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Abstract. We study the stability of the combustion waves that occur in a simplified
model for injection of air into a porous medium that initially contains some solid fuel. We
determine the essential spectrum of the linearized system at a traveling wave. For certain
waves, we are able to use a weight function to stabilize the essential spectrum. We perform
a numerical computation of the Evans function to show that some of these waves have no
unstable discrete spectrum. The system is partly parabolic, so the linearized operator is
not sectorial, and the weight function decays at one end. We use an extension of a recent
result about partly parabolic systems that are stabilized by such weight functions to show
nonlinear stability.

1. Introduction

This paper is devoted to the stability analysis of combustion waves that arise in a sim-
plified, one-dimensional model of enhanced oil recovery using air injection. In this model, a
combustion wave is just a continuous nonconstant traveling wave with constant end states.
Understanding the stability of combustion waves helps to maximize oil recovery.

The system we consider models combustion when air is injected into a porous medium that
initially contains some solid fuel. The model was proposed in [1] and studied in [5, 6, 7, 15].
It consists of three PDEs that give temperature, oxygen and fuel balance laws. It is a partly
parabolic system that has diffusion in the temperature equation and no diffusion in the other
equations; we ignore the diffusion of oxygen, and the solid fuel does not diffuse.
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Existence of combustion waves was proved in [7] for the case in which oxygen and heat
are transported at the same velocity, and in [15] for the more important case in which
oxygen is transported faster than temperature. In [15] six types of combustion waves that
approach both end states exponentially and satisfy generic boundary conditions were found.
Two are fast combustion waves that propagate faster than oxygen and temperature; two are
slow combustion waves, called “reaction-trailing smolder waves” [2], that propagate more
slowly than oxygen and temperature; and two are intermediate waves, called “reaction-
leading smolder waves” [2, 14], that propagate more slowly than oxygen but faster than
temperature.

In this work we study the stability of the combustion waves that were found in [15]. We
begin by finding the spectrum of the operator obtained by linearizing the partial differential
equation system about a traveling wave.

We first find the essential spectrum using the Fourier transform. It turns out that the
essential spectrum is marginally stable (touches the imaginary axis) for all types of combus-
tion waves. For the fast combustion waves we can find a weight function that stabilizes the
essential spectrum (moves it to the left of the imaginary axis). We cannot find such a weight
function for the other combustion waves. Therefore in the remainder of the paper we study
stability of fast combustion waves only.

We continue the linear stability analysis for fast combustion waves by performing a nu-
merical computation of the Evans function to find the discrete spectrum [12]. Some of the
waves have no unstable discrete spectrum; others have an unstable eigenvalue because of a
saddle-node bifurcation of traveling waves.

In proving nonlinear stability of the fast combustion waves with no unstable discrete
spectrum, two issues remain: the system is only partly parabolic, so the linearized operator
is not sectorial; and the weight function used to stabilize the essential spectrum decays at
one end. With the assumption that there is no unstable discrete spectrum, we complete the
proof of nonlinear stability using an extension of a result in [9]. The extension is achieved
using [16].

The type of nonlinear stability that is shown is somehat unusual in that perturbations
that are small in one norm are shown to decay in a different norm. However, this type of
nonlinear stability is quite natural to this and other combustion problems; see the discussion
after Theorem 5.1 and in [9].

The paper is organized as follows. We introduce the mathematical model and recall
existence results for combustion waves in section 2, then linearize the system about the com-
bustion waves and study the essential spectrum in section 3. For the fast combustion waves,
numerical computation of the Evans function is performed to find the discrete spectrum in
section 4. We study nonlinear stability of the fast combustion waves in section 5. A type
of nonlinear stability follows from an extension of the main result of [9]. We explain this
extension in appendix A.

The numerical computation of the Evans function in section 4 does not yield a rigorous
proof of linear stability because there is no a priori bound on the location of possible eigen-
values. However, in section 6 we add small diffusion to the oxygen equation and show that
for this modified system, a bound on the location of eigenvalues can be found. Our proof
uses the technique of [11].

We thank Blake Barker for his patient assistance with STABLAB, which was used in
section 4 to numerically compute the Evans function, and Jeff Humpherys for considerable
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help with section 6. We also thank Yuri Latushkin for useful conversations about extending
the main result of [9].

2. Model and existence of combustion waves

The system we consider consists of three equations that give temperature (θ), fuel (ρ) and
oxygen (Y ) balance laws:

∂tθ + a∂xθ = ∂xxθ + ρY Φ, (2.1)

∂tρ = −ρY Φ, (2.2)

∂tY + b∂xY = −ρY Φ, (2.3)

Φ =

{
e−1/θ, θ > 0,

0, θ ≤ 0,

where a > 0 and b > 0 are thermal and oxygen transport speeds, and Φ is unit reaction rate.
Combustion is assumed to occur above a certain ignition temperature; we have normalized so
that the ignition temperature is θ = 0. The diffusion of oxygen is neglected. The equations
have been nondimensionalized to reduce the number of parameters. For the derivation of
the system see [7].

We assume a < b, which is correct in rock porous media since the thermal capacity of the
gas is much less than the thermal capacity of the medium.

We use constant boundary conditions for (2.1)–(2.3) on −∞ < x <∞, t ≥ 0:

(θ, ρ, Y )(−∞, t) = (θ−, ρ−, Y −), (θ, ρ, Y )(∞, t) = (θ+, ρ+, Y +). (2.4)

We assume the reaction cannot occur at the boundary. Thus at x = ±∞ we must have one
of the following:

(1) low temperature θ ≤ 0 (temperature control or TC);
(2) lack of fuel ρ = 0 (fuel control or FC);
(3) lack of oxygen Y = 0 (oxygen control or OC).

A traveling wave solution of (2.1)–(2.3) is a function (θ, ρ, Y )(ξ), ξ = x − ct, with
(θ, ρ, Y )(−∞) = (θ−, ρ−, Y −) and (θ, ρ, Y )(∞) = (θ+, ρ+, Y +). We will sometimes denote a
wave of velocity c that goes, for example, from a left state of type TC to a right state of
type OC by TC

c−→ OC.
We only consider generic boundary conditions, meaning that exactly one of the conditions

θ− ≤ 0, ρ− = 0, Y − = 0 holds, and exactly one of the conditions θ+ ≤ 0, ρ+ = 0, Y + = 0
holds. The other two values are positive at both left and right.

We limit our attention to waves that approach their end states exponentially [9]. Within
the class of waves that satisfy generic boundary conditions, this limitation just means that
we do not consider waves with θ− = 0 that approach the left state more slowly than exponen-
tially. Such waves are generally considered nonphysical in that they only occur in solutions
of initial value problems if the initial conditions are carefully prepared. Only traveling waves
with velocity c > 0 are considered.

Theorem 2.1. There exist six types of nonconstant traveling wave solutions of (2.1)–(2.3),
(2.4) with positive velocity that satisfy generic boundary conditions and approach their end
states exponentially, two fast ( cf > b), two slow (cs < a), and two intermediate (a < cm < b):

(1)FC
cf−→ TC (3)TC

cs−→ OC (5)FC
cm−→ OC
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(2)OC
cf−→ TC (4)FC

cs−→ OC (6)FC
cm−→ TC

The existence of these combustion waves was proved in [15].

3. Spectrum and exponential weight functions

In this section, we linearize the system about a traveling wave and begin to study the
spectrum of the linearized operator L. The spectrum of L, which we denote Sp(L), consists
of the discrete spectrum Spd(L) and the essential spectrum Spess(L). The discrete spectrum
is the set of all eigenvalues of L with finite multiplicity that are isolated in the spectrum, and
the essential spectrum is the rest of the spectrum. We will study Spess(L) in this section.

