 0) obliquely, so there is
still only one foot.

Figure 5 shows the effect of changing max !. The parameter values are those of figure 3(c),
in region 5. In figure 5(a), for which max ! is small, both feet point in. In this case, h(t) is a
decreasing function, i.e. the height of the travelling wave decreases from h = 4 at the left to
h = 1 at the right. In figure 5(a), for which max ! is large, the foot near (h, u) = (4, 0) points
out. In this case the height of the travelling wave increases from h = 4 at the left to h above 5
before decreasing to h = 1 at the right. Such an increase in h is called a capillary ridge. It is
also present in figures 3(a)–(c).

For max ! large two portions of the curve are approximately vertical. They are near
h = h1 and h = h2 defined earlier.

For the travelling wave shown in figure 5(b). Figure 6 shows h and ! as functions of
normalized time. (AUTO normalizes the time interval [T1, T2] to [0, 1].) The increase in h

from 4 to above 5 is the capillary ridge. In addition, the h-component of the wave exhibits
a four-level structure that is missing or less apparent when max ! is small; the steps are at
h = hL, h ∼ h1, ∼h2 and h = hR Virtually the entire change in ! occurs close the time period
when h falls from near h1 to near h2.

For more plots of travelling waves see [11].
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Figure 4. (a) The solution shown in figure 3(a) projected onto hu-space instead of h!-space.
(b) Zoom into a small rectangle around (h, u) = (1, 0). (c) Zoom into a smaller rectangle around
(h, u) = (1, 0).
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Figure 5. Travelling waves shown as curves in the h!-plane. The parameter values are those of
figure 3(c). (a) Solution with max ! approximately 0.057. (b) Solution with max ! approximately
56.4.

5. Preliminaries

5.1. Compactification of the !-interval

We wish to consider travelling waves of all sizes, so that ! may be large. In order to deal
conveniently with the interval 0 " ! < ∞, in (3.11)–(3.14) we make the change of variables

! = γ

1 − γ
, (5.1)
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Figure 6. The travelling wave of figure 5(b); h and ! are shown as functions of normalized time.
(AUTO normalizes the time interval in a boundary value problem to [0, 1].)

so that the interval 0 " ! < ∞ corresponds to 0 " γ < 1. After multiplying by 1 − γ , we
obtain

ḣ = (hγ + 4D̃(1 − γ ))u, (5.2)

u̇ = (hγ + 4D̃(1 − γ ))v, (5.3)

C̃v̇ = hγ
(
β̃u − P(h)

)
+ 4D̃(1 − γ )

(
β̃u − H(h)

)
, (5.4)

γ̇ = γ (1 − γ )2Q(h). (5.5)

We consider this system on h > 0, u and v arbitrary, 0 " γ " 1. Note that the infinite
!-interval has been compactified.

5.2. Linear combinations of hP and H

The following proposition will be useful. Most of it is proved in [11].

Proposition 5.1. Let F(a, b, h) = ahP (h) + bH(h). If a ! 0, b ! 0, and (a, b) )= (0, 0),
then:

(1) For 0 < h < hR (respectively, h1 < h < hL, respectively, h2 < h < ∞), F(a, b, h) is
positive (respectively, negative, respectively, positive).

(2) The equation F(a, b, h) = 0 has exactly two solutions in h > 0, which we denote
h2(a, b) < h1(a, b). We have hR " h2(a, b) " h2 and hL " h1(a, b) " h1.

(3) h2(0, b) = hR , h2(a, 0) = h2, h1(0, b) = hL and h1(a, 0) = h1.
(4) ∂F

∂h
(a, b, h2(a, b)) < 0 and ∂F

∂h
(a, b, h1(a, b)) > 0.

(5)
∫ h1(a,b)

0 F(a, b, h) dh > 0 and
∫ ∞
h2(a,b)

F (a, b, h) dh > 0.
(6) The equation ∂F

∂h
(a, b, h) = 0 has a unique solution in h > 0.

Proof. (1) is a consequence of the signs of P and H on the given intervals; see figure 2.
For b = 0 or a = 0, (2)–(6) follow from the formulae for P and H . We therefore assume

a > 0 and b > 0.
Write F(a, b, h) = a

h3 (h
4 +a3h

3 +a2h
2 +a1h+a0) = a

h3 (h−µ1)(h−µ2)(h−µ3)(h−µ4).
For a > 0 and b > 0, we see from the formulae for P and H that a3 = −(µ1 +µ2 +µ3 +µ4) > 0
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and a0 = µ1µ2µ3µ4 > 0. By (1) the equation F(a, b, h) = 0 has at least two solutions in
h > 0, so two µi are distinct positive numbers. It follows that the other two have negative real
part, so we have (2). (4) and (5) follow easily.

To prove (6), we calculate that ∂F
∂h

= a
h4 (h

4 + b3h
3 + b2h

2 + b1h + b0) with b3 = 0, b2 > 0
and b0 < 0. Then ∂F

∂h
= 0 if and only if

h4 + b2h
2 + b0 = −b1h.

The graph of y = h4 +b2h
2 +b0 is convex with a minimum at (0, b0), b0 < 0. It follows easily

that it meets the graph of y = −b1h in two points, one with h > 0, one with h < 0. #

5.3. Connection theorem

Let I = (h−, h+) be an open interval, with h− = −∞ and h+ = ∞ allowed. Let F : I → R
be a C1 function that satisfies the following conditions.

(C1) The equation F(h) = 0 has exactly two solutions in I . We denote them ha and hb, with
hb < ha .

(C2) F ′(hb) < 0 and F ′(ha) > 0.
(C3)

∫ ha

h−
F(h) dh > 0 and

∫ h+

hb
F (h) dh > 0.

See figure 7(a). For example, the third assumption is satisfied if the integrals are ∞.
Consider the system

ḣ = u, (5.6)

u̇ = v, (5.7)

v̇ = Bu − F(h), (5.8)

with B ! 0. This system has exactly two equilibria, at (ha, 0, 0) and (hb, 0, 0). One
easily checks that both are hyperbolic, Wu(ha, 0, 0) has dimension two, and Ws(hb, 0, 0)

has dimension two.

Theorem 5.2 (Connection theorem). Assume (C1)–(C3). Then Wu(ha, 0, 0) and
Ws(hb, 0, 0) have nonempty intersection.

System (5.6)–(5.8) is equivalent to the third-order equation
...

h −Bḣ + F(h) = 0. There
is a literature on connecting orbits for this equation that is larger than one might expect.
For B = 0 and F(h) = h2 − 1, existence of a connecting orbit was proved by Kopell and
Howard [3] using shooting, and later by Conley [2] using the Conley Index. Troy [18] gave
a shooting argument for existence for B = 0 and a different F . For B = 0 and general F ,
Mock [14] gave a nice shooting argument, but his proof that a certain function is continuous
(top of p 387) is not correct. Michelson [12] gave a Conley index proof completely different
from that in [2] for B = 0 and general F ; in fact, he allows a more general differential
operator of odd order at least 3 in place of

...

h. Renardy [15], motivated by a problem
involving surfactants, treated a closely related situation. His proof would apply to B ! 0
and general F . However, an inequality at the top of p 291 cannot be used on an infinite
interval.

We follow Michelson’s argument, which easily generalizes to the case B > 0. The proof
uses a Lyapunov function and the Conley Index [2], and is given in nine steps. In step 1 we
give the Lyapunov function. In steps 2–5 we find bounds on the set of bounded solutions of
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h

F(h)

hb haha
* hb

*
h

G(h)

hb haha
* hb

*

(a) (b)

Figure 7. The functions F(h) and G(h) with h− = 0 and h+ = ∞.

(5.6)–(5.8). In steps 6–9 we deform the set of bounded solutions to the empty set by perturbing
(5.6)–(5.8), and use the Conley Index conclude the result.

Proof.

1. Let G(h) = −
∫

F(h) dh, and let L(h, u, v) = −uv + G(h). See figure 7(b). Then
L̇ = −(Bu2 + v2), so L is decreasing along solutions of (5.6)–(5.8).

2. Let (h(t), u(t), v(t)) be a bounded solution of (5.6)–(5.8). Then its α- and ω-limit sets are
invariant sets contained in {(h, u, v) : L̇ = 0}. It follows easily that each is an equilibrium,
so limt→∞(h(t), u(t), v(t)) and limt→−∞(h(t), u(t), v(t)) are both equilibria.

3. Using assumption (C3) we see that there existh∗
a , h− < h∗

a < hb, such thatG(h∗
a) > G(ha)

and h∗
b, ha < h∗

b < h+, such that G(hb) > G(h∗
b). See figure 7(b).

4. Let (h(t), u(t), v(t)) be a bounded solution of (5.6)–(5.8). We claim that h∗
a < h(t) < h∗

b

for all t .
The proof is by contradiction. Suppose max h(t) = h(t1) ! h∗

b. Then
L(h(t1), u(t1), v(t1)) = G(h(t1)) because u(t1) = ḣ(t1) = 0. Since h(t1) ! h∗

b,
G(h(t1)) " G(h∗

b) < G(hb), and of course G(hb) < G(ha). But L(hb, 0, 0) = G(hb)

and L(ha, 0, 0) = G(ha). Since L is decreasing on solutions, (h(t), u(t), v(t)) cannot
approach an equilibrium as t → ∞. This is a contradiction.
Similarly, if min h(t) " h∗

a , then (h(t), u(t), v(t)) cannot approach an equilibrium as
t → −∞.

5. By step 4, for any bounded solution (h(t), u(t), v(t)) of (5.6)–(5.8), ‖h‖∞ < h∗
b. We

claim that if M0 is chosen sufficiently large, we have ‖ḣ‖∞ = ‖u‖∞ < M0 and
‖ḧ‖∞ = ‖v‖∞ < M0.
The proof relies on Nirenberg’s inequality in R, which states that if

1
p

= j + a

(
1
r

− m

)
+ (1 − a)

1
q

and
j

m
" a " 1, (5.9)

then there is a constant C such that

‖w(j)‖p " C‖w(m)‖a
r ‖w‖1−a

q (5.10)

whenever both sides of the inequality make sense [13].
Let (h(t), u(t), v(t)) be a bounded solution of (5.6)–(5.8). From steps 1 and 2,

∫ ∞

−∞
B(ḣ(t))2 + (ḧ(t))2 dt = −(L(∞) − L(−∞)) " G(ha) − G(hb).

Therefore there is a uniform bound on ‖ḧ‖2. By Nirenberg’s inequality with j = 1,
p = ∞, r = 2, m = 2, q = ∞ and a = 2

3 ,

‖ḣ‖∞ " C‖ḧ‖
2
3
2 ‖h‖

1
3
∞.
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Therefore there is a uniform bound on ‖ḣ‖∞.
Let w = v = ḧ. By Nirenberg’s inequality with j = 0, p = ∞, r = ∞, m = 1, q = 2
and a = 1

3 ,

‖ḧ‖∞ = ‖w‖∞ " C‖ẇ‖
1
3
∞‖w‖

2
3
2 = C‖

...

h ‖
1
3
∞‖ḧ‖

2
3
2 .

Now the formula
...

h= Bḣ − F(h),

together with our uniform bounds on ‖h‖∞ and ‖ḣ‖∞, yields a uniform bound on ‖
...

h ‖∞.
This together with our uniform bound on ‖ḧ‖2 yields a uniform bound on ‖ḧ‖∞.

6. Consider the one-parameter family of differential equations

ḣ = u, (5.11)

u̇ = v, (5.12)

v̇ = Bu − (F (h) + µ). (5.13)

Let µ∗ = min F(h). For 0 " µ " µ∗, this system has one or more equilibria on the
h-axis between (hb, 0, 0) and (ha, 0, 0), and no other equilibria; for µ > µ∗, it has no
equilibria.

7. For each µ with 0 " µ " µ∗, let Eµ denote the set of points (u, v, w) that lie in bounded
solutions of (5.6)–(5.8).
From steps 4 and 5, E0 lies in the interior of the closure of the open set U0 = {(h, u, v) :
h∗

a < h(t) < h∗
b, |u| < M0, |v| < M0}. E0 is the largest invariant set contained in U0,

and U0 is an isolating neighbourhood of E0.
By the same argument with minor modifications, for each µ with 0 " µ " µ∗, there is a
number Mµ > 0 such that Eµ lies in the interior of the closure of an open set Uµ defined
like U0 except that M0 is replaced by Mµ.

8. It is easy to see that Mµ can be chosen independently of µ for 0 " µ " µ∗. Thus we
can find a single open set U that serves as an isolating neighbourhood for all the Eµ,
0 " µ " µ∗.

9. For µ > µ∗, the system has no bounded solutions. It follows that the Conley index of
E0 equals the Conley index of the empty set. Since the Conley index of two hyperbolic
fixed points does not equal the Conley index of the empty set, E0 must contain a nontrivial
solution connecting two equilibria. Because of the Lyapunov function L, it must connect
(ha, 0, 0) to (hb, 0, 0). #

5.4. Transversality theorem

In addition to the hypotheses of the Connection theorem, assume:

(C4) B > 0.
(C5) F has exactly one critical point hc.

Of course, hb < hc < ha .
If (C5) holds, we will call a solution of (5.6)–(5.8) that lies in Wu(ha, 0, 0)∩Ws(hb, 0, 0)

a simple connection from (ha, 0, 0) to (hb, 0, 0) if there is exactly one time t = tc at which
h∗(t) = hc.

Theorem 5.3 (Transversality theorem). Assume (C1)–(C5). Let (h∗(t), u∗(t), v∗(t)) be a
simple connection from (ha, 0, 0) to (hb, 0, 0). Then Wu(ha, 0, 0) and Ws(hb, 0, 0) meet
transversally along (h∗(t), u∗(t), v∗(t)).
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We note that Kopell and Howard [3] prove a transversality result for the case B = 0 and
F(h) = h2 − 1, but their method does not appear to generalize.

Proof. Linearizing (5.6)–(5.8) along (h∗(t), u∗(t), v∗(t)), we obtain
˙̄h = ū, ˙̄u = v̄, ˙̄v = Bū − F ′(h∗(t))h̄. (5.14)

Note that h∗(t) approaches ha (respectively, hb) as t → −∞ (respectively, t → ∞).
Since (5.14) with h∗(t) replaced by ha (respectively, hb has two eigenvalues with positive
(respectively, negative) real part, this linear system has a two-dimensional space of solutions
that approach 0 exponentially as t → −∞, and a two-dimensional space of solutions that
approach 0 exponentially as t → ∞. We must show: (I) these two-dimensional spaces meet
transversally.

Given a real linear differential equation ẋ = L(t)x, the adjoint system is ψ̇ = −ψL(t)

The adjoint system for (5.14) is

ψ̇1 = F ′(h∗(t))ψ3, ψ̇2 = −ψ1 − Bψ3, ψ̇3 = −ψ2. (5.15)

This linear system has a one-dimensional space of solutions that approach 0 exponentially
as t → −∞, and a one-dimensional space of solutions that approach 0 exponentially as
t → ∞. Equivalently to (I), we must show that (II) these one-dimensional spaces have trivial
intersection.

Equation (5.15), like any nonautonomous linear differential equation, defines a
nonautonomous differential equation ṗ = f (t, p) on RP2, the space of lines through the
origin in R3. A point of RP2 represents an equivalence class of vectors in R3 \ {0}; we write
p = [ψ], with ψ ∼ ψ̃ is there is a number s )= 0 such that ψ = sψ̃ . Let pa (respectively,
pb) denote the one-dimensional eigenspace for the unique positive (respectively, negative)
eigenvalue of (5.15) at t = −∞ (respectively, t = ∞), i.e. the positive (respectively, negative)
eigenvalue of (5.15) when h∗(t) is replaced by ha (respectively, hb). Equivalently to (II), we
must show that (III) no solution of ṗ = f (t, p) approaches pa as t → −∞ and pb as t → ∞.

RP2 is covered by three coordinates systems; these coordinates, and the differential
equation ṗ = f (t, p) in each, are

(1) φ = (φ1, φ2), φ1 = ψ1
ψ3

, φ2 = ψ2
ψ3

; φ̇1 = F ′(h∗(t)) + φ1φ2, φ̇2 = −φ1 − B + φ2
2 .

(2) η = (η1, η3), η1 = ψ1
ψ2

, η3 = ψ3
ψ2

; η̇1 = F ′(h∗(t))η3 + η2
1 + Bη1η3, η̇3 = −1 + η1η3 + Bη2

3.

(3) χ = (χ2, χ3), χ2 = ψ2
ψ1

, χ3 = ψ3
ψ1

, χ̇2 = −1 − Bχ3 − F ′(h∗(t))χ2χ3, χ̇3 =
−χ2 − F ′(h∗(t))χ2

3 .

Let Ua = {p ∈ RP2 : p = [ψ] with ψ1 > 0, ψ2 < 0, and ψ3 > 0}, and let
Ub = {p ∈ RP2 : p = [ψ] with ψ1 > 0, ψ2 > 0, and ψ3 > 0}. Ua and Ub are disjoint and
open in RP2, and it is straightforward to check that pa ∈ Ua and pb ∈ Ub. More precisely,
consider the system of equations

F ′(h) + φ1φ2 = 0, −φ1 − B + φ2
2 = 0, (5.16)

derived by setting the right-hand side of the system in φ-coordinates equal to 0. For each
h )= hc, there is a unique solutionφ(h)of (5.16) withφ1 > 0. (The system has 0, 1 or 2 solutions
with φ1 < 0.) Then φ2(h) has sign opposite that of F ′(h). We have pa = [(φ1(ha), φ2(ha), 1)]
and pb = [(φ1(hb), φ2(hb), 1)].

We claim that (A) there is no solution of ṗ = f (t, p) that lies in Ua for large negative t

and in Ub for large positive t . This implies (III).
To prove (A), we will show the the following. Suppose p(t) is a solution of ṗ = f (t, p)

that lies in Ua for large negative t and q(t) is a solution of ṗ = f (t, p) that lies in Ub for large
positive t . Then (a) p(t) ∈ Ua for t < tc, (b) q(t) ∈ Ub for t > tc and (c) p(tc) )= q(tc).
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Let us first show (a). Suppose p(t) is a solution of ṗ = f (t, p) that lies in Ua for large
negative t . Suppose p(t) first reaches the boundary of Ua at time t < tc. Since t < tc,
assumption (4) implies that h∗(t) > hc, so F ′(h∗(t)) > 0. We consider each coordinate patch.
In φ-coordinates, Ua corresponds to {(φ1, φ2) : φ1 > 0 and φ2 < 0}. On the boundary of this
set:

• If t < tc, φ1 ! 0 and φ2 = 0, then φ̇2 < 0.
• If t < tc, φ1 = 0 and φ2 < 0, then φ̇1 > 0.

Therefore, p(t) does not leave Ua through its boundary in the φ-coordinate patch at a time
t < tc. A similar argument shows that p(t) does not leave Ua through its boundary in the other
coordinate patches at a time t < tc. This shows (a).

A similar argument shows (b), i.e we show that q(t) does not leave Ub through its boundary
in backward time at any time t > tc.

It remains to show (c). Suppose p(t) first leaves Ua at time t = tc and q(t) first
leaves Ub in backward time at time t = tc. Suppose that p(tc) equals q(tc). We consider
the different coordinate patches. Suppose p(tc) = q(tc) is a point of the φ-coordinate
patch. In φ-coordinates, Ua corresponds to {(φ1, φ2) : φ1 > 0 and φ2 < 0} and Ub

corresponds to {(φ1, φ2) : φ1 > 0 and φ2 > 0}. Their common boundary is the ray
{(φ1, φ2) : φ1 ! 0 and φ2 = 0}. On this ray, for t = tc, φ̇2 < 0. (At the origin we
need B > 0 at this point.) But then neither p(tc) nor q(tc) can belong to this ray, so they are
certainly not equal. A similar argument applies to the other coordinate patches. #

6. Invariant spaces and equilibria

For system (5.2)–(5.5), the three-dimensional spaces γ = 0 (no surfactant) and γ = 1 (infinite
surfactant) are invariant.

For every C̃ ! 0, D̃ ! 0 and β̃ ! 0, there are equilibria of (5.2)–(5.5) at (h, u, v, γ ) =
(hL, 0, 0, 0), (hR, 0, 0, 0), (h1, 0, 0, 1) and (h2, 0, 0, 1). If D̃ > 0, these are the only equilibria.
Travelling waves (2.8) of (2.2)–(2.3) correspond to solutions of (5.2)–(5.5) that go from
(hL, 0, 0, 0) to (hR, 0, 0, 0).

For C̃ > 0, the linearization of (5.2)–(5.5) at (hL, 0, 0, 0) or (hR, 0, 0, 0) has the matrix




0 4D̃ 0 0
0 0 4D̃ 0

−4C̃−1D̃H ′(h) 4C̃−1D̃β̃ 0 −C̃−1hP (h)

0 0 0 Q(h)

.




(6.1)

Characteristic equation:

(λ − Q(h))(λ3 − 16C̃−1D̃2β̃λ + 64C̃−1D̃3H ′(h)) = 0. (6.2)

Let p(λ) = λ3 − 16C̃−1D̃2β̃λ + 64C̃−1D̃3H ′(h) have roots λ1, λ2, λ3. Then λ1 + λ2 + λ3 = 0,
and, for C̃ > 0 and D̃ > 0, the sign of λ1λ2λ3 is opposite to that of H ′(h).

Conclusions for C̃ > 0 and D̃ > 0:

(1) At (hL, 0, 0, 0) there are three eigenvalues with positive real part and one with negative
real part.

(2) At (hR, 0, 0, 0) there are one eigenvalue with positive real part and three with negative
real part.

Thus for C̃ > 0 and D̃ > 0, Wu(hL, 0, 0, 0) and Ws(hR, 0, 0, 0) are three dimensional. If
they are transverse, the intersection is two dimensional. We also note that
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(1) At (hL, 0, 0, 0), two of the eigenvalues with positive real part are complex if 4β̃3 <

27C̃H ′(hL)2.
(2) At (hL, 0, 0, 0), two of the eigenvalues with negative real part are complex if 4β̃3 <

27C̃H ′(hR)2.

In region 1, for fixed hL (respectively, hR), complex eigenvalues occur for β̃1 less than a value
of order one. In region 3, for fixed hL (respectively, hR), complex eigenvalues occur for C̃2

greater than a number of order one times β̃3
2 . In the other regions, for fixed hL (respectively,

hR), complex eigenvalues do not occur provided the constants in the definition of the region
are taken sufficiently small.