Replacing the spatial coordinate x by the moving coordinate ξ = x− ct in (2.1)–(2.3), we
obtain

∂tθ = ∂ξξθ + (c− a)∂ξθ + F, (3.1)

∂tρ = c∂ξρ− F, (3.2)

∂tY = (c− b)∂ξY − F, (3.3)

where F = ρY Φ. A traveling wave T ∗(ξ) = (θ∗(ξ), ρ∗(ξ), Y ∗(ξ)) with velocity c is a stationary
solution of (3.1)–(3.3) with

lim
ξ→−∞

T ∗(ξ) = T− = (θ−, ρ−, Y −), lim
ξ→+∞

T ∗(ξ) = T+ = (θ+, ρ+, Y +).

We assume that T ∗(ξ) approaches T± at an exponential rate.
We linearize (3.1)–(3.3) at T ∗(ξ) and obtain

∂tθ̃ = ∂ξξθ̃ + (c− a)∂ξθ̃ + Fθ(T
∗(ξ))θ̃ + Fρ(T

∗(ξ))ρ̃+ FY (T ∗(ξ))Ỹ , (3.4)

∂tρ̃ = c∂ξρ̃− Fθ(T ∗(ξ))θ̃ − Fρ(T ∗(ξ))ρ̃− FY (T ∗(ξ))Ỹ , (3.5)

∂tỸ = (c− b)∂ξỸ − Fθ(T ∗(ξ))θ̃ − Fρ(T ∗(ξ))ρ̃− FY (T ∗(ξ))Ỹ . (3.6)

We write (3.4)–(3.6) as Xt = LX, where

L =

∂ξξ + (c− a)∂ξ + Fθ(T
∗(ξ)) Fρ(T

∗(ξ)) FY (T ∗(ξ))
−Fθ(T ∗(ξ)) c∂ξ − Fρ(T ∗(ξ)) −FY (T ∗(ξ))
−Fθ(T ∗(ξ)) −Fρ(T ∗(ξ)) (c− b)∂ξ − FY (T ∗(ξ))

 . (3.7)

Definition 3.1. The traveling wave T ∗(ξ) is spectrally stable in a space X if

(1) 0 is an isolated simple eigenvalue of L on X , with eigenfunction T ∗′(ξ), and
(2) there exists ν > 0 such that the rest of the spectrum of L on X lies in Reλ < −ν.

In any space that contains T ∗′(ξ), L has an eigenvalue 0 with eigenfunction T ∗′(ξ).

Definition 3.2. The traveling wave T ∗(ξ) is linearly stable in a space X if the following
hold.

(1) 1 is an isolated simple eigenvalue of the semigroup etL on X , with eigenfunction
T ∗′(ξ), and

(2) let Ps denote the Riesz spectral projection associated with Sp(L) \ {0}. Then there
exist ν > 0 and K > 0 such that ‖etLPs‖ < Ke−νt for t ≥ 0.

Linearized stability implies that every solution of (3.4)–(3.6) in X decays exponentially
to a multiple of T ∗′(ξ).
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There are two related constant-coefficient linear partial differential equations Xt = L±X,
obtained by linearizing (3.1)–(3.3) at T±. The spectrum of L± in L2 (or H1, another space
in which we shall be interested) can be computed using the Fourier transform

L̂± =

−µ2 + iµ(c− a) + Fθ(T
±) Fρ(T

±) FY (T±)
−Fθ(T±) iµc− Fρ(T±) −FY (T±)
−Fθ(T±) −Fρ(T±) iµ(c− b)− FY (T±)

 .

The right-hand boundary of the essential spectrum of L in L2 or H1 is the union of the
right-hand boundaries of Sp(L−) and Sp(L+).

We shall treat fast combustion waves in detail, and then briefly discuss the other combus-
tion waves.

3.1. Spectrum of fast combustion waves. There are two types of fast combustion waves,

FC
cf−→ TC and OC

cf−→ TC. Since the right state has type TC for both, we first compute
the spectrum of L̂+ at (θ+, ρ+, Y +), where θ+ ≤ 0, ρ+ > 0 and Y + > 0. We obtain

L̂+ =

−µ2 + iµ(cf − a) 0 0
0 iµcf 0
0 0 iµ(cf − b)

 . (3.8)

The spectrum of L̂+ in L2 or H1 is the set of λ that are eigenvalues of (3.8) for some µ in
R. Thus the eigenvalues are parameterized as

λ(µ) = −µ2 + iµ(cf − a), λ(µ) = iµcf , λ(µ) = iµ(cf − b).

We conclude that at (θ+, ρ+, Y +), the spectrum of the linearization is a parabola in the left
half-plane that touches the origin together with the imaginary axis.

Next we compute the spectrum at the left state.
(1) FC left state. We determine the spectrum of L̂− at a point (θ−, ρ−, Y −) where θ− > 0,

ρ− = 0 and Y − > 0. We obtain

L̂− =

−µ2 + iµ(cf − a) Y −Φ(θ−) 0
0 iµcf − Y −Φ(θ−) 0
0 Y −Φ(θ−) iµ(cf − b)

 . (3.9)

The spectrum of L̂− in L2 or H1 is the set of λ that are eigenvalues of (3.9) for some µ in R:

λ(µ) = −µ2 + iµ(cf − a), λ(µ) = iµcf − Y −Φ(θ−), λ(µ) = iµ(cf − b).

Thus the spectrum of the linearization consists of a parabola in the left half-plane that
touches the origin, a vertical line in the open left half-plane, and the imaginary axis.

(2) OC left state. We determine the spectrum of L̂− at a point (θ−, ρ−, Y −) where θ− > 0,
ρ− > 0 and Y − = 0. We obtain

L̂− =

−µ2 + iµ(cf − a) 0 ρ−Φ(θ−)
0 iµcf −ρ−Φ(θ−)
0 0 iµ(cf − b)− ρ−Φ(θ−)

 . (3.10)

The spectrum of L̂− in L2 or H1 is the set of λ that are eigenvalues of (3.10) for some µ in
R:

λ(µ) = −µ2 + iµ(cf − a), λ(µ) = iµ(cf − b)− ρ−Φ(θ−), λ(µ) = iµcf .
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Thus, as in the case of an FC left state, the spectrum consists of a parabola in the left half-
plane that touches the origin, a vertical line in the open left half-plane, and the imaginary
axis.

We don’t have spectral stability in L2 or H1 for any fast combustion wave since both
Sp(L+) and Sp(L−) touch the imaginary axis. Spectral stability can be obtained if these
spectra can be moved to the left of the imaginary axis by working in a space with weighted
norm.

3.2. Weight function for fast combustion waves. For α = (α−, α+) ∈ R2, let γα : R→
R be a fixed weight function of class α, i.e., γα is C∞, γα(ξ) > 0 for all ξ, γα(ξ) = eα−ξ for
large negative ξ, and γα(ξ) = eα+ξ for large positive ξ.

Let X0 denote one of the standard Banach spaces L2(R,R3) or H1(R,R3), and denote the
norm by ‖ ‖0. Let Xα denote the corresponding weighted space with weight function γα(ξ).
More precisely, x(ξ) ∈ Xα provided γα(ξ)x(ξ) ∈ X0, and ‖x(ξ)‖α = ‖γα(ξ)x(ξ)‖0.

To study the spectrum of L as an operator on Xα, let X = (θ̃(ξ), ρ̃(ξ), Ỹ (ξ)) ∈ Xα, and let
W = γα(ξ)X = (u(ξ), v(ξ), z(ξ)) ∈ X0. Then the equationXt = LX yields γ−1

α Wt = Lγ−1
α W .

Multiplying both sides by γα, we obtain Wt = γαLγ−1
α W , where γαLγ−1

α is a linear operator
on X0. To find the spectrum of L on Xα, we instead find the spectrum of the isomorphic
operator Lα = γαLγ−1

α on X0. Let ηα = γα∂ξγ
−1
α and let ζα = γα∂ξξγ

−1
α . Then

Lα =(
∂ξξ + (cf − a− 2ηα)∂ξ + ζα + (c− a)ηα + Fθ(T

∗) Fρ(T
∗) FY (T

∗)
−Fθ(T ∗) cf∂ξ − cfηα − Fρ(T

∗) −FY (T ∗)
−Fθ(T ∗) −Fρ(T ∗) (cf − b)(∂ξ + ηα)− FY (T

∗)

)
.