7. Connecting orbits with Γ small

We consider the travelling wave system (3.11)–(3.14) with the normalization (N1). Hence
C̃ = 1, β̃ = β̃1 ! 0, and we assume D̃ = D̃1 > 0:

ḣ = (h! + 4D̃1)u, (7.1)

u̇ = (h! + 4D̃1)v, (7.2)

v̇ = h!
(
β̃1u − P(h)

)
+ 4D̃1

(
β̃1u − H(h)

)
, (7.3)

!̇ = !Q(h). (7.4)

The space ! = 0 is invariant. Restricting (7.1)–(7.4) to ! = 0 and dividing by 4D̃1 > 0,
we obtain

ḣ = u, (7.5)

u̇ = v, (7.6)

v̇ = β̃1u − H(h). (7.7)

The only equilibria of (7.5)–(7.7) are (hL, 0, 0) and (hR, 0, 0). Both are hyperbolic. The former
has two-dimensional unstable manifold; the latter has two-dimensional stable manifold. By
the connection theorem, Wu(hL, 0, 0) ∩ Ws(hR, 0, 0) is nonempty.

Let C be one of the curves in the intersection. Suppose Wu(hL, 0, 0) and Ws(hR, 0, 0)

meet transversally along C. (According to the transversality theorem, this is the case if β̃1 > 0
and C is a simple connection from (hL, 0, 0) to (hR, 0, 0).) Then for system (7.1)–(7.4),
the three-dimensional manifolds Wu(hL, 0, 0, 0) and Ws(hR, 0, 0, 0) meet transversally in a
two-dimensional manifold of connecting orbits that includes C. Thus (3.11)–(3.14) has a
one-parameter family of connecting orbits from (hL, 0, 0, 0) to (hR, 0, 0, 0).

Note that this argument proves the existence only of connecting orbits with small !.
Moreover, if D̃1 approaches 0, some eigenvalues at the equilibria, which satisfy (6.2), approach
0. Therefore the size of the !-interval for which connections are guaranteed to exist by the
argument of this section goes to 0.

8. Region 1

We consider the normalized travelling wave system (7.1)–(7.4) of the previous section. In
region 1, β̃1 lies in a given bounded interval 0 < β̃1 " η−1, and D̃1 is small.
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For D̃1 = 0, (7.1)–(7.4) becomes

ḣ = h!u, (8.1)

u̇ = h!v, (8.2)

v̇ = h!
(
β̃1u − P(h)

)
, (8.3)

!̇ = !Q(h). (8.4)

The space ! = 0 consists of equilibria of (8.1)–(8.4). It is normally hyperbolic for h away
from h∗. Thus for small D̃1, system (7.1)–(7.4), although not a slow-fast system, has the
essential structure of one: for D̃1 = 0 it has a large manifold of equilibria.

In (7.1)–(7.4), ! = 0 remains invariant for D̃1 > 0. Restricting (7.1)–(7.4) to ! = 0 and
dividing by 4D̃1, we obtain (7.5)–(7.7). This system plays the role of the slow system. The
‘fast system’ is (8.1)–(8.4).

Let Wu
loc(hL, 0, 0) denote an open subset of the two-dimensional unstable manifold of

(hL, 0, 0) whose closure is contained in {(h, u, v) : h > h∗}. Similarly, let Ws
loc(hR, 0, 0)

denote an open subset of the two-dimensional stable manifold of (hR, 0, 0) whose closure is
contained in {(h, u, v) : h < h∗}. For D̃1 = 0 (i.e. for (8.1)–(8.4)), Wu

loc(hL, 0, 0) × {0}
(respectively, Ws

loc(hR, 0, 0) × {0}) is a two-dimensional manifold of equilibria that has a
three-dimensional unstable (respectively, stable) manifold in huv!-space.

For D̃1 > 0 the manifolds Wu
loc(hL, 0, 0) × {0} and Ws

loc(hR, 0, 0) × {0} remain invariant
because system (7.1)–(7.4), after restriction to ! = 0 and division by D̃1, is (7.5)–(7.7)
independent of D̃1. The unstable manifold of Wu

loc(hL, 0, 0) × {0} and the stable manifold
of Ws

loc(hR, 0, 0) × {0}, respectively, perturb slightly. Therefore, if these three-dimensional
manifolds intersect transversally for D̃1 = 0 (i.e. for (8.1)–(8.4)), then they do so for small
D̃1 > 0, and we have a two-dimensional manifold of connecting orbits from (hL, 0, 0, 0) to
(hR, 0, 0, 0). In this case connecting orbits for D̃1 > 0 are close to the following singular
connecting orbits for D̃1 = 0: (1) a solution of the slow system (7.5)–(7.7) from (hL, 0, 0) to a
point (h0, u0, v0) in Wu

loc(hL, 0, 0), the unstable manifold of (hL, 0, 0) for the slow system; (2)
a connecting orbit of the fast system (8.1)–(8.4) from (h0, u0, v0, 0) to (h1, u1, v1, 0), where
(h1, u1, v1) ∈ Ws

loc(hR, 0, 0), the stable manifold of (hR, 0, 0) for the slow system; (3) a
solution of the slow system from (h1, u1, v1) to (hR, 0, 0).

One way to study connecting orbits of (8.1)–(8.4) from ! = 0 to itself is to first divide
(8.1)–(8.4) by h!:

ḣ = u, (8.5)

u̇ = v, (8.6)

v̇ = β̃1u − P(h), (8.7)

!̇ = 1
h

Q(h). (8.8)

System (8.5)–(8.8) is solved with initial condition (h, u, v, !)(0) = (h0, u0, v0, 0) and
h0 > h∗. (Actually, the system for (h, u, v) is independent of !.) Suppose there is a t1 > 0
such that !(t1) = 0. Let (h1, u1, v1) = (h, u, v)(t1). Then there is a connecting orbit of (8.1)–
(8.4) from (h0, u0, v0, 0) to (h1, u1, v1, 0). We define π(h0, u0, v0) = (h1, u1, v1). If the
two-dimensional manifold π(Wu

loc(hL, 0, 0)) is transverse to the two-dimensional manifold
Ws

loc(hR, 0, 0)) in huv-space, then the desired transversality condition holds. See figure 8.
However, we do not see how to show that this is the case.
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Figure 8. Mapping π for system (8.1)–(8.4).

9. Region 2

Theorem 9.1. Let hL and hR satisfying (3.15) be given. Consider the travelling wave system
(5.2)–(5.5) with the normalization (N3): C̃ = C̃3 ! 0, D̃ = D̃3 ! 0 and β̃ = 1. Then for each
η2 with 0 < η2 < 1, there exists δ2 > 0 such that, if region 2 is defined using these values,
then for each parameter triple (C̃3, D̃3, 1) in region 2, there exists a one-parameter family of
travelling waves connecting hL to hR . Moreover, max γ ranges from 0 to 1.

Proof. In the travelling wave system (5.2)–(5.5) , let

c = C̃
1
2 , v̂ = cv.

After dropping the hat and multiplying by c, we obtain the system

ḣ = c(hγ + 4D̃(1 − γ ))u, (9.1)

u̇ = (hγ + 4D̃(1 − γ ))v, (9.2)

v̇ = hγ
(
β̃u − P(h)

)
+ 4D̃(1 − γ )

(
β̃u − H(h)

)
, (9.3)

γ̇ = cγ (1 − γ )2Q(h). (9.4)

Using the normalized parameters (N3), (9.1)–(9.4) becomes

ḣ = c(hγ + 4D̃3(1 − γ ))u, (9.5)

u̇ = (hγ + 4D̃3(1 − γ ))v, (9.6)

v̇ = hγ (u − P(h)) + 4D̃3(1 − γ ) (u − H(h)) , (9.7)

γ̇ = cγ (1 − γ )2Q(h), (9.8)

with c = C̃
1
2

3 . To study region 2, given η2 with 0 < η2 < 1, we assume η2 " D̃3 " η−1
2 and c

is small. Since c is small, we have a slow-fast system with two slow variables (h and γ ) and
two fast variables (u and v).

Set c = 0 in (9.5)–(9.8):

ḣ = 0, (9.9)

u̇ = (hγ + 4D̃3(1 − γ ))v, (9.10)

v̇ = hγ (u − P(h)) + 4D̃3(1 − γ ) (u − H(h)) , (9.11)

γ̇ = 0. (9.12)
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The set

u = hγP(h) + 4D̃3(1 − γ )H(h)

hγ + 4D̃3(1 − γ )
, v = 0, h > 0, 0 " γ " 1 (9.13)

is a normally hyperbolic manifold of equilibria of dimension 2. (One positive eigenvalue, one
negative eigenvalue.)

Perturbed normally hyperbolic invariant manifold for small c > 0:

u = K(h, γ , c, D̃3), K(h, !, 0, D̃3) = hγP(h) + 4D̃3(1 − γ )H(h)

hγ + 4D̃3(1 − γ )
, (9.14)

v = L(h, γ , c, D̃3), L(h, γ , 0, D̃3) = 0. (9.15)

Since (h, u, v, γ ) = (hL, 0, 0, 0) and (hR, 0, 0, 0) are equilibria for all (c, D̃3),

K(hL, 0, c, D̃3) = L(hL, 0, c, D̃3) = K(hR, 0, c, D̃3) = L(hR, 0, c, D̃3) = 0.

Since (h, u, v, γ ) = (h1, 0, 0, 1) and (h2, 0, 0, 1) are equilibria for all (c, D̃3),

K(h1, 1, c, D̃3) = L(h1, 1, c, D̃3) = K(h2, 1, c, D̃3) = L(h2, 1, c, D̃3) = 0.

The vector field on the perturbed normally hyperbolic invariant manifold is

ḣ = c(hγ + 4D̃3(1 − γ ))K(h, !, c, D̃3)

= c
(
hγP(h) + 4D̃3(1 − γ )H(h) + O(c)

)
, (9.16)

γ̇ = cγ (1 − γ )2Q(h). (9.17)

In slow time (i.e. divide by c):

h′ = hγP(h) + 4D̃3(1 − γ )H(h) + O(c), (9.18)

γ ′ = γ (1 − γ )2Q(h). (9.19)

For all (c, D̃3) there are equilibria of (9.18)–(9.19) at (h, !) = (hL, 0), (hR, 0), (h1, 1)

and (h2, 1). The first is a repeller, the second is an attractor and the last two are semihyperbolic.
For c = 0, the flow can be drawn with the help of proposition 5.1. In the notation of

that theorem, the nullclines are the curves h = hi(γ , 4D̃3(1 − γ )), i = 1, 2 and h = h∗;
h2(γ , 4D̃3(1 − γ )) < h∗ < h1(γ , 4D̃3(1 − γ )). In particular:

• For 0 < h < h2(γ , 4D̃3(1 − γ )), ḣ > 0 and γ̇ < 0.
• For h2(γ , 4D̃3(1 − γ )) < h < h∗, ḣ < 0 and γ̇ < 0.
• For h∗ < h < h1(γ , 4D̃3(1 − γ )), ḣ < 0 and γ̇ > 0.
• For h1(γ , 4D̃3(1 − γ )) < h, ḣ > 0 and γ̇ > 0.

The centre manifold of (h1, 1) (respectively, (h2, 1)), which is a separatrix, connects to
(hL, 0) (respectively, (hR, 0)). The flow is shown in figure 9: there is a one-parameter
family of connections from (hL, 0) to (hR, 0) that fills the region h2(γ , 4D̃3(1 − γ )) < h <

h1(γ , 4D̃3(1 − γ )), 0 < γ < 1. The flow for c small is exactly the same. #
For c = 0, the eigenvalues of the linearization of (9.18)–(9.19) at (hL, 0) and (hR, 0) are

4D̃3H
′(h) and Q(h). Both are positive at hL; both are negative at hR . Their relative size

affects the shape of solution curves in figure 9:

(1) If 0 < 4D̃3H
′(hL) < Q(hL), all integral curves in h > 0 but one that approach (hL, 0)

as t → −∞ do so tangent to the h-axis.
(2) If 0 < Q(hL) < 4D̃3H

′(hL), all integral curves in h > 0 that approach (hL, 0)

as t → −∞ do so tangent the eigendirection for the eigenvalue Q(hL), which is
(−hLP (hL), 4D̃3H

′(hL) − Q(hL)). Both components are positive.
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Figure 9. Flow of (9.18)–(9.19) for small c ! 0. Nullclines are dashed. Centre manifolds of the
equilibria at (h1, 0) and (h2, 0) are shown.

(3) If Q(hR) < 4D̃3H
′(hR) < 0 , all solutions in h > 0 but one that approach (hR, 0) as

t → ∞ do so tangent to the h-axis.
(4) If 4D̃3H

′(hR) < Q(hR) < 0, all solutions in h > 0 that approach (hR, 0) as
t → ∞ do so tangent to the eigendirection for the eigenvalue Q(hR), which is
(hRP (hR), Q(hR) − 4D̃3H

′(hR)). Both components are positive.

The first and third cases, which occur for small D̃3, give rise to feet in the solutions. The
second and fourth cases, which occur for larger D̃3, do not. However, in the second and fourth
cases, the eigenvector has positive slope; when this occurs at (hL, 0), the result is a rise in the
travelling wave above hL (capillary ridge).

10. Region 3

In the travelling wave system (5.2)–(5.5), let

ε =
(

C̃

β̃3

) 1
2

, v̂ = εv.

After dropping the hat and multiplying by ε, we obtain the system

ḣ = ε(hγ + 4D̃(1 − γ ))u, (10.1)

u̇ = (hγ + 4D̃(1 − γ ))v, (10.2)

v̇ = hγ (u − P(h)) + 4D̃(1 − γ ) (u − H(h)) , (10.3)

γ̇ = β̃εγ (1 − γ )2Q(h). (10.4)

We use the normalized parameters (N2): C̃ = C̃2 ! 0, D̃ = 1 and β̃ = β̃2 ! 0. Thus
(10.1)–(10.4) becomes

ḣ = ε(hγ + 4(1 − γ ))u, (10.5)

u̇ = (hγ + 4(1 − γ ))v, (10.6)

v̇ = hγ (u − P(h)) + 4(1 − γ ) (u − H(h)) , (10.7)

γ̇ = β̃2εγ (1 − γ )2Q(h), (10.8)
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Figure 10. Flow of (10.9)–(10.12).

with ε = (C̃2/β̃
3
2 )

1
2 . To study region 3, given η2 with 0 < η2 < 1, we assume

η2 " C̃2/β̃
3
2 " η−1

2 and β̃2 is small. Therefore η
1
2
2 " ε " η

− 1
2

2 . Hence we have a slow-
fast system with one slow variable (γ ) and three fast variables (h, u and v).

Set β̃2 = 0:

ḣ = ε(hγ + 4(1 − γ ))u, (10.9)

u̇ = (hγ + 4(1 − γ ))v, (10.10)

v̇ = hγ (u − P(h)) + 4(1 − γ ) (u − H(h)) , (10.11)

γ̇ = 0. (10.12)

Each plane γ = constant is invariant and has equilibria at points (h, u, v) with
hγP(h) + 4(1 − γ )H(h) = 0 and u = v = 0. By proposition 5.1, the equilibria constitute
two one-dimensional normally hyperbolic invariant manifolds:

Ci = {(h, u, v, γ ) : h = hi(γ , 4(1 − γ )), u = 0, v = 0, 0 " γ " 1}, i = 1, 2.

See figure 10. Equilibria on C1 have two eigenvalues with positive real part and one with
negative real part; equilibria on C2 have one eigenvalue with positive real part and two with
negative real part. On the plane γ = constant, after division by hγ + 4(1 − γ ) > 0 the system
becomes

ḣ = εu, (10.13)

u̇ = v, (10.14)

v̇ = hγ

hγ + 4(1 − γ )
(u − P(h)) +

4(1 − γ )

hγ + 4(1 − γ )
(u − H(h)) . (10.15)

By a simple change of variables we can convert ε in (10.13) to 1. Then by the
connection theorem, whose hypotheses are verified by proposition 5.1, the two-dimensional
unstable manifold of each equilibrium on C1 meets the two-dimensional stable manifold of
the equilibrium on C2 with the same value of γ .

Theorem 10.1. Let hL and hR satisfying (3.15) be given. Consider the travelling wave system
(5.2)–(5.5) with the normalization (N2). Assume there is a γ0, 0 " γ0 " 1, such that for
(10.13)–(10.15) with γ = γ0, the two-dimensional unstable manifold of the equilibrium on C1

meets the two-dimensional stable manifold of the equilibrium on C2 transversally. Then for
each η3 with 0 < η3 < 1, there exists δ3 > 0 such that, if region 3 is defined using these values,
then for each parameter triple (C̃2, 1, β̃2) in region 3, there exists a one-parameter family of
travelling waves connecting hL to hR with max γ near γ0.
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We note that according to the transversality theorem, the transversality condition within
the plane γ = γ0 is satisfied if the connection there is simple.

Proof. The assumptions imply that for (10.13)–(10.15), the three-dimensional unstable
manifold of C1 meets the three-dimensional stable manifold of C2 transversally near γ = γ0

in a two-dimensional family of fast connecting orbits.
For small β̃2 > 0, C1 (respectively, C2) perturbs to a normally hyperbolic invariant curve

connecting (hL, 0, 0) to (h1, 0, 0) (respectively, (hR, 0, 0) to (h2, 0, 0)). On the perturbed
normally hyperbolic invariant manifolds corresponding to Ci , we have

γ̇ = β̃2εγ (1 − γ )2Q(hi(γ , 4(1 − γ )) + O(β̃2)),

which is positive on the interior of C1 and negative on the interior of C2. There is a repeller at
hL and an attractor at hR .

Singular solutions (β̃2 = 0) from (hL, 0, 0, 0) to (hR, 0, 0, 0) consist of a slow solution
on C1 from (hL, 0, 0, 0) to level γ , 0 < γ < 1; a fast connection from C1 to C2 at level γ , and
a slow solution on C2 to (hR, 0, 0, 0). Because of the transversality, for γ near γ0 they persist
for small β̃2 > 0. #

Note that at (hL, 0), C1 has slope −4H ′(hL)/hLP (hL) > 0; at (hR, 0), C2 has slope
−4H ′(hR)/hRP (hR) > 0. As in the previous section, the positive slope at (hL, 0) produces
a rise in the travelling wave above hL (capillary ridge).

11. Region 4

Theorem 11.1. Let hL and hR satisfying (3.15) be given. Consider the travelling wave system
(5.2)–(5.5) with the normalization (N2): C̃ = C̃2 ! 0, D̃ = 1 and β̃ = β̃2 ! 0. Then for each
η4 with 0 < η4 < 1, there exists δ4 > 0 such that, if region 4 is defined using these values,
then for each parameter triple (C̃2, 1, β̃2) in region 4, there exists a one-parameter family of
travelling waves connecting hL to hR . Moreover, max γ ranges from 0 to 1.

Proof. In the travelling wave system (10.5)–(10.8), with ε = (C̃2/β̃
3
2 )

1
2 , let

β2 = β̃2

ε
=

(
β̃5

2

C̃2

) 1
2

.

The system becomes

ḣ = ε(hγ + 4(1 − γ ))u, (11.1)

u̇ = (hγ + 4(1 − γ ))v, (11.2)

v̇ = hγ (u − P(h)) + 4(1 − γ ) (u − H(h)) , (11.3)

γ̇ = β2ε
2γ (1 − γ )2Q(h). (11.4)

Given η4 with 0 < η4 < 1, we assume η4 " C̃2/β̃
5
2 " η−1

4 and β̃2 is small. Therefore

η
1
2
4 " β2 " η

− 1
2

4 , and ε = β̃2/β2 is small. Hence (11.1)–(11.4) is a slow-fast system with two
slow variables (h and !) and two fast variables (u and v).

For ε = 0, the set

u = hγP(h) + 4(1 − γ )H(h)

hγ + 4(1 − γ )
, v = 0 (11.5)
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is a normally hyperbolic manifold of equilibria of dimension 2 (one positive eigenvalue, one
negative eigenvalue); compare (9.13). For small ε > 0, the perturbed normally hyperbolic
invariant manifold is given by

u = K(h, γ , ε, β2), K(h, γ , 0, β2) = hγP(h) + 4(1 − γ )H(h)

hγ + 4(1 − γ )
, (11.6)

v = L(h, γ , ε, β2), L(h, γ , 0, β2) = 0; (11.7)

compare (9.14)–(9.15).
The vector field on the perturbed normally hyperbolic invariant manifold is

ḣ = ε
(
hγP(h) + 4(1 − γ )H(h) + O(ε)

)
, (11.8)

γ̇ = β2ε
2γ (1 − γ )2Q(h). (11.9)

In slow time (i.e. divide by ε):

h′ = hγP(h) + 4(1 − γ )H(h) + O(ε), (11.10)

γ ′ = β2εγ (1 − γ )2Q(h). (11.11)

In these coordinates, for ε = 0, each line γ = constant is invariant and has equilibria at
points h with hγP(h) + 4(1 − γ )H(h) = 0. By proposition 5.1, the equilibria constitute two
one-dimensional normally hyperbolic invariant manifolds

Ci = {(h, γ ) : h = hi(γ , 4(1 − γ )), 0 " γ " 1}, i = 1, 2.

See figure 11. Equilibria on C1 are repellers; equilibria on C2 are attractors.
For small ε > 0, C1 (respectively, C2) perturbs to a normally hyperbolic invariant curve

connecting (hL, 0, 0) to (h1, 0, 0) (respectively, (hR, 0, 0) to (h2, 0, 0)). On the perturbed
normally hyperbolic invariant manifolds corresponding to Ci , we have

γ ′ = β2εγ (1 − γ )2Q(hi(γ , 4(1 − γ )) + O(β2)),

which is positive on the interior of C1 and negative on the interior of C2. There is a repeller at
hL and an attractor at hR .

Singular solutions (ε = 0) from (hL, 0) to (hR, 0) consist of a slow solution on C1 from
(hL, 0) to level γ , 0 < γ < 1; a fast connection from C1 to C2 at level γ ; and a slow solution
on C2 to (hR, 0). They persist for small ε > 0. See figure 11. #

As in region 3, the slopes of C1 and C2 are positive where they meet (hL, 0) and (hR, 0),
respectively. The positive slope at (hL, 0) produces a rise in the travelling wave above hL

(capillary ridge).

12. Region 5

Theorem 12.1. Let hL and hR satisfying (3.15) be given. Consider the travelling wave system
(3.11)–(3.14) with the normalization (N3): C̃ = C̃3 ! 0, D̃ = D̃3 ! 0 and β̃ = 1. Then for
each small η > 0, there exists δ5 > 0 such that, if region 5 is defined using this value, then for
each parameter triple (C̃3, D̃3, 1) in region 5, there exists a one-parameter family of travelling
waves connecting hL to hR . Moreover, max ! ranges from 0 to η−1.

If we decrease η, then apparently δ5 must shrink. Thus, unlike in regions 2 and 4, we are
not able to define a single region 5 in which connecting orbits of all sizes exist.

To prove the theorem, in the travelling wave system (3.11)–(3.14) let

ε =
(

C̃

β̃3

) 1
2

, û = β̃u, v̂ = β̃2εv.
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Figure 11. Flow of (11.1)–(11.4).

Substituting for C̃, u, and v in (3.11)–(3.14), dropping the hats, and multiplying by β̃ε, we
obtain

ḣ = ε(h! + 4D̃)u, (12.1)

u̇ = (h! + 4D̃)v, (12.2)

v̇ = h! (u − P(h)) + 4D̃ (u − H(h)) , (12.3)

!̇ = β̃ε!Q(h). (12.4)

In this system let

σ = h! + 4D̃.