(3.11)

In the equation
Wt = LαW,

we let ξ → ±∞, which yields the constant-coefficient linear differential equations

Wt = L±αW, (3.12)

where

L±α =(
∂ξξ + (cf − a− 2α±)∂ξ + α2

± + aα± − cfα± + Fθ(T
±) Fρ(T

±) FY (T
±)

−Fθ(T±) cf∂ξ − cfα± − Fρ(T
±) −FY (T±)

−Fθ(T±) −Fρ(T±) (cf − b)(∂ξ − α±)− FY (T
±)

)
.

The right-hand boundary of the essential spectrum of Lα is the union of the right-hand
boundaries of Sp(L−α ) and Sp(L+

α ). These spectra are the same in L2 or H1, so we compute
them in L2 using Fourier transform.

Since the right state is of type TC for all fast combustion waves, we first compute the
spectrum of L+

α at the right end state (θ+, ρ+, Y +) where θ+ ≤ 0, ρ+ > 0 and Y + > 0. We
obtain

L+
α =

−µ2 + (cf − a− 2α+)iµ+ α2
+ + (a− cf )α+ 0 0

0 iµcf − cfα+ 0
0 0 iµ(cf − b)− (cf − b)α+

. (3.13)

The spectrum of L+
α is the set of λ that are eigenvalues of (3.13) for some µ in R:

λ(µ) = −µ2 + (cf − a− 2α+)iµ+ α2
+ + (a− cf )α+,
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λ(µ) = iµcf − cfα+,

λ(µ) = iµ(cf − b)− (cf − b)α+.

To move the spectrum to the open left half-plane, we require that the real part of all eigen-
values be negative. This happens if and only if 0 < α+ < cf − a.

Next we compute the spectrum at the left state.
(1) FC left state. By a similar computation, we determine the spectrum of L−α at a point

(θ−, ρ−, Y −) where θ− > 0, ρ− = 0 and Y − > 0. We again find that the spectrum moves to
the open left half-plane if and only if 0 < α− < cf − a.

(2) OC left state. Similarly we determine the spectrum of L−α at a point (θ−, ρ−, Y −)
where θ− > 0, ρ− > 0 and Y − = 0. Again we find that the spectrum moves to the open left
half-plane if and only if 0 < α− < cf − a.

3.3. Slow and intermediate waves. The slow and intermediate combustion waves cannot
be stabilized by weight functions of any class α. For slow combustion waves, which all have
right state of type OC, to move the spectrum of L+

α to the open left half-plane would require a
negative α+ for the temperature equation and a positive α+ for the fuel and oxygen equations.
Therefore, there is no α+ that moves the spectrum to the open left half-plane. Similarly, for
intermediate combustion waves, which all have left state of type FC, to move the spectrum
of L−α to the open left half-plane would require a positive α− for the temperature equation
and a negative α− for the fuel and oxygen equations.

4. Evans function for fast combustion waves

Given the temperature θ+ ≤ 0 and the fuel concentration ρ+ > 0 of a temperature-
controlled right state, one can plot a curve in the (Y +, c)-plane of values such that there
exists a fast combustion wave with right state (θ+, ρ+, Y +) and velocity c. Figure 4.1,
reproduced from [15], shows such a curve, plotted with AUTO [8].

Y    (oxygen)  

c 
(s
pe

ed
)  

+

Figure 4.1. Traveling wave bifurcation diagram with a = 0.5, b = 0.7, θ+ =
−0.1, ρ+ = 2. The solutions between labels 1 and 2 are FC to TC waves;
after that, solutions are OC to TC waves. The curve turns when Y + reaches
a minimum value Y +

∗∗ (label 3).
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In this section we study numerically the discrete spectrum of fast combustion waves using
the Evans function [3, 12, 13]. More precisely, we study the discrete spectrum of the operator
Lα defined in the previous section, where α = (α−, α+) ∈ R2 has been chosen to stabilize the
essential spectrum; thus 0 < α± < cf − a. The Evans function is an analytic function D(λ),
defined to the right of the essential spectrum of Lα, that equals 0 at eigenvaues of Lα. By
plotting D(λ) on a closed curve C in the complex plane, one obtains a closed curve D(C)
whose winding number about 0 equals the number of eigenvalues of Lα inside C, counting
multiplicity. A well-chosen curve should yield all the eigenvalues of Lα, if any, in the right
half-plane. Typically numerical evidence indicates that increasing the size of C past a certain
point does not yield additional eigenvalues. In some problems, one can obtain an a priori
bound on the discrete spectrum of Lα in the right half-plane, thus proving that there are no
eigenvalues outside a correctly chosen C. Unfortunately we do not have such a bound for
the problem under study, so we just choose the curve C large enough that we do not observe
additional eigenvalues in the right half plane when we further increase its size. In section
6 we will show that such a bound can be obtained if we add a small diffusion term to the
oxygen equation.

The eigenvalue problem of (3.12) reads

λu = uξξ + (c− a− 2α±)uξ + (α2
± + aα± − cα±)u+ Fθ(T

∗)u+ Fρ(T
∗)v + FY (T ∗)z,

λv = cvξ − cα±v − Fθ(T ∗)u− Fρ(T ∗)v − FY (T ∗)z, (4.1)

λz = (c− b)zξ − (c− b)α±z − Fθ(T ∗)u− Fρ(T ∗)v − FY (T ∗)z.

We rewrite (4.1) as a first order system with parameter λ by letting w = uξ:

uξ = w,

wξ = λu− (c− a− 2α±)w − (α2
± + aα± − cα±)u− Fθ(T ∗)u− Fρ(T ∗)v − FY (T ∗)z,

vξ =
1

c
(λv + cα±v + Fθ(T

∗)u+ Fρ(T
∗)v + FY (T ∗)z), (4.2)

zξ =
1

c− b
(λz + (c− b)α±z + Fθ(T

∗)u+ Fρ(T
∗)v + FY (T ∗)z).

System (4.2) is in the form
Zξ = A(ξ, λ)Z, (4.3)

with A analytic in λ for each ξ.
We define the limit matrices A±(λ) = limξ→±∞A(ξ, λ); A± are analytic in λ. To the right

of the essential spectrum of Lα, the dimension of the unstable subspace U−(λ) of A−(λ)
is three, and that of the stable subspace S+(λ) of A+(λ) is one, which sum to four, the
dimension of the phase space. To define the Evans function, we define linearly independent
solutions Z−1 (ξ, λ), Z−2 (ξ, λ), Z−3 (ξ, λ) of (4.3), analytic in λ, that decay exponentially as
ξ → −∞, and a nontrivial solution Z+

4 (ξ, λ) of (4.3), analytic in λ, that decays exponentially
as ξ →∞. We evaluate the solutions at ξ = 0, obtaining four vectors Z−1 , Z

−
2 , Z

−
3 , Z

+
4 , and

define the Evans function
D(λ) = det(Z−1 Z

−
2 Z
−
3 Z

+
4 ).

Thus D(λ) = 0 if and only if (4.3) has a nontrivial solution that decays as ξ → ±∞, i.e., if
and only if λ is an eigenvalue of Lα. The order of the root equals the algebraic multiplicity
of the eigenvalue [13].

We use STABLAB [4] to compute the Evans function with the values of a, b, θ+ and ρ+

given in Figure 4.1. (Actually, for this problem STABLAB uses the adjoint formulation of
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the Evans function, in terms of one vector and one covector.) The traveling wave system
(3.1)–(3.3), with given right state (θ+, ρ+, Y +), reduces to

θ̇ = (a− c)(θ − θ+)− c(ρ− ρ+), (4.4)

ρ̇ =

(
ρ− ρ+

c− b
+
Y +

c

)
ρΦ(θ). (4.5)

We begin by setting Y + = 8. We look for a value of c for which there is a traveling wave

with left state having ρ− = 0, i.e., we look for a FC
cf−→ TC wave. For c = 3.061 we find the

traveling wave shown in the first panel of the Figure 4.2. The point (Y +, c) is near label 1
in Figure 4.1. The second panel of Figure 4.2 shows the Evans function D(C) where C is
the semicircle (x+ 10−4)2 + y2 = 2502, x ≥ −10−4, together with the vertical diameter. The
curve has winding number one about 0; this can be seen from the third panel of Figure 4.2,
which zooms in on the second panel near λ = 0. The winding number indicates that there
is a simple eigenvalue at 0 and no other eigenvalues inside C. A similar result is obtained
for other traveling waves in Figure 4.2 between labels 1 and 2, all of which are FC to TC
waves. Increasing the size of C does not change the result.

ξ
-15 -10 -5 0 5 10 15

pr
o�

le

-0.5

0

0.5

1

1.5

2

2.5

    Re ( λ )

-0.5 0 0.5 1 1.5

  
 I

m
 (
λ

)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Evans Function

Re(6) #10-4
-3 -2 -1 0 1 2 3

Im
(6
)

#10-4

-2

-1

0

1

2
Evans Function

Figure 4.2. Left: profile for the system (4.4)–(4.5) with a, b, θ+ and ρ+

given in Figure 4.1, Y + = 8, and c = 3.061. Center: Evans function output
for the curve C described in the text. We use 150 points on the circle part,
100 points along the vertical diameter, and take 256 Kato steps [4] between
contour points. Right: zoom in near λ = 0, showing that 0 is inside the curve.

Next, with the same values of a, b, θ+ and ρ+, we take Y + = 1.5 and look for a value of c

for which there is a traveling with left state having Y − = 0, i.e., we look for a OC
cf−→ TC

wave. For c = 1.2632 we find the traveling wave shown in the first panel of the Figure 4.3.
The point (Y +, c) is between labels 2 and 3 in Figure 4.1. The second panel of Figure 4.3
shows the Evans function D(C) where C is again the semicircle (x + 10−4)2 + y2 = 2502,
x ≥ −10−4, together with the vertical diameter. The curve again has winding number one
about 0; this can be seen from the third panel of Figure 4.2, which zooms in on the second
panel near λ = 0. The winding number indicates that there is a simple eigenvalue at 0 and
no other eigenvalues inside C. A similar result is obtained for other traveling waves in Figure
4.2 between labels 2 and 3, all of which are OC to TC waves. Increasing the size of C does
not change the result.

Thus the numerical evidence indicates that for traveling waves between labels 1 and 3 in
Figure 4.1, the simple eigenvalue 0 is the only element of Spd(Lα) in {λ : Reλ ≥ 0}.
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Figure 4.3. Left: profile for the system (4.4)–(4.5) with a, b, θ+ and ρ+

given in Figure 4.1, Y + = 1.5, and c = 1.2632. Center: Evans function output
for the curve C described in the text. We use 150 points on the circle part,
100 points along the vertical diameter, and take 256 Kato steps [4] between
contour points. Right: zoom in near λ = 0, showing that 0 is inside the curve.

As Y + reaches its minimum value at Y +
∗∗ (label 3), the curve of Figure 4.1 turns. Solutions

after label 3 still correspond to OC
cf−→ TC waves. We set Y + = 1.2 and find that for

c = 0.7647 we have the traveling wave shown in the first panel of the Figure 4.4. This point
(Y +, c) is on the lower branch of the curve in Figure 4.1. The second panel of Figure 4.4
shows the Evans function D(C) where C is the semicircle (x+ 10−4)2 + y2 = 4, x ≥ −10−4,
together with the vertical diameter. The curve has winding number two about 0; this can
be seen from the third panel of Figure 4.4, which zooms in on the second panel near λ = 0.
There is a simple eigenvalue at 0 and a positive real eigenvalue in the right half-plane. (We
checked that the second eigenvalue is in the right half-plane by shifting the semi-circle a little
to the right of the imaginary axis; the winding number becomes one.) A similar result is
obtained for other traveling waves on the lower branch of the curve in Figure 4.1. Therefore
these traveling waves are not spectrally stable in Xα.
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Figure 4.4. Left: profile for the system (4.4)–(4.5) with a, b, θ+ and ρ+ given
in Figure 4.1, Y + = 1.2, and c = 0.7647. Center: Evans function output for
the semicircular contour of radius 2 described in the text. We use 150 points
on the circle part, 100 points along the vertical diameter, and take 256 Kato
steps [4] between contour points. Right: zoom in near λ = 0, showing that
the curve winds twice around 0.



STABILITY OF COMBUSTION WAVES IN A SIMPLIFIED GAS-SOLID COMBUSTION MODEL 11

5. Linear and nonlinear stability of fast combustion waves

In this section, we study the linear and nonlinear stability of fast combustion waves. In
section 3, we saw that the essential spectrum of such a wave can be moved to the left of
the imaginary axis by using a weight function γα(ξ), α = (α−, α+), with 0 < α± < cf − a.
For some of the fast combustion waves, we showed numerically in section 4 that the linear
operator Lα has no eigenvalues in the half-plane Reλ ≥ 0 other than a simple eigenvalue
zero. In this section we consider a fast combustion wave for which we assume that this is
the case, i.e., a fast combustion wave that is spectrally stable in the weighted space Xα.

Linearized stability of the traveling wave in Xα does not follow from spectral stability using
standard results. Since the system (2.1)–(2.3) is partly parabolic, the linearized operator has
vertical lines in its spectrum, so it is not a sectorial operator. Therefore the linearized system
generates a C0-semigroup, not an analytic semigroup. This difficulty is typical for systems
with no diffusion in some equations.

However, linearized stability in Xα does follow from spectral stability by a recent result of
Yurov [16], for X0 equal to either L2(R,R3) or H1(R,R3). We postpone a discussion of this
fact to Appendix A.

Unfortunately, nonlinear stability of the traveling wave to perturbations in Xα does not
follow from linearized stability using standard results. The essential difficulty is that the
weight function γα(ξ) decays exponentially at the left, so Xα includes functions that grow
exponentially at the left. The square of such a function grows twice as fast at the left, so it
need not be in Xα. This makes it diffucult to study nonlinear problems in this space.

Our goal in the rest of this section is to use Theorem 3.14 in [9] to obtain a type of
nonlinear stability for fast combustion waves that are spectrally stable in Xα. Theorem 3.14
in [9] as stated does not apply to systems with transport terms (a∂xθ in (2.1) and b∂xY in
(2.3)), so a generalization is needed. The necessary generalizaation again relies on Yurov’s
theorem. We postpone a discussion of this matter to appendix A.

Let β = (0, α+), and let γβ(ξ) be a fixed weight function of class β, i.e., γβ is C∞,
γβ(ξ) > 0 for all ξ, γβ(ξ) = 1 for large negative ξ, and γβ(ξ) = eα+ξ for large positive ξ.
Then Xβ denotes the weighted space based on X0 with weight function γβ.