We obtain

ḣ = εσu, (12.5)

u̇ = σv, (12.6)

v̇ = (σ − 4D̃) (u − P(h)) + 4D̃ (u − H(h)) , (12.7)

σ̇ = ε(σ − 4D̃)

h

(
σu + β̃hQ(h)

)
. (12.8)

We use the normalized parameters (N3), and we set

D̃3 = σD3 and ε = ε3σD3.

Then after division by σ , system (12.5)–(12.8) becomes

ḣ = ε3σD3u, (12.9)

u̇ = v, (12.10)

v̇ = (1 − 4D3) (u − P(h)) + 4D3 (u − H(h)) , (12.11)

σ̇ = ε3σD3(1 − 4D3)

h
(σu + hQ(h)) , (12.12)

Ḋ3 = −
ε3D

2
3(1 − 4D3)

h
(σu + hQ(h)) . (12.13)

Note that (12.5)–(12.8), with the normalized parameters (N3), has four variables and the two

parameters ε = C̃
1
2

3 and D̃3, while (12.9)–(12.13) has five variables and just one parameter,
ε3 = ε/D̃3 = (C̃3/D̃

2
3)

1
2 . Corresponding to the lost parameter, the new system has a constant
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Figure 12. (a) Flow of (12.14)–(12.16) in the planes σ = 0 and D3 = 0, for any ε3 ! 0. (b) A
singular solution. When finding points in this figure that correspond to points mentioned in the
text, recall that points in the text are given as (h, σ, D3).

of the motion: the product σD3. To study region 5, we assume C̃3/D̃
2
3 and D̃3 are small.

Therefore the parameter ε3 is small, and the product σD3 is small.
For D3 = 0 or ε3 = 0, the set

u = (1 − 4D3)P (h) + 4D3H(h), v = 0

is a normally hyperbolic manifold of equilibria of dimension 2. (One positive eigenvalue, one
negative eigenvalue.) The perturbed normally hyperbolic invariant manifold is

u = (1 − 4D3)P (h) + 4D3H(h) + O(ε3D3), v = O(ε3D3).

On it, after division by ε3D3 we obtain

ḣ = σ
(
(1 − 4D3)P (h) + 4D3H(h) + O(ε3D3)

)
, (12.14)

σ̇ = σ (1 − 4D3)

h

(
σ
(
(1 − 4D3)P (h) + 4D3H(h) + O(ε3D3)

)
+ hQ(h)

)
, (12.15)

Ḋ3 = −D3(1 − 4D3)

h

(
σ
(
(1 − 4D3)P (h) + 4D3H(h) + O(ε3D3)

)
+ hQ(h)

)
. (12.16)

The O(ε3D3) terms are all equal.
On the invariant plane σ = 0, system (12.14)–(12.16) reduces to

ḣ = 0, Ḋ3 = −D3(1 − 4D3)Q(h). (12.17)

On the invariant plane D3 = 0, system (12.14)–(12.16) reduces to

ḣ = σP(h), σ̇ = σ

h

(
σP(h) + hQ(h)

)
. (12.18)

See figure 12(a). We note that the integral curve of (12.18) that approaches (ha, 0) as t → −∞,
h∗ < ha < h1, is given by σ = h1(ha, h),

1(ha, h) = ln
(

h1 − ha

h1 − h

)A (
h − h2

ha − h2

)B (
h + h1 + h2

ha + h1 + h2

)C

, (12.19)

A = 2s(h1 − h∗)h1

(h1 − h2)(2h1 + h2)
, B = 2s(h∗ − h2)h2

(h1 − h2)(2h1 + h2)
, C = 2s(h1 + h2 + h∗)(h1 − h2)

h1h2
.

(12.20)
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Figure 13. Flow of (12.14)–(12.16) on the surface σD3 = D̃3 for any ε3 ! 0, for 0 < D̃3 . 1
and for 0 < ε3D3 . 1. When finding points in this figure that correspond to points mentioned in
the text, recall that points in the text are given as (h, σ, D3).

On the invariant plane D3 = 1
4 , system (12.14)–(12.16) reduces to ḣ = σ (H(h) + O(ε3)),

σ̇ = 0. Because of the known equilibria, the O(ε3) term must be zero for h = hL and
hR . For small σ and ε3, the equilibrium (hL, σ, 1

4 ) (respectively, (hR, σ, 1
4 )) has two positive

(respectively, negative) eigenvalues.
Singular solution:

(1) In the plane σ = 0, from (hL, 0, 1
4 ), follow the ‘slow equation’ ḣ = H(h) along the line

D3 = 1
4 to a point (ha, 0, 1

4 ) with h∗ < ha < h1.
(2) In the plane σ = 0, follow a solution of (12.17), i.e. the line h = ha , from (ha, 0, 1

4 ) to
(ha, 0, 0).

(3) In the plane D3 = 0, follow a solution of (12.18) from (ha, 0, 0) to a point (hb, 0, 0). We
will necessarily have h2 < hb < h∗.

(4) In the plane σ = 0, follow the line h = hb from (hb, 0, 0) to (hb, 0, 1
4 ).

(5) In the plane σ = 0, from (hb, 0, 1
4 ), follow the ‘slow equation’ ḣ = H(h) along the line

D3 = 1
4 to (hR, 0, 1

4 ).

See figure 12(b).
Each set σD3 = constant is invariant under (12.14)–(12.16); in fact, σD3 = D̃3, which

is constant on solutions. On it there are two equilibria, (hL, 4D̃3,
1
4 ) and (hR, 4D̃3,

1
4 ). See

figure 13.

Proposition 12.2. Given a singular solution, for D̃3 > 0 and ε3 ! 0 both sufficiently small,
there is a solution of (12.14)–(12.16) on the surface σD3 = D̃3 that is close to the singular
solution.

The asymptotic expansion of the solutions considered here will be presented elsewhere. Note
that in figure 13, once one connection exists, the part of the surface inside it and with D̃3 < 1

4
is completely filled by connections. Thus proposition 12.2 implies that corresponding to a

fixed singular solution, there is a number δ5 > 0 such that if 0 < D̃3 " δ5 and 0 " ε3 " δ
1
2
5 ,

then connecting orbits near and inside the singular solution exist on the surface σD3 = D̃3.
Now C̃3 = ε2 = ε2

3(σD3)
2 " δ5D̃

2
3 . Thus proposition 12.2 implies theorem 12.1.

The slow parts of the singular solution (the first and fifth parts) give rise to feet in the
connecting orbits.

The proof of proposition 12.2 uses the following lemma.
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(φ(0,ε3)(h0),δ,0)
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~

~

~

Figure 14. Definition of φ for fixed ε3. Points are given as (h, σ, D3).

Fix a small δ > 0, unrelated to previous δ’s, and let I ⊂ (h∗, h1) be a closed interval. For
h0 ∈ I , D̃3 ! 0 and ε3 ! 0 small, define φ(h0, D̃3, ε3) as follows (see figure 14):

(1) If D̃3 > 0, follow the solution of (12.14)–(12.16), for the given value of ε3, in the surface
σD3 = D̃3, that starts at (h, σ, D3) = (h0, δ, D̃3/δ), until it reaches a point (h, D̃3/δ, δ).
Then φ(h0, D̃3, ε3) = h.

(2) For system (12.14)–(12.16) and h0 ∈ I , let the unstable manifold of the equilibrium
(h, σ, D3) = (h0, 0, 0), a curve in the plane D3 = 0, meet the plane σ = δ at the point
(h, δ, 0). Then φ(h0, 0, ε3) = h.

The mapping φ is smooth on {(h0, D̃3, ε3) : D̃3 > 0}, and its restriction to {(h0, D̃3, ε3) :
D̃3 = 0} is smooth.

Let φ(D̃3,ε3)
(h0) = φ(h0, D̃3, ε3).

Lemma 12.3. The mapping (D̃3, ε3) → φ(D̃3,ε3)
is continuous from a neighbourhood of (0, 0)

in {(D̃3, ε3) : D̃3 ! 0 and ε3 ! 0} to C1(I, R).

We prove this lemma in section 14. Given the lemma, the proof of proposition 12.2 goes
as follows. Fix a small ε3 ! 0 and consider small D̃3 > 0. We need ε3 small so that the
O(ε3D3) term will be small for 0 < D3 " 1

4 .
For system (12.14)–(12.16), the set I × { 1

4 } × {0}, regarded as a subset of σ = 0, is a
normally hyperbolic (repelling) line of equilibria. Therefore the invariant line I ×{ 1

4 }×{4D̃3},
regarded as a subset of the invariant surface σD3 = D̃3, is a normally hyperbolic (repelling)
invariant line. It contains one equilibrium, (hL, 1

4 , 4D̃3), which is a repeller within the line
I × { 1

4 } × {4D̃3}, with eigenvalue close to 0 when D̃3 is small.
Consider the solution of (12.14)–(12.16) in σD3 = D̃3 that starts at (h, σ, D3) =

(ha, 4D̃3/(1 − δ), (1 − δ)/4). From the previous paragraph, it follows that in backward
time this solution approaches the equilibrium (hL, 4D̃3,

1
4 ). Moreover, as D̃3 → 0, the

solution curve approaches the union of the curves {(ha, 0, D3) : 1
4 " D3 " (1 − δ)/4}

and {(h, 0, 1
4 ) : hbetween hL and ha}.

In forward time the solution arrives at the plane D3 = δ at a point (h0, D̃3/δ, δ) with
h0 → ha as D̃3 → 0. The solution then arrives at the plane σ = δ at (φ(D̃3,ε3)

(h0), δ, D̃3/δ).
For h ∈ I , the unstable manifold of (h, 0, 0), which lies in the plane D3 = 0, meets the

plane σ = δ at φ(0,ε3)(h), δ, 0), which is independent of ε3. By lemma 12.3, φ(D̃3,ε3)
(h0) is

close to φ(0,ε3)(h0), and of course φ(0,ε3)(h0) is close to φ(0,ε3)(ha).
The remainder of the proof consists of continuing to follow this solution using similar

arguments until it arrives at (hR, 1
4 , 4D̃3).
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We note that it is easy to see that for max ! small, we expect an orbit that, when projected
onto h!-space, has two inward pointing feet, whereas for max ! large, the projected orbit has
feet point right and is close to the vertical lines h = h1 and h = h2. Compare figure 5.

13. Region 6

Theorem 13.1. Let hL and hR satisfying (3.15) be given. Consider the travelling wave system
(3.11)–(3.14) with the normalization (N3): C̃ = C̃3 ! 0, D̃ = D̃3 ! 0 and β̃ = 1. Then for
each η with 0 < η < 1, there exists δ6 > 0 such that, if region 6 is defined using this value,
then for each parameter triple (C̃3, D̃3, 1) in region 6, there exists a one-parameter family of
travelling waves connecting hL to hR . Moreover, max ! ranges from η to η−1.

If we decrease η, then apparently δ6 must shrink. Thus, as in region 5, we are not able to
define a single region 6 in which connecting orbits of all sizes exist. Also note that theorem 13.1
does not say anything about connecting orbits with max ! close to 0. Section 7 provides some
information about these.

To prove the theorem, in (12.1)–(12.4), a system with four variables and the three
parameters ε = (C̃/β̃3)

1
2 , D̃ and β̃, we use the normalization (N3), obtaining a system with

four variables and the two parameters ε = C̃
1
2

3 and D̃3. We then let

! = r(1 − θ), ε = rθ, D̃3 = D3ε = D3rθ .