We shall show:

Theorem 5.1. Consider the system (3.1)–(3.3) with constants c > b > a > 0, with c chosen
so that there is a stationary solution T ∗(ξ) of type FC to TC. Let X0 = H1(R,R3). Let
α = (α−, α+) with 0 < α− < min(c− a, 1

c
Y −Φ(θ−)) and 0 < α+ < c− a. Assume the Evans

function for the traveling wave T ∗(ξ) in the space Xα has no zeros in the half-plane Reλ ≥ 0
other than a simple zero at the origin. Choose ν > 0 such that the operator Lα defined in
subsection 3.2 satisfies sup{Reλ : λ ∈ Sp(Lα)andλ 6= 0} < −ν. Let β = (0, α+). Then there
is a constant C > 0 such that the following is true. Suppose T 0 ∈ T ∗ + Xβ with ‖T 0 − T ∗‖β
small, and let T (t) be the solution of (3.1)–(3.3) with T (0) = T 0. Then:

(1) T (t) is defined for all t ≥ 0.
(2) T (t) = T̃ (t) + T ∗(ξ − q(t)) with T̃ (t) in a fixed subspace of Xα complementary to the

span of T ∗′.
(3) ‖T̃ (t)‖β + |q(t)| is small for all t ≥ 0.

(4) ‖T̃ (t)‖α ≤ Ce−νt‖T̃ 0‖α.
(5) There exists q∗ such that |q(t)− q∗| ≤ Ce−νt‖T̃ 0‖α.

Let Ũ = (M̃, Ñ) with M̃ = (ũ1, ũ3) and Ñ = ũ2.
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(6) ‖(M̃(t)‖0 ≤ C‖T̃ 0‖β.

(7) ‖Ñ(t)‖0 ≤ Ce−νt‖T̃ 0‖β.

For a fast traveling wave that has oxygen-controlled left state and temperature-controlled
right state, the only changes in Theorem 5.1 are in the (M̃, Ñ) decomposition: M̃ = (ũ1, ũ2)
and Ñ = ũ3.

The results (6) and (7) have a physical interpretation. In the case of an FC left state,
the combustion front moves to the right, leaving a high-temperature zone behind. Behind
the combustion front the fuel is exhausted and oxygen is present. If we make a perturbation
behind the front by adding

• fuel (ũ2), it immediately burns because of the high temperature and presence of
oxygen;
• oxygen (ũ3), it does not react since there is no fuel;
• heat (ũ1), it diffuses.

On the other hand, in the case of an OC left state, behind the combustion front temperature
is high, oxygen is exhausted and fuel is present. If we make a perturbation behind the front
by adding

• fuel (ũ2), it does not react since there is no oxygen;
• oxygen (ũ3), it immediately reacts with the fuel until it is exhausted;
• heat (ũ1), it diffuses.

Theorem 5.1 follows from a generalization of Theorem 3.14 in [9], once the hypotheses are
verified.

Since Theorem 3.14 in [9] is stated for traveling waves whose left state is the origin, we
begin by rewriting (2.1)–(2.3) to achieve this. T ∗(ξ) is a traveling wave for (2.1)–(2.3) that
is a fast combustion wave with fuel-controlled left state and temperature-controlled right
state. Thus T− = (θ−, 0, Y −) and T+ = (θ+, ρ+, Y +) with θ+ ≤ 0 and θ−, Y −, ρ+ and Y +

all positive.
We make the change of variables u1 = θ − θ−, u2 = ρ, and u3 = Y − Y −, which converts

(3.1)–(3.3) to the system

∂tu1 = ∂xxu1 − a∂xu1 + u2(u3 + Y −)Φ(u1 + θ−), (5.1)

∂tu2 = −u2(u3 + Y −)Φ(u1 + θ−), (5.2)

∂tu3 = −b∂xu3 − u2(u3 + Y −)Φ(u1 + θ−). (5.3)

Let U∗(ξ) = (u∗1(ξ), u∗2(ξ), u∗3(ξ)) be the stationary solution of (5.1)–(5.3) that corresponds
to T ∗(ξ). Then U− = (0, 0, 0) and U+ = (θ+ − θ−, ρ+, Y + − Y −).

The reaction terms in (5.1)–(5.3) comprise the function

R(U) = (u2(u3 +Y −)Φ(u1 + θ−),−u2(u3 +Y −)Φ(u1 + θ−),−u2(u3 +Y −)Φ(u1 + θ−)). (5.4)

Theorem 3.14 in [9] must be modified because it only applies to traveling waves for systems
of the form Ut = dUxx + R(U), d = diag(d1, . . . , dn), with all di ≥ 0. Thus transport terms
such as ∂xu1 and ∂xu3 in (5.1)–(5.3) are not allowed. As mentioned above, we will address
this point in appendix A. In the remainder of this section we will verify the remaining
hypotheses of Theorem 3.14 in [9].
Hypothesis 1. The reaction terms in (5.1)–(5.3) are C3.
In fact they are C∞, so Hypothesis 1 is satisfied.
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Hypothesis 2. The system (5.1)–(5.3) has a traveling wave solution U∗(ξ), ξ = x − ct,
with left state at the origin and right state U+, for which there exist numbers K > 0 and
ω− < 0 < ω+ such that for ξ ≤ 0, ‖U∗(ξ)‖ ≤ Ke−ω−ξ, and for ξ ≥ 0, ‖U∗(ξ)−U+‖ ≤ Ke−ω+ξ.
U∗(ξ) is just T ∗(ξ) suitably translated. Since the linearization of (3.1)–(3.3) has only

one positive eigenvalue at (T−, 0), namely 1
c
Y −Φ(θ−), and only one negative eigenvalue at

(T+, 0), namely a− c, we let

ω− = −1

c
Y −Φ(θ−), ω+ = c− a.

The linearization of (5.1)–(5.3) at U∗(ξ) is

∂t

ũ1

ũ2

ũ3

 =

∂ξξ + (c− a)∂ξ 0 0
0 c∂ξ 0
0 0 (c− b)∂ξ

ũ1

ũ2

ũ3

+DR(U∗(ξ))

ũ1

ũ2

ũ3

 , (5.5)

where

DR(U∗(ξ)) =

 u∗2(u∗3 + Y −)Φ′(u∗1 + θ−) (u∗3 + Y −)Φ(u∗1 + θ−) u∗2Φ(u∗1 + θ−)
−u∗2(u∗3 + Y −)Φ′(u∗1 + θ−) −(u∗3 + Y −)Φ(u∗1 + θ−) −u∗2Φ(u∗1 + θ−)
−u∗2(u∗3 + Y −)Φ′(u∗1 + θ−) −(u∗3 + Y −)Φ(u∗1 + θ−) −u∗2Φ(u∗1 + θ−)

 .

Of course, (5.5) is just Ũt = LŨ , where L was defined in (3.7). (The translation does not
affect the linearization.)
Hypothesis 3. There exists α = (α−, α+) ∈ R2 such that the following are true.

(1) 0 < α− < −ω−.
(2) 0 ≤ α+ < ω+.
(3) For the system (5.5) and X0 = L2(R,R3),

(a) sup{Reλ : λ ∈ Spess(Lα)} < 0, and
(b) the only element of Sp(Lα) in {λ : Reλ ≥ 0} is a simple eigenvalue 0.

Let α = (α−, α+) with 0 < α− < min(c − a, 1
c
Y −Φ(θ−)) and 0 < α+ < c − a. From the

verification of Hypothesis 2 and subsection 3.2, we see that α satisfies Hypothesis 3.
Hypothesis 4. There is a 2× 2 matrix A such that R(M, 0) = (AM, 0).
Decompose Ũ -space such that Ũ = (M̃, Ñ) with M̃ = (ũ1, ũ3) and Ñ = ũ2. Since

R(u1, 0, u3) = (0, 0, 0) from (5.4), Hypothesis 4 is satisfied with A = 0.
The linearization of (5.1)–(5.3) at the end state U− = (0, 0, 0) isũ1t

ũ2t

ũ3t

 =

∂ξξ + (c− a)∂ξ Y −Φ(θ−) 0
0 c∂ξ − Y −Φ(θ−) 0
0 −Y −Φ(θ−) (c− b)∂ξ

ũ1

ũ2

ũ3

 , (5.6)

or, equivalently, = Ũt = L−Ũ , , where L− was defined in section 3.
From (5.6) we define L(1), the restriction of L− to u1u3-space, and L(2), the restriction of
L− to u2-space:

L(1) =

(
∂ξξ + (c− a)∂ξ 0

0 (c− b)∂ξ

)
, L(2) = c∂ξ − Y −Φ(θ−). (5.7)

Hypothesis 5.