After division by r , (12.1)–(12.4) becomes

ḣ = rθ(h(1 − θ) + 4D3θ)u, (13.1)

u̇ = (h(1 − θ) + 4D3θ)v, (13.2)

v̇ = h(1 − θ) (u − P(h)) + 4D3θ (u − H(h)) , (13.3)

ṙ = rθ(1 − θ)Q(h), (13.4)

θ̇ = −θ2(1 − θ)Q(h). (13.5)

This is a system with five variables and just one parameter, D3 = D̃3/ε = D̃3/C̃
1
2

3 .
Corresponding to the lost parameter, the new system has a constant of the motion: the product
rθ . To study region 6 we take D3 and C̃3 to be small. Since C̃3 is small, ε is small, so the
product rθ is small.

System (13.1)–(13.5) has, for any D3, two curves of equilibria with θ = 1:

A = {(hL, 0, 0, r, 1) : r ! 0} and B = {(hR, 0, 0, r, 1) : r ! 0}.
For D3 > 0 and r > 0 these equilibria have three-dimensional unstable and stable manifolds,
respectively. We wish to study intersections of these manifolds.

Our analysis will proceed as follows.

1. In the region 0 " θ < 1 we identify, for any D3, a three-dimensional manifold M ,
parametrized by (h, r, θ), that is, normally hyperbolic, with one-dimensional stable fibres
and one-dimensional unstable fibres. On M , after a rescaling, the flow is like that in
figure 12 of the previous section; see figure 15. However, in the previous section, the
invariant manifold extended to D3 = 1

4 , where the equilibria at h = hL and h = hR lay.
Here M does not extend to θ = 1, where the curves of equilibria A and B lie.
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h
h*

h1h2

θ
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Figure 15. Flow of (13.20)–(13.22) on the three-dimensional normally hyperbolic invariant
manifold M .

2. We show that the families of unstable and stable manifolds of equilibria in A and B,
respectively, extend smoothly to r = 0 and D3 = 0.

3. Within r = 0, for D3 = 0, Ws(M) and Wu(M) do extend smoothly to θ = 1. We
show that within r = 0, for D3 = 0, Wu(A) meets Ws(M) transversally, and Ws(B)

meets Wu(M) transversally. It follows that the four-dimensional manifold Wu(A) meets
the four-dimensional manifold Ws(M) transversally, and the four-dimensional manifold
Ws(B) meets the four-dimensional manifold Wu(M) transversally.

4. We track Wu(A) in forward time as it passes the line of equilibria in r = θ = 0 in M .
Using a ‘corner lemma’ to be proved in section 15, we show that after passing the line of
equilibria, Wu(A) is C1-close to Wu(M). Similarly, we track Ws(B) in backward time.
After passing the line of equilibria, Ws(B) is C1-close to Ws(M).

5. It follows that for each fixed D3 near 0, Wu(A) and Ws(B) meet transversally in a three-
dimensional manifold. Past the line of equilibria, i.e. for r of order 1, this manifold is C1-
close to M . It is therefore foliated into two-dimensional invariant manifolds parametrized

by small C̃3: rθ = ε = C̃
1
2

3 . Each manifold is filled with connecting orbits of (13.1)–(13.5)
from (hL, 0, 0, ε, 1) to (hR, 0, 0, ε, 1).

Somewhat more precisely, in figure 15, consider the solution curves in θ = 0 with η
2 "

max r " 2η−1. They limit in backward time on points (h, r, θ) with r = θ = 0 and h ∈ I ,
where I is a closed interval in (h∗, h1). Let Î be a closed interval contained in the interior of I .
Then there is a number δ6 > 0 such that if 0 < D3 < δ and 0 < C̃3 < δ, then Wu(A)∩Ws(B)

includes a two-dimensional invariant manifold in rθ = ε = C̃
1
2

3 that sweeps past the portion
of the line of equilibria that has h ∈ Î . If we use δ6 to define region 6, then for each triple
of parameters in region 6, (13.1)–(13.5) has a one-parameter family of connecting orbits from
(hL, 0, 0, 0, 0) to (hR, 0, 0, 0, 0) as described in the theorem.

In the next four subsections we give more details for steps 1–4 in the analysis.

13.1. The invariant manifold M

For any D3, system (13.1)–(13.5) has the two-dimensional manifold of equilibria

u = P(h), v = 0, θ = 0, h > 0, r arbitrary. (13.6)

Normal to this manifold, each equilibrium has one positive eigenvalue, one negative eigenvalue
and one zero eigenvalue.

The usual proof of the centre manifold theorem shows that the manifold (13.6) is part of a
three-dimensional normally hyperbolic invariant manifold M in huvrθ -space; in addition, M
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depends on the parameter D3. It is given by

u = K(h, r, θ, D3), K(h, r, 0, D3) = P(h), (13.7)

v = L(h, r, θ, D3), L(h, r, 0, D3) = 0. (13.8)

K and L are initially only defined for θ small. However, M and its stable and unstable
manifolds can be extended by the flow. In particular, within the invariant space r = 0, for
D3 = 0, (13.1)–(13.5) reduces to

ḣ = 0, (13.9)

u̇ = h(1 − θ)v, (13.10)

v̇ = h(1 − θ) (u − P(h)) , (13.11)

θ̇ = −θ2(1 − θ)Q(h). (13.12)

Divide by h(1 − θ):

ḣ = 0, (13.13)

u̇ = v, (13.14)

v̇ = u − P(h), (13.15)

θ̇ = − 1
h

θ2Q(h). (13.16)

From the form (13.13)–(13.16) one easily sees that within the invariant space r = 0, for
D3 = 0, M extends in the positive θ -direction to

u = P(h), v = 0, h > 0, 0 " θ < 1. (13.17)

Note that in (13.5), θ̇ = 0 for θ = 1, so M cannot be extended by the flow to θ = 1.
Within the invariant space r = 0, for D3 = 0, Wu(M) is given by

v = u − P(h), h > 0, u arbitrary, 0 " θ < 1, (13.18)

and Ws(M) is given by

v = −u + P(h), h > 0, u arbitrary, 0 " θ < 1. (13.19)

Note that within the invariant space r = 0, for D3 = 0, M , Wu(M) and Ws(M) can be
extended smoothly to θ = 1. However, normal hyperbolicity of M in system (13.1)–(13.5)
is certainly lost there. We do not attempt to extend M , Wu(M) or Ws(M) to θ = 1 outside
r = 0, D3 = 0.

On M , after division by θ , (13.1)–(13.5) reduces to

ḣ = r(h(1 − θ) + 4D3θ)K(h, r, θ, D3)

= r(h(1 − θ) + 4D3θ)
(
P(h) + O(θ(|r| + |D3|))

)
, (13.20)

ṙ = r(1 − θ)Q(h), (13.21)

θ̇ = −θ(1 − θ)Q(h). (13.22)

Each surface rθ = ε is invariant. See figure 15. We note that for θ = 0, the integral curve of
(13.20)–(13.21) that approaches (ha, 0) as t → −∞, h∗ < ha < h1, is given by r = 1(ha, h),
where 1(ha, h) is given by (12.19)–(12.20).
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13.2. The curves of equilibria A and B

For D3 = 0, the space θ = 1 consists of equilibria of (13.1)–(13.5). It is normally hyperbolic
away from h = h∗. The space θ = 1 remains invariant for D3 > 0. For D3 small it is normally
hyperbolic away from h = h∗.

Restricting (13.1)–(13.5) to θ = 1 and dividing by 4D3, we obtain

ḣ = ru, (13.23)

u̇ = v, (13.24)

v̇ = u − H(h), (13.25)

ṙ = 0. (13.26)

Restrict to the invariant space r = 0:

ḣ = 0, (13.27)

u̇ = v, (13.28)

v̇ = u − H(h). (13.29)

System (13.27)–(13.29) has, for each D3, the curve of equilibria

u = H(h), v = 0, h > 0. (13.30)

It is normally hyperbolic (one positive eigenvalue, one negative eigenvalue). Unstable
manifold:

v = u − H(h), h > 0, u arbitrary. (13.31)

Stable manifold:

v = −u + H(h), h > 0, u arbitrary. (13.32)

For each D3, the curve (13.30) is part of a two-dimensional normally hyperbolic invariant
manifold N in θ = 1 for system (13.23)–(13.26). N is given by

u = K̂(h, r, D3), K̂(h, 0, D3) = H(h), (13.33)

v = L̂(h, r, D3), L̂(h, 0, D3) = 0. (13.34)

In these expressions, r ! 0 and D3 ! 0 are small. We must have

K̂(hL, r, D3) = L̂(hL, r, D3) = K̂(hR, r, D3) = L̂(hR, r, D3) = 0.

On N system (13.23)–(13.26) reduces to

ḣ = rK̂(h, r, D3), (13.35)

ṙ = 0. (13.36)

Divide by r to desingularize at r = 0:

ḣ = K̂(h, r, D3), (13.37)

ṙ = 0. (13.38)

For fixed D3 ! 0, regard A as a curve in the four-dimensional space θ = 1. It lies
in the two-dimensional manifold N , where it is a curve of normally repelling equilibria of
(13.37)–(13.38). Let Ã be a small neighbourhood of A in N ; Ã has dimension two. Since
N is normally hyperbolic in θ = 1 for system (13.23)–(13.26), each point of N has a one-
dimensional unstable fibre for this system. Let Wu(Ã) denote the union over points of Ã of
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these unstable fibres, a three-dimensional submanifold of θ = 1. Now for h near hL, the space
θ = 1 is a normally repelling invariant manifold for system (13.1)–(13.5). Therefore each
point of Wu(Ã) has a one-dimensional unstable fibre for this system. Let Wu(A) denote the
union over points of Wu(Ã) of these unstable fibres, a four-dimensional manifold. Wu(A) is
given by
v = L̂u(h, u, r, θ, D3), L̂u(h, u, 0, 1, D3) = u − H(h), h near hL. (13.39)
The notation Wu(A) involves some abuse of notation when D3 = 0 or r = 0. For D3 > 0
and r > 0, points of Wu(A) lie in the unstable manifold of one of the equilibria in A. This
construction shows how these manifolds extend smoothly to D3 = 0 and r = 0.

Define Ws(B) similarly. It is given by
v = L̂s(h, u, r, θ, D3), L̂s(h, u, 0, 1, D3) = −u + H(h), h near hR. (13.40)

13.3. Transversality

We claim that for D3 ! 0 small, the four-dimensional manifolds Wu(A), given by (13.39),
and Ws(M), given within r = 0 for D3 = 0 by (13.19), are transverse.

To see this, set D3 = 0 and look within the space r = 0, θ = 1. There Wu(A) is given by
v = u − H(h), h > h∗, u arbitrary; and Ws(M) within r = 0, for D3 = 0, extends smoothly
to a submanifold of r = 0, θ = 1 given by v = −u + P(h), h > 0 arbitrary, u arbitrary. The
transversal intersection is

u = 1
2 (H(h) + P(h)), v = 1

2 (P (h) − H(h)), h > h∗.

Similarly, for D3 = 0, within the space r = 0, Ws(B) is given by v = −u + H(h), h < h∗, u

arbitrary; and Wu(M) within r = 0, for D3 = 0, extends smoothly to a submanifold of r = 0,
θ = 1 given by v = u − P(h), h > 0 arbitrary, u arbitrary. The transversal intersection is

u = 1
2 (H(h) + P(h)), v = 1

2 (P (h) − H(h)), 0 < h < h∗.

Let Ns = Wu(A) ∩ Ws(M), Nu = Ws(B) ∩ Wu(M). For fixed D3, each is a three-
dimensional manifold parametrized by (h, r, θ).

13.4. Tracking solutions

More precisely, for fixed D3 and θ near 1, Ns is a section of Ws(M), thought of as a bundle over
M whose fibres are the one-dimensional stable fibres of points. Ns is thus a two-parameter
family of solutions, parametrized by (h, r). The solutions track and approach solutions in
M . For r = 0, h (and of course r) are constant on solutions; the tracked solutions, and
hence the corresponding solutions in Ns , approach (h, 0, 0). Let I be a compact subinterval
of (h∗, h1) and let δ > 0 be small. Then for each D3, Ns includes a curve J s close to
{(h, u, v, r, θ) : h ∈ I, r = 0, θ = δ, u = K(h, 0, δ, D3), v = L(h, 0, δ, D3)}; each point of
J s is in the stable fibre of the corresponding point in M .

In order to track solutions farther, in (13.1)–(13.5) we let
u = K(h, r, θ, D3) + ũ, v = L(h, r, θ, D3) + ṽ.

In the new coordinates, hrθ -space is M. We obtain
ḣ = rθ(h(1 − θ) + 4D3θ)(K(h, r, θ, D3) + ũ), (13.41)
˙̃u = O(|ũ| + |ṽ|), (13.42)
˙̃v = O(|ũ| + |ṽ|), (13.43)

ṙ = rθ(1 − θ)Q(h), (13.44)

θ̇ = −θ2(1 − θ)Q(h). (13.45)
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Next divide by (1 − θ)Q(h), which is positive for h ∈ I and θ near 0, and replace (ũ, ṽ) by
new coordinates (x, y) = (x, y)(h, ũ, ṽ, r, θ, D3) in order to achieve Fenichel coordinates.
We have

ẋ = −xc(x, y, h, r, θ, D3), (13.46)

ẏ = yd(x, y, h, r, θ, D3), (13.47)

ḣ = rθ(a(h, θ) + D3θ b(h, θ))(K(h, r, θ, D3) + O(xy)), (13.48)

ṙ = rθ, (13.49)

θ̇ = −θ2, (13.50)

with c > 0, d > 0, a(h, θ) = hQ−1 and b(h, θ) = 4(1 − θ)−1Q−1; a and b are positive for
h ∈ I and θ near 0. In Fenichel coordinates, Wu(M) is given by x = 0 and Ws(M) is given
by y = 0; on both spaces, (ḣ, ṙ, θ̇) depends only on (h, r, θ).

In these coordinates,

J s = {(x, y, h, r, θ) : y = 0, h ∈ I, r = 0, θ = δ, x = x̂(h, D3)}.
We extend J s to a two-dimensional cross-section Rs of Ns ,

Rs = {(x, y, h, r, θ) : y = 0, h ∈ I, 0 " r " δ1, θ = δ, x = x̂(h, r, D3)},
and we extend Rs to a three-dimensional cross-section Qs of Wu(A):

Qs = {(x, y, h, r, θ) : |y| " δ, h ∈ I, 0 " r " δ1, θ = δ, x = x̂(y, h, r, D3)}.
For (y0, h0, r0, D3) with r0 > 0, follow the solution of (13.46)–(13.50), for the given

value of D3, that starts at (x, y, h, r, θ) = (x̂(y0, h0, r0, D3), y
0, h0, r0, δ) until it reaches

r = δ at a point (x, y, h, δ, θ). The set of such points is a three-dimensional cross-section Qs
∗

of Wu(A).

Proposition 13.2. Let Î be a closed interval contained in the interior of I . Then for δ > 0
sufficiently small, there is a number δ1 > 0 such that if 0 " D3 " δ, then Qs

∗ contains
{(x, y, h, r, θ) : |y| " δ, h ∈ Î , r = δ, 0 < θ " δ1, x = x̃(y, h, θ, D3)}. As θ → 0, x̃ → 0 in
C1([−δ, δ] × Î × [0, δ], R).

This proposition implies that after passing the line of equilibria, Wu(A) is C1-close to
Wu(M). The proof is in section 15.

14. Proof of lemma 12.3

We write system (12.14)–(12.16), with β fixed, as

ḣ = σb(h, σ, D3, ε3), (14.1)

σ̇ = σa(h, σ, D3, ε3), (14.2)

Ḋ3 = −D3a(h, σ, D3, ε3). (14.3)

For h ∈ I and the other variables small, a > 0. Rescale by dividing by a > 0:

ḣ = σ b̃(h, σ, D3, ε3), (14.4)

σ̇ = σ, (14.5)

Ḋ3 = −D3. (14.6)
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Replacing h with z = z(h, D3), we can ensure that the unstable manifold of each equilibrium
is a line z = constant in the plane D3 = 0. In these Fenichel coordinates [7] the system
becomes

ż = σD3 c(z, σ, D3, ε3), (14.7)

σ̇ = σ, (14.8)

Ḋ3 = −D3. (14.9)

Consider the following boundary value problem for (14.7)–(14.9):

z(0) = z0, σ (τ ) = σ 1, D3(0) = D0
3, τ ! 0.

Denote the solution (z, σ, D3)(t, τ, z
0, σ 1, D0

3, ε3). Fix k > 0. According to Deng’s lemma
[4], for small δ > 0 there are constants λ, µ, and K , with −1 < λ < 0 < µ < 1
and K > 0, such that if max(|σ 1|, |D0

3 |, |ε3|) " δ and z0 ∈ I , then the following is
true. For each i = 0, . . . , k and each i-tuple of integers chosen from the set {1, . . . , 6},
‖Di(z − z0)‖ " Keλt+µ(t−τ ).

Fix a small δ > 0. In our coordinates φ corresponds to a mapping ψ(z0, D3, ε3), with
z0 ∈ I and D3 ! 0 and ε ! 0 small, defined as follows:

(1) If D3 > 0, follow the solution of (14.7)–(14.9), for the given value of ε3, in the
surface xy = D3, that starts at (x, y, z) = (δ, D3/δ, z

0), until it reaches a point
(x, y, z) = (D3/δ, δ, z

1), which happens at time τ = ln δ2

D3
. Then φ(z0, D3, ε3) = z1.

(2) φ(z0, 0, ε3) = z0.

For D3 > 0 we have

z1 = z(τ, τ, δ, δ, z0) = z

(
ln

δ2

D3
, ln

δ2

D3
, δ, δ, z0

)
.

By Deng’s lemma

|z1 − z0| " Keλτ = K

(
δ2

D3

)λ

= K

(
D3

δ2

)−λ

.

Since λ < 0, z1 − z0 → 0 uniformly in z0 as D3 → 0. Similarly, ∂z1

∂z0 − 1 → 0 uniformly in
z0 as D3 → 0.

15. Proof of proposition 13.2

Denote the solution of (13.48)–(13.50) with x = 0 or y = 0 and (h, r, θ)(0) = (h1, r1, θ1) by

(h4, r4, θ4)(t, h
1, r1, θ1, D3), r4 = r1(1 + θ1t), θ4 = θ1

1 + θ1t
.

Consider the following boundary value problem for (13.46)–(13.50):

x(0) = x0, (y, h, r, θ)(τ ) = (y1, h1, r1, θ1), τ ! 0.

Denote the solution (x, y, h, r, θ)(t, τ, x0, y1, h1, r1, θ1, D3). Then

(r, θ)(t, τ, x0, y1, h1, r1, θ1, D3) = (r4, θ4)(t − τ, h1, r1, θ1, D3)

and

h(t, τ, 0, y1, h1, r1, θ1, D3) = h(t, τ, x0, 0, h1, r1, θ1, D3) = h4(t − τ, h1, r1, θ1, D3).
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Moreover, according to Deng’s lemma [4], for small δ > 0 there are constants λ, µ, and K ,
with λ < 0 < µ and K > 0, such that if max(|x0|, |y1|, |r1|, |θ1|, |D3|) " δ and h1 ∈ Î , then

‖Dx‖ " Keλt ,

‖Dy‖ " Keµ(t−τ ),

‖D(h(t, τ, x0, y1, h1, r1, θ1, D3) − h4(t − τ, h1, r1, θ1, D3))‖ " Keλt+µ(t−τ ).

In addition, we note that for a small γ > 0, ‖D(h1,r1,θ1,D3)(h4, r4, θ4)‖ " Keγ |t |. These
estimates hold as long as max(|x|, |y|, |r|, |θ |, |D3|) " 2δ and h ∈ I .

To prove proposition 13.2, given (y1, h1, r1, θ1, D3) with |y1| " δ, h1 ∈ I , r1 = δ,
θ1 > 0 small, and D3 small, we want to find (τ, x0) such that

θ(0, τ, x0, y1, h1, δ, θ1, D3) = δ and x0 = x̂((y, h, r)(0, τ, x0, y1, h1, δ, θ1, D3), D3).

Then

x̃(y1, h1, θ1, D3) = x(τ, τ, x0, y1, h1, δ, θ1, D3). (15.1)

Clearly

τ = δ − θ1

δθ1
. (15.2)

Let

x0 = x̂(0, (h4, r4)(−τ, h1, δ, θ1, D3), D3) + x̄0 with τ = δ − θ1

δθ1
. (15.3)

Define

G(x̄0, (h1, θ1, D3), y
1) = x0 − x̂((y, h, r)(0, τ, x0, y1, h1, δ, θ1, D3), D3)

with τ and x0 given in terms of (x̄0, h1, θ1, D3) by (15.2) and (15.3). The domain of G is
X × Y × Z,

X = {x̄0 : |x̄0| < δ},
Y = {(h1, θ1, D3) : h1 ∈ I, 0 < θ1 < δ1, 0 " D3 < δ},
Z = {ȳ1 : |y1| < δ}.

The number δ1 will be explained below.
The proof then goes as follows.

(1) G(0, (h1, θ1, D3), 0) = 0 and G(0, (h1, θ1, D3), y
1) is of order e−µτ .

(2) Dx̄0G(0, (h1, θ1, D3), 0) = 1.
(3) Dx̄0G(x̄0, (h1, θ1, D3), y

1) − Dx̄0G(0, (h1, θ1, D3), 0) is of order e−µτ .
(4) By the implicit function theorem (version in [17]), for each ((h1, θ1, D3), y

1), there is a
unique x̄0, of order e−µτ , such that G(x̄0, (h1, θ1, D3), y

1) = 0.
(5) Any partial derivative of G with respect to ((h1, θ1, D3), y

1) is of order e−(µ−2γ )τ .
(6) Any partial derivative of x̄0 with respect to ((h1, θ1, D3), y

1) is of order e−(µ−2γ )τ .
(7) Any partial derivative of x̃ with respect to (y1, h1, θ1, D3) is of order e−(µ−2γ )τ . The result

then follows by substituting (15.2) for τ .

To show (1), first note that

G(0, (h1, θ1, D3), 0)

= x̂(0, (h, r)(0, τ, x0, 0, h1, δ, θ1, D3), D3) − x̂((y, h, r)(0, τ, x0, 0, h1, δ, θ1, D3), D3)

= x̂(0, (h, r)(0, τ, x0, 0, h1, δ, θ1, D3), D3) − x̂(0, (h, r)(0, τ, x0, 0, h1, δ, θ1, D3), D3)

= 0.
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Next note that

G(0, (h1, θ1, D3), y
1) = x̂(0, (h4, r4)(−τ, h1, δ, θ1, D3), D3)

−x̂((y, h, r)(0, τ, x0, y1, h1, δ, θ1, D3), D3). (15.4)

We claim that if θ1 is small enough (i.e., less than some δ1), then h4(−t, h1, δ, θ1, D3) is
close to h1 for 0 " t " τ and hence is in I . To see this, note that the flow of (13.48)–(13.50)
with x = 0 or y = 0 can be analysed by first dividing by θ , thus producing a system like that
analysed in the previous section.