(1) For X0 = L2(R,R3), the operator L(1) on X 2
0 generates a bounded semigroup.

(2) For X0 = L2(R,R3), the operator L(2) on X0 satisfies sup{Reλ : λ ∈ Sp(L(2))} < 0.
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The operator L(1) defined by (5.7) on L2(R,R3) is known to satisfy Hypothesis 5 (1), and the
spectrum of the operator c∂ξ−Y −Φ(θ−) on L2(R,R3) is contained in Reλ ≤ −Y −Φ(θ−) < 0,
so Hypothesis 5 (2) is satisfied.

6. Adding small diffusion to the model

In this section we add a small diffusion term to the oxygen equation in the system (2.1)–
(2.3):

∂tθ + a∂xθ = ∂xxθ + ρY Φ, (6.1)

∂tρ = −ρY Φ, (6.2)

∂tY + b∂xY = ε∂xxY − ρY Φ. (6.3)

It was shown in [15] that the new traveling waves are small perturbation of the old ones.
Replacing the spatial coordinate x by the moving coordinate ξ = x− ct in (6.1)–(6.3), we

obtain

∂tθ = ∂ξξθ + (c− a)∂ξθ + F, (6.4)

∂tρ = c∂ξρ− F, (6.5)

∂tY = ε∂xxY + (c− b)∂ξY − F, (6.6)

where F = ρY Φ.
If we linearize (6.4)–(6.6) at an endpoint of a traveling wave and compare to (3.4)–(3.6)

evaluated at an endpoint, we find that a vertical line in the spectrum has changed to a
parabola. We can find a weight function that moves the spectrum to the left of the imaginary
axis as in section 3. Weight function for fast combustion waves:

(1) TC right state: if 0 < α+ < min {c− a, c−b
ε
}, then the spectrum lies in the open left

half-plane.
(2) FC left state: if 0 < α− < min {c− a, c−b

ε
}, then the spectrum lies in the open left

half-plane.

(3) OC left state: if 0 < α− < min {c− a, c−b+
√

(b−c)2+4ερ−Φ(θ−)

2ε
}, then the spectrum lies

in the open left half-plane.

Slow and intermediate waves still cannot be stabilized by weight functions of any class α.
Using spectral energy estimates, we shall find a priori bounds on the unstable eigenvalues

for the system (6.1)–(6.3) in an appropriate weighted space. Linearizing (6.1)–(6.3) at the

combustion front (θ̂, ρ̂, Ŷ ), we obtain

∂tθ = ∂ξξθ + (c− a)∂ξθ + h1θ + h2Y + h3ρ, (6.7)

∂tρ = c∂ξρ− h1θ − h2Y − h3ρ, (6.8)

∂tY = ε∂ξξY + (c− b)∂ξY − h1θ − h2Y − h3ρ, (6.9)

where

h1(ξ) =
ρ̂(ξ)Ŷ (ξ)

θ̂(ξ)2
exp(− 1

θ̂(ξ)
), h2(ξ) = ρ̂(ξ) exp(− 1

θ̂(ξ)
), h3(ξ) = Ŷ (ξ) exp(− 1

θ̂(ξ)
).

We now introduce a weight function of the form eαξ that moves the spectrum to the open
left half-plane. This can be done only for fast combustion waves; provided ε is small, we can
use any α with 0 < α < c− a.
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If (θ(ξ), ρ(ξ), Y (ξ)) is in a weighted space Xα with weight function eαξ, then
(θ(ξ), ρ(ξ), Y (ξ)) = e−αξ(u(ξ), v(ξ), z(ξ)) with (u(ξ), v(ξ), z(ξ)) in X0. Substituting into
(6.7)–(6.9) and multiplying by eαξ, we obtain

∂tu = ∂ξξu+ (c− a− 2α)∂ξu+ (h1 + α2 + aα− cα)u+ h2z + h3v,

∂tv = c∂ξv − h1u− h2z − (h3 + cα)v,

∂tz = ε∂ξξz + (c− b− 2εα)∂ξz − h1u+ (εα2 + bα− cα− h2)z − h3v.

The eigenvalue problem reads

λu = ∂ξξu+ (c− a− 2α)∂ξu+ (h1 + α2 + aα− cα)u+ h2z + h3v, (6.10)

λv = c∂ξv − h1u− h2z − (h3 + cα)v, (6.11)

λz = ε∂ξξz + (c− b− 2εα)∂ξz − h1u+ (εα2 + bα− cα− h2)z − h3v. (6.12)

Lemma 6.1. If (u, v, z) satisfies (6.10)–(6.12) for some nonzero λ, then the following two
inequalities hold for all ε1 > 0 and ε2 > 0:

Re(λ)

∫
|u|2 ≤

∫
(h1+α2+aα−cα)|u|2+ε1

∫
h2|u|2+

1

4ε1

∫
h2|z|2+ε2

∫
h3|u|2+

1

4ε2

∫
h3|v|2

(6.13)
and

(Re(λ) + | Im(λ)|)
∫
|u|2 ≤

∫
(h1 + α2 + aα− cα)|u|2 +

(c− a− 2α)2

4

∫
|u|2 + ε1

∫
h2|u|2

+
1

2ε1

∫
h2|z|2 + ε2

∫
h3|u|2 +

1

2ε2

∫
h3|v|2. (6.14)

Proof. We multiply (6.10) by the conjugate ū and integrate from −∞ to ∞. We obtain

λ

∫
|u|2 = (c−a−2α)

∫
u′ū+

∫
(h1 +α2 +aα−cα)|u|2 +

∫
h2zū+

∫
h3vū−

∫
|u′|2. (6.15)

Since Re
∫∞
−∞ u

′ūdξ =
∫∞
−∞(u′ū + ū′u)dξ/2 =

∫∞
−∞(uū)′dξ/2 = 0, taking the real and imagi-

nary parts of (6.15), we have

Re(λ)

∫
|u|2 =

∫
(h1 + α2 + aα− cα)|u|2 + Re

∫
h2zū+ Re

∫
h3vū−

∫
|u′|2, (6.16)

| Im(λ)|
∫
|u|2 ≤ (c− a− 2α)

∫
|u′||ū|+ | Im

∫
h2zū|+ | Im

∫
h3vū|. (6.17)

The inequality (6.13) follows by using Young’s inequality on (6.16); we use Young’s inequality
in the form ab ≤ εa2 + 1

4ε
b2 where a, b are any real numbers and ε > 0. In Lemma 10.1, ε1

and ε2 come from this inequality.
The inequality (6.14) follows by adding (6.16) and (6.17) and using the fact that |Re(xȳ)|+
| Im(xȳ)| ≤

√
2|x||y|, where x, y are complex numbers, and using Young’s inequality to get
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(c− a− 2α)|u′||u| ≤ (c−a−2α)2|u|2
4

+ |u′2|:

(Re(λ) + | Im(λ)|)
∫
|u|2 ≤∫

(h1 + α2 + aα− cα)|u|2 +
(c− a− 2α)2

4

∫
|u|2 +

√
2

∫
h2|z||u|+

√
2

∫
h3|v||u| ≤∫

(h1 + α2 + aα− cα)|u|2 +
(c− a− 2α)2

4

∫
|u|2

+ ε1

∫
h2|u|2 +

1

2ε1

∫
h2|z|2 + ε2

∫
h3|u|2 +

1

2ε2

∫
h3|v|2.

�

Lemma 6.2. If (u, v, z) satisfies (6.10)–(6.12) for some nonzero λ, then the following in-
equality holds for all ε3 > 0 and ε4 > 0:

Re(λ)

∫
|v|2 ≤ ε3

∫
h1|v|2 +

1

4ε3

∫
h1|u|2 + ε4

∫
h2|v|2 +

1

4ε4

∫
h2|z|2 −

∫
(h3 + cα)|v|2.