Then by Deng’s lemma, the yhr-coordinates of the two points at which x̂ is evaluated in
(15.4) differ by O(e−µτ ). Since x̂ is differentiable, the result follows.

(2) follows from

G(x̄0, (h1, θ1, D3), 0) = x̂(0, (h, r)(0, τ, x0, 0, h1, δ, θ1, D3), D3) + x̄0

−x̂(0, (h, r)(0, τ, x0, 0, h1, δ, θ1, D3), D3) = x̄0.

To show (3), write

Dx̄0G(x̄0, (h1, θ1, D3), y
1) = 1 +

∂ x̂

∂y

∂y

∂x0

∂x0

∂ x̄0
+

∂ x̂

∂h

∂h

∂x0

∂x0

∂ x̄0
+

∂ x̂

∂r

∂r

∂x0

∂x0

∂ x̄0
.

The partial derivatives of x̂ are bounded; ∂x0

∂ x̄0 = 1; and the other partial derivatives are O(e−µτ )

by Deng’s lemma.
Now

|G(0, (h1, θ1, D3), y
1)| " Ke−µτ

by (1), and

|Dx̄0G(x̄0, (h1, θ1, D3), y
1) − Dx̄0G(0, (h1, θ1, D3), 0)| " Le−µτ .

by (3). Choose δ1 so small that for |θ1| < δ1, Ke−µτ < δ and Le−µτ < 1
2 . Then by the implicit

function theorem (version in [17], which also uses (2)), for each ((h1, θ1, D3), y
1) ∈ Y × Z

there is a unique x̄0 with |x̄0| " 2Ke−µτ such that G(x̄0, (h1, θ1, D3), y
1) = 0.

To show (5), we consider only ∂G
∂θ1 :

∂G

∂θ1
= ∂x0

∂θ1
−

(
∂ x̂

∂y

(
∂y

∂τ

∂τ

∂θ1
+

∂y

∂x0

∂x0

∂θ1
+

∂y

∂θ1

)
+

∂ x̂

∂h

(
∂h

∂τ

∂τ

∂θ1
+

∂h

∂x0

∂x0

∂θ1
+

∂h

∂θ1

)

+
∂ x̂

∂r

(
∂r

∂τ

∂τ

∂θ1
+

∂r

∂x0

∂x0

∂θ1
+

∂r

∂θ1

) )

where
∂x0

∂θ1
= ∂ x̂

∂h

(
−∂h4

∂t

∂τ

∂θ1
+

∂h4

∂θ1

)
+

∂ x̂

∂r

(
−∂r4

∂t

∂τ

∂θ1
+

∂r4

∂θ1

)
. (15.5)

(For brevity we have not shown where these partial derivatives are evaluated; thus some terms
that appear to be equal are not.) Since ∂r

∂x0 = 0, one term can be ignored. From (15.2), for
large τ , ∣∣∣∣

∂τ

∂θ1

∣∣∣∣ " Lτ 2 " Leγ τ .

Since partial derivatives of x̂ are bounded and partial derivatives of h4 and r4 at t = −τ are of
order eγ τ , ∂x0

∂θ1 is of order e2γ τ . By Deng’s lemma, partial derivatives of y at t = 0 are of order
e−µτ , and ∂h

∂x0 at t = 0 is of order e−µτ . Therefore the following terms are of order e−(µ−2γ )τ :

∂ x̂

∂y

(
∂y

∂τ

∂τ

∂θ1
+

∂y

∂x0

∂x0

∂θ1
+

∂y

∂θ1

)
+

∂ x̂

∂h

∂h

∂x0

∂x0

∂θ1
.
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We are left with the following terms:

∂ x̂

∂h

(
−∂h4

∂t

∂τ

∂θ1
+

∂h4

∂θ1

)
− ∂ x̂

∂h

(
∂h

∂τ

∂τ

∂θ1
+

∂h

∂θ1

)

+
∂ x̂

∂r

(
−∂r4

∂t

∂τ

∂θ1
+

∂r4

∂θ1

)
− ∂ x̂

∂r

(
∂r

∂τ

∂τ

∂θ1
+

∂r

∂θ1

)
.

These terms may be grouped so that the terms in each group are of order e−(µ−2γ )τ . For
example, taking account where each term is evaluated:

∂ x̂

∂h

∂h4

∂θ1
− ∂ x̂

∂h

∂h

∂θ1
= ∂ x̂

∂h
(0, (h4, r4)(−τ, h1, δ, θ1, D3), D3)

∂h4

∂θ1
(−τ, h1, δ, θ1, D3)

−∂ x̂

∂h
((y, h, r)(0, τ, x0, y1, h1, δ, θ1, D3), D3)

∂h

∂θ1
(0, τ, x0, y1, h1, δ, θ1, D3), D3).

This is the sum of

∂ x̂

∂h
(0, (h4, r4)(−τ, h1, δ, θ1, D3), D3)

(
∂h4

∂θ1
(−τ, h1, δ, θ1, D3)

− ∂h

∂θ1
(0, τ, x0, y1, h1, δ, θ1, D3), D3

)

and(
∂ x̂

∂h
(0, (h4, r4)(−τ, h1, δ, θ1, D3), D3) − ∂ x̂

∂h
((y, h, r)(0, τ, x0, y1, h1, δ, θ1, D3), D3)

)

× ∂h

∂θ1
((0, τ, x0, y1, h1, δ, θ1, D3), D3).

The first summand is a bounded term times one that is O(e−µτ ) by Deng’s lemma. In the
second term, ∂ x̂

∂h
is evaluated at two points that, by Deng’s lemma, differ by O(e−µτ ). Thus the

difference is O(e−µτ ). This difference is multiplied by ∂h
∂θ1 ((0, τ, x0, y1, h1, δ, θ1, D3), D3),

which is O(eγ τ ).
(6) follows from (2) to (5). To show (7), we consider only ∂ x̃

∂θ1 . We use (15.1) to write

∂ x̃

∂θ1
= ∂x

∂t

∂τ

∂θ1
+

∂x

∂τ

∂τ

∂θ1
+

∂x

∂x0

∂x0

∂θ1
+

∂x

∂θ1
,

with ∂x0

∂θ1 given by (15.5) plus ∂ x̄0

∂θ1 . From these expressions and (6) we easily show (7).

16. Discussion

In this section we briefly discuss the relationship of our results to the results of [11].
In [11], the only discussion of the case in which all three of the parameters D, C and β

are positive is in section 4, in which results of a numerical simulation of (1.1)–(1.2) with C

of order 1 and D and β small are given. The simulation produced a travelling wave whose
corresponding heteroclinic orbit in four-dimensional space cannot readily be viewed as lying
in a two-dimensional manifold (figure 18 of [11]). Moreover, the orbit begins and ends with
portions that parallel the three-dimensional space ! = 0. These features are explained by our
discussion of region 1, which suggests that they are typical of a fairly large region of parameter
space (β̃1 bounded and D̃1 small). We recall, however, that we did not prove the existence of
heteroclinic orbits in region 1.

In section 3 of [11], the authors discuss the case C = 0. In the limit D → 0 (section
3.4 of [11]) they find feet and, for max ! not too small, nonmonotone h(ξ) (capillary ridge).



122 V Manukian and S Schecter

These results correspond to ours in region 5, despite the fact that C = 0 is a singular limit. In
the limit β → 0 (section 3.3 of [11]), they find no feet and nonmonotone h(ξ). These results
correspond to ours in Regions 4 and 3; however, the reader will note that we are not able to let
C → 0 unless we simultaneously let β → 0. For C = 0 and intermediate values of β and D,
the authors of [11], in their sections 3.1–3.2, find a transition from feet to no feet; we obtain
similar resuts in region 2, again despite the fact that C = 0 is a singular limit.

Our remaining region, region 6, is adjacent to a region in which D = 0, β > 0, and
C → 0. The latter is not treated in [11]. In region 6, as in region 1, we have the problem
of connecting a three-dimensional unstable manifold to a three-dimensional stable manifold
without a limiting situation that reduces the dimension of the problem; in this case, however,
enough limiting structure is present to prove the existence of the heteroclinic orbits.

Acknowledgments

The research of both authors was partially supported by NSF Grants DMS-0406016, DMS-
0604849 and DMS-0708386. VM was also partially supported by NSF Grant DMS-0410267.
The authors thank Michael Shearer for introducing them to this subject and for helpful
discussions, and they thank MSRI for its hospitality during part of this work.

References

[1] Beyn W-J 1990 The numerical computation of connecting orbits in dynamical systems IMA J. Numer. Anal.
10 379–405

[2] Conley C 1978 Isolated Invariant Sets and the Morse Index (Conference Board of the Mathematical Sciences
vol 38) (Providence, RI: American Mathematical Society)

[3] Kopell N and Howard L 1975 Bifurcations and trajectories joining critical points Adv. Math. 18 306–58
[4] Deng B 1990 Homoclinic bifurcations with nonhyperbolic equilibria SIAM. J. Math. Anal. 21 693–719
[5] Dumortier F and Roussarie R 2001 Geometric singular perturbation theory beyond normal hyperbolicity

Multiple-time-scale Dynamical Systems (Minneapolis, MN, 1997) (The IMA Volumes in Mathematics and its
Applications vol 122) (New York: Springer) pp 29–63

[6] Fenichel N 1979 Geometric singular perturbation theory for ordinary differential equations J. Diff. Eqns.
31 53–98

[7] Jones C K R T 1995 Geometric singular perturbation theory Dynamical Systems (Montecatini Terme, 1994)
(Lecture Notes in Mathematics vol 1609) (Berlin: Springer) pp 44–118

[8] Kaper T J 1999 An introduction to geometric methods and dynamical systems theory for singular perturbation
problems Analyzing Multiscale Phenomena Using Singular Perturbation Methods (Baltimore, MD, 1998)
Proc. Symp. Applied Mathematics vol 56) (Providence, RI: American Mathematical Society) pp 85–131

[9] Krupa M and Szmolyan P 2001 Geometric analysis of the singularly perturbed planar fold Multiple-time-scale
Dynamical Systems (Minneapolis, MN, 1997) (The IMA Volumes in Mathematics and its Applications vol 122)
(New York: Springer) pp 89–116

[10] Levy R and Shearer M 2006 The motion of a thin liquid film driven by surfactant and gravity SIAM J. Appl.
Math. 66 1588–609

[11] Levy R, Shearer M and Witelski T P 2007 Gravity-driven thin liquid films with insoluble surfactant: smooth
traveling waves Eur. J. Appl. Math. 18 679–708

[12] Michelson D 1988 Strong viscous shocks for systems of conservation laws with a high order of dissipation J.
Diff. Eqns 71 246–54

[13] Nirenberg L 1959 On elliptic partial differential equations Ann. Scuola Norm. Sup. Pisa 13 115–62
[14] Mock M S 1976 On fourth order dissipation and single conservation laws Commun. Pure Appl. Math. 29 383–8
[15] Renardy M 1996 A singularly perturbed problem related to surfactant spreading on thin films Nonlinear Anal.

27 287–96
[16] Schecter S 2004 Existence of Dafermos profiles for singular shocks J. Diff. Eqns 205 185–210
[17] Schecter S 2008 Exchange lemmas II: general exchange lemma J. Diff. Eqns 245 411–41
[18] Troy W C 1993 Solutions of a third-order differential equation relevant to draining and coating flows SIAM J.

Math. Anal. 24 155–71