(6.18)

Proof. We multiply (6.11) by the conjugate v̄ and integrate from −∞ to ∞. We obtain

λ

∫
|v|2 = c

∫
v′v̄ −

∫
h1uv̄ −

∫
h2zv̄ −

∫
(h3 + cα)|v|2. (6.19)

Taking the real part of (6.19), we have

Re(λ)

∫
|v|2 = −Re

∫
h1uv̄ − Re

∫
h2zv̄ −

∫
(h3 + cα)|v|2. (6.20)

The inequality (6.18) follows by using Young’s inequality on (6.20). �

Lemma 6.3. If (u, v, z) satisfies (6.10)–(6.12) for some nonzero λ, then the following two
inequalities hold for all ε5 > 0 and ε6 > 0:

Re(λ)

∫
|z|2 ≤ ε5

∫
h1|u|2+

1

4ε5

∫
h1|z|2+ε6

∫
h3|v|2+

1

4ε6

∫
h3|z|2+

∫
(εα2+bα−cα−h2)|z|2

(6.21)
and

(Re(λ) + | Im(λ)|)
∫
|z|2 ≤ (c− b− 2εα)2

4ε

∫
|z|2 + ε5

∫
h1|u|2 +

1

2ε5

∫
h1|z|2

+ ε6

∫
h3|v|2 +

1

2ε6

∫
h3|z|2 +

∫
(εα2 + bα− cα− h2)|z|2. (6.22)

Proof. We multiply (6.12) by the conjugate z̄ and integrate from −∞ to ∞. We obtain

λ

∫
|z|2 = (c−b−2εα)

∫
z′z̄−

∫
h1uz̄−

∫
h3z̄v+

∫
(εα2+bα−cα−h2)|z|2−ε

∫
|z′|2. (6.23)

Taking the real and imaginary parts of (6.23), we have

Re(λ)

∫
|z|2 = −Re

∫
h1uz̄ − Re

∫
h3z̄v +

∫
(εα2 + bα− cα− h2)|z|2 − ε

∫
|z′|2, (6.24)

| Im(λ)|
∫
|z|2 ≤ (c− b− 2εα)

∫
|z′||z̄|+ | Im

∫
h1uz̄|+ | Im

∫
h3vz̄|. (6.25)
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The inequality (6.21) follows by using Young’s inequality on (6.24). The inequality (6.22)
follows by adding (6.24) and (6.25) together and using the fact that |Re(xȳ)|+ | Im(xȳ)| ≤√

2|x||y|, where x, y are complex numbers, and using Young’s inequality to get (c − b −
2εα)|z′||z| ≤ (c−b−2εα)2|z|2

4
+ |z′2|:

(Re(λ) + | Im(λ)|)
∫
|z|2 ≤

(c− b− 2εα)2

4ε

∫
|z|2 +

∫
(εα2 + bα− cα− h2)|z|2 +

√
2

∫
h1|z||u|+

√
2

∫
h3|v||z| ≤

(c− b− 2εα)2

4ε

∫
|z|2 +

∫
(εα2 + bα− cα− h2)|z|2

+ ε5

∫
h1|u|2 +

1

2ε5

∫
h1|z|2 + ε6

∫
h3|v|2 +

1

2ε6

∫
h3|z|2.

�

Theorem 6.4. If (u, v, z) satisfies (6.10)–(6.12) for some nonzero λ, then the following
inequality holds for all 0 < δ < 1:

Re(λ) ≤ 1

1− δ
sup
ξ
h1 +

(1− δ)2 + 2δ

8δ
sup
ξ
{h2 + h3}+ max{α2 + aα, εα2 + bα}. (6.26)

Proof. First we multiply (6.13) by k > 0 and add to (6.18) and (6.21). We obtain

Re(λ)

∫
(k|u|2 + |v|2 + |z|2) ≤

(k + ε5 +
1

4ε3
)

∫
h1u

2 + ε3

∫
h1v

2 +
1

4ε5

∫
h1z

2 + kε1

∫
h2u

2

+ ε4

∫
h2v

2 + (
k

4ε1
+

1

4ε4
− 1)

∫
h2z

2 + kε2

∫
h3u

2 + (
k

4ε2
+ ε6 − 1)

∫
h3v

2

+
1

4ε6

∫
h3z

2 + max{α2 + aα, εα2 + bα}
∫

(ku2 + z2)− cα
∫

(ku2 + v2 + z2).

Set k
4ε1

+ 1
4ε4

= 1, k
4ε2

+ ε6 = 1, and take ε4 = ε1 and ε6 = 1
4ε2

. Then ε1 = ε2 = ε4 = k+1
4

and ε6 = 1
k+1

. Also set ε3 = 1
1−δ , ε5 = 1−δ

4
, and k = (1−δ)2

2δ
. Then we have

Re(λ)

∫
(k|u|2 + |v|2 + |z|2) ≤ 1

1− δ

∫
h1(k|u|2 + |v|2 + |z|2)

+
(1− δ)2 + 2δ

8δ

∫
h2(k|u|2 + |v|2) +

(1− δ)2 + 2δ

8δ

∫
h3(k|u|2 + |z|2)

+ max{α2 + aα, εα2 + bα}
∫

(ku2 + z2)− cα
∫

(ku2 + v2 + z2).

Therefore,

Re(λ) ≤ 1

1− δ
sup
ξ
h1 +

(1− δ)2 + 2δ

8δ
sup
ξ
{h2 + h3}+ max{α2 + aα, εα2 + bα}.

�
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Theorem 6.5. If (u, v, z) satisfies (6.10)–(6.12) for some nonzero λ, then the following
inequality holds for all 0 < δ < 1:

Re(λ) + | Im(λ)| ≤ max
ξ

{
α2 + aα− cα +

(c− a− 2α)2

4
+ (1− δ)h2 +

h3

1− δ

+
(2− δ)

4δ(1− δ)
v̂2

û4
h3 +

5h1

4
+εα2 +bα−cα+

(c− b− 2εα)2

4ε
+

h1

1− δ
+

h3

2(1− δ)
+

(2− δ)
2δ

v̂2

ẑ2
h3

}
.

(6.27)

Proof. To show (6.27) we need to revise Lemma 6.2. First we replace (θ̂, ρ̂, Ŷ ) in h1(ξ), h2(ξ)
and h3(ξ) with (û, v̂, ẑ). Note that we can write h1 and h2 in terms of h3: h1 = v̂

û2
h3 and

h2 = v̂
ẑ
h3. In (6.20) we replace h1uv̄ and h2zv̄ with v̂

û2
h3uv̄ and v̂

ẑ
h3zv̄ and apply Young’s

inequality. We obtain

h1uv̄ =
v̂

û2
h3uv̄ ≤ ε3h3|v|2 +

v̂2

4ε3û4
h3|u|2

and

h2zv̄ =
v̂

ẑ
h3zv̄ ≤ ε4h3|v|2 +

v̂2

4ε4ẑ2
h3|z|2.

Substituting these expressions into (6.20), we obtain

Re(λ)

∫
|v|2 ≤ ε3

∫
h3|v|2 +

1

4ε3

∫
v̂2

û4
h3|u|2 +ε4

∫
h3|v|2 +

1

4ε4

∫
v̂2

ẑ2
h3|z|2−

∫
(h3 +cα)|v|2.

(6.28)
We multiply (6.14) and (6.22) by k1 and k2 respectively and then add to (6.28), which yields

(Re(λ) + | Im(λ)|)
∫

(k1u
2 + k2z

2) + Re(λ)

∫
v2 ≤∫ (

h1 + α2 + aα− cα + ε1h2 + ε2h3 +
(c− a− 2α)2

4
+

h3

4ε3k1

v̂2

û4
+
ε5k2h1

k1

)
k1|u|2

+

∫ (
εα2 + bα− cα +

(c− b− 2εα)2

4ε
+
h1

2ε5
+
h3

2ε6
+

h3

4ε4k2

v̂2

ẑ2

)
k2|z|2

+ (ε3 + ε4 +
k1

2ε2
+ k2ε6 − 1)

∫
h3|v|2 + (

k1

2ε1
− k2)

∫
h2|z|2.

Take ε1 = ε6 = 1−δ, ε3 = ε4 = ε5 = 1−δ
2

, ε2 = 1
1−δ and k1 = 2δ

2−δ . Then ε3 +ε4 + k1
2ε2

+k2ε6 = 1

and k1
2k2ε1

= 1. Thus we get

(Re(λ) + | Im(λ)|)
∫

(k1u
2 + k2z

2) + Re(λ)

∫
v2 ≤∫ (

α2 + aα− cα +
(c− a− 2α)2

4
+ (1− δ)h2 +

h3

1− δ
+

(2− δ)
4δ(1− δ)

v̂2

û4
h3 +

5h1

4

)
k1|u|2

+

∫ (
εα2 + bα− cα +

(c− b− 2εα)2

4ε
+

h1

1− δ
+

h3

2(1− δ)
+

(2− δ)
2δ

v̂2

ẑ2
h3

)
k2|z|2.



STABILITY OF COMBUSTION WAVES IN A SIMPLIFIED GAS-SOLID COMBUSTION MODEL 19

We have a contradiction when

Re(λ) + | Im(λ)| ≥

max
ξ

{
α2 + aα− cα +

(c− a− 2α)2

4
+ (1− δ)h2 +

h3

1− δ
+

(2− δ)
4δ(1− δ)

v̂2

û4
h3 +

5h1

4
,

εα2 + bα− cα +
(c− b− 2εα)2

4ε
+

h1

1− δ
+

h3

2(1− δ)
+

(2− δ)
2δ

v̂2

ẑ2
h3

}
.

�

The inequalities (6.26) and (6.27) define a trapezoidal region of possible unstable spectrum.
We could use this region together with an Evans function calculation to rigorously rule out
eigenvalues with Reλ ≥ 0.

Appendix A. Linear and nonlinear stability theorems

Consider a system of the form

∂tU = d∂xxU + ã∂xU +R1(U, V ),

∂tV = b̃∂xV +R2(U, V ),
(A.1)

with

U = U(x, t) ∈ RN1 , V = V (x, t) ∈ RN2 , x ∈ R, t ≥ 0,

d = diag(d1, . . . , dN1) with all dk > 0, ã = (ãkl) of size N1 ×N1, b̃ = diag(b1, . . . , bN2).

The matrices d and b̃ are constant, and the maps Rj are C2. For the moment we refrain
from giving assumptions on ã.

After replacing x by ξ = x− ct, (A.1) becomes

∂tU = d∂ξξU + a∂ξU +R1(U, V ),

∂tV = b∂ξV +R2(U, V ),
(A.2)

with a = ã+ diag(c, . . . , c) and b = b̃+ diag(c, . . . , c). Thus b is a constant diagonal matrix.
We denote the differentials of the maps Rj by Rj1 = ∂URj, Rj2 = ∂VRj. Let T ∗(ξ) =

(U∗(ξ), V ∗(ξ)) be a traveling wave solution of (A.1) with velocity c that approaches its end
states exponentially. Then the linearization of (A.2) at T ∗(ξ) is(

Ut
Vt

)
= L

(
U
V

)
, L =

(
d∂ξξ + a∂ξ +R11 R12

R21 b∂ξ +R21

)
, (A.3)

where Rjk = Rjk(U
∗(ξ), V ∗(ξ)).

To study L on a weighted Banach space Xα, with weight function γα(ξ), we instead study
the isomorphic operator Lα = γαLγ−1

α on X0. Lα has the form

Lα =

(
d∂ξξ + â∂ξ + S11 S12

S21 b∂ξ + S21

)
, (A.4)

in which the Sjk(ξ) are continuously differentiable and S ′jk(ξ)→ 0 exponentially as ξ → ±∞.
Note that d and b are unchanged from (A.3). Compare (3.11).

In the course of proving Theorem 3.14 in [9], one must show that if a traveling wave T ∗(ξ)
is spectrally stable in Xα, then it is linearly stable in Xα. (Theorem 3.14 in [9] is stated for
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traveling waves with left state at the origin, but the translation required to achieve this does
not affect the linearization of the system at the traveling wave.)

The proof in [9] that spectral stability in Xα implies linear stability in Xα appeals to
Theorem 3.1 in [10], which implies that for a linear operator in the form (A.4) on X0 =
L2(R,RN1+N2) or BUC(R,RN1+N2), in which d = diag(d1, . . . , dN1) with all dk positive con-
stants, â is a constant matrix, b is a constant multiple of the identity matrix, and the Sjk(ξ)
are continuous and approach constant limits exponentially as ξ → ±∞, spectral stability
implies linear stability. The same result holds in H1(R,RN1+N2) provided the Sjk are con-
tinuously differentiable and S ′jk(ξ) → 0 exponentially as ξ → ±∞. This result on BUC or

H1 is used to prove Theorem 3.14 in [9] for perturbations of the traveling wave in BUC or
H1.

Because of the requirement in Theorem 3.1 of [10] that b be a constant multiple of the
identity matrix, Theorem 3.14 in [9] was stated for reaction-diffusion systems (no transport

terms, i.e., ã = b̃ = 0 in (A.1)), in which case b = cI. We remark that Theorem 3.1 as stated
in [10] is not quite sufficient to prove that spectral stability in Xα implies linear stability
Xα, since the matrix â in (A.4) need not be constant even when ã = 0 in (A.1). This can
be seen from (3.11); in the term −2ηa∂ξ in (3.11), ηa(ξ) is not constant unless the weight
function is just an exponential function eαξ. The simplest fix is to note that Theorem 3.1
in [10], for L2 or BUC, could have allowed a continuous â(ξ) that approaches end states
exponentially with no change in the proof. Then the theorem could have been extended to
H1 provided â(ξ) as well as the Sjk(ξ) are continuously differentiable and their derivatives
go to 0 exponentially as ξ → ±∞.

Note that the restriction to ã = 0 in [9] was not necessary. With the slight generaliza-
tion of Theorem 3.1 in [10] just mentioned, one could have allowed ã to be a continuously
differentiable function whose derivative goes to 0 exponentially as ξ → ±∞.

In order to use Theorem 3.14 of [9] in Section 5 of this paper, it must be generalized to

allow systems (A.1) in which b̃ is an arbitrary diagonal matrix. (Note that for the system

(2.1)–(2.3), b̃ = diag(0, b).) In fact we can generalize Theorem 3.14 in [9] to allow ã to be
a continuously differentiable function whose derivative goes to 0 exponentially as ξ → ±∞,
and b̃ to be an arbitrary diagonal matrix, with the other hypotheses unchanged. The key
step in the proof of the generalization is to show that if the traveling wave T ∗(ξ) is spectrally
stable in Xα, then it is linearly stable in Xα. To do this one can appeal to Yurov’s recent
result, Theorem 1.1 in [16], which implies that for a linear operator in the form (A.4) on L2, in
which d = diag(d1, . . . , dN1) with all dk positive constants, â(ξ) and the Sjk(ξ) are continuous
and approach end states exponentially, and b is a constant diagonal matrix, spectral stability
implies linear stability. By an argument in Section 3 of [10], the same result holds on H1,
provided â(ξ) and the Sjk(ξ) are continuously differentiable and their derivatives go to 0
exponentially as ξ → ±∞. However, Yurov’s result does not imply the same result on BUC.
Thus the generalization of Theorem 3.14 in [9] that is needed in Section 5 of this paper
allows perturbations in H1 but not in BUC. That is why Theorem 5.1 of this paper only
allows perturbations in H1.
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