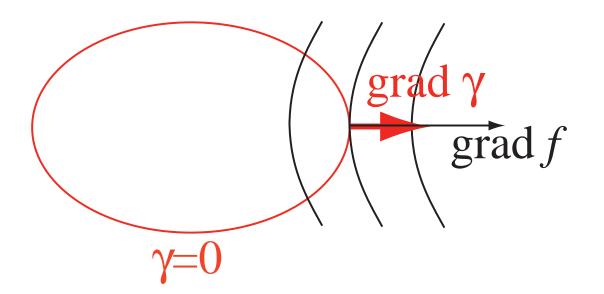
Morse Theory for Lagrange Multipliers



Guangbo Xu Princeton University

and

Steve Schecter North Carolina State University

Outline

(1) History of Mathematics 1950–2050. Chapter 1. Morse Theory.

- (2) Lagrange multipliers with scaled multiplier
- (3) The limit $\lambda \to \infty$
- (4) The limit $\lambda \to 0$

(5) Etc.

History of Mathematics 1950–2050. Chapter 1. Morse Theory.

Section 1. Classical Morse Theory

Inherited from the 1930's; used from the early 1950's to study differentiable topology. J. Milnor, *Morse Theory*, Princeton University Press, 1963.

Setting:

4

- M = compact manifold of dimension n.
- $f: M \to \mathbb{R}$ is a smooth function.
- *x* is a critical point if df(x) = 0.
- x is a nondegenerate critical point if $d^2 f(x)$ has k negative eigenvalues and n-k positive eigenvalues.
- index x = k.
- f is a Morse function if all critical points are nondegenerate.
- $M^a = \{x \in M : f(x) \le a\}.$

Fundamental Theorem of Morse Theory.

Suppose a < b are regular values of a Morse function f.

- If $f^{-1}[a,b]$ contains **no** critical point of f, then M^b is diffeomorphic to M^a .
- If $f^{-1}[a,b]$ contains **one** nondegenerate critical point of f, with index k, then M^b has the homotopy type of M^a with a k handle-attached.

FIGURE 1. Height function.

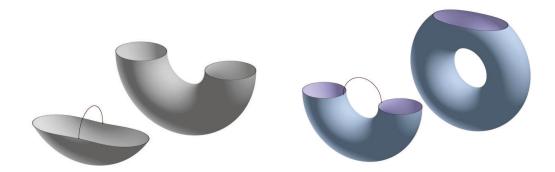


FIGURE 2. Adding handles.

Section 2. Morse-Smale ODEs

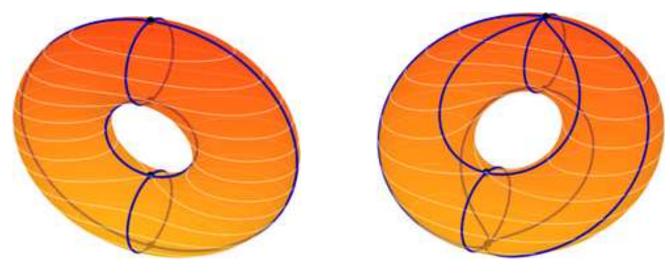
6

Put a metric on M, let f be a Morse function, and consider

 $\dot{x} = -\nabla f(x).$

If x is a critical point of f of index k, then x is a hyperbolic equilibrium with dim $W^u(x) = k$.

The ODE is Morse-Smale if the unstable and stable manifolds of different equilibria meet transversally.



(a) Upright torus: not Morse-Smale.

(b) Tilted torus: Morse-Smale.

Theorem. Morse-Smale ODE's are structurally stable.

Section 3. Morse homology

Let $f: M \to \mathbb{R}$ be a Morse function with $\dot{x} = -\nabla f(x)$ Morse-Smale. Define the Morse-Smale-Witten chain complex:

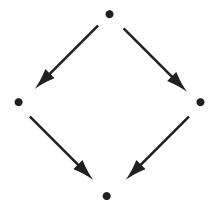
 C_k = free \mathbb{Z}_2 -module generated by the critical points of index k.

Boundary operator $d: C_k \rightarrow C_{k-1}$:

p =critical point p of index k, q = critical point of index k - 1. $W^u(p) \cap W^s(q) = n(p,q)$ curves.

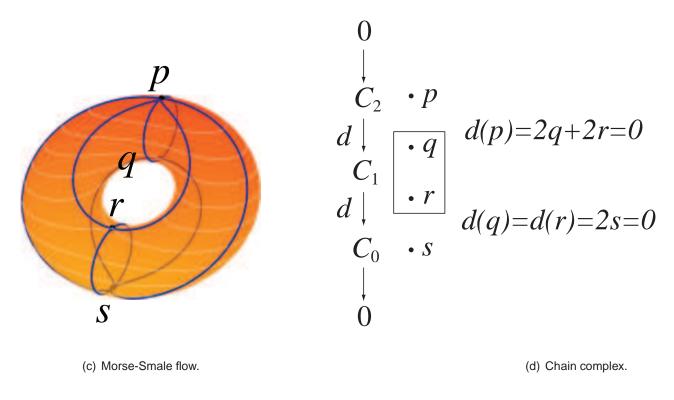
$$d(p) = \sum_{\text{critical points } q \text{ of index } k-1} n(p,q) \cdot q.$$

Proposition. $d \circ d = 0$.



The Morse homology of f is the homology of this chain complex.

Theorem. The Morse homology of f equals the singular homology of M.



History

Apparently known to Thom, Smale, and Milnor.

Rediscovered by Edward Witten in *Supersymmetry and Morse Theory* (J. Diff. Geom., 1982) in which the curves correspond to instantons that represent tunneling to remove spurious degeneracies in a perturbation calculation involving the action of the Laplacian on the deRham complex ...

Method of Andreas Floer, series of papers in 1987-89:

- (1) Associate with a manifold M an important infinite-dimensional manifold X (e.g., loop space of a symplectic manifold).
- (2) Find a natural functional on X (e.g., symplectic action functional associated to a symplectomorphism) and a natural metric on X.
- (3) Calculate the Morse homology. If you encounter infinite indices, try to define a finite index difference.
- (4) Prove something about M (e.g., Arnold's conjecture on the number of fixed points of a symplectomorphism).
- (5) If you can't do step 4, investigate a simpler Morse homology analog for inspiration.

Motivated by the symplectic vortex equation, we consider ...

M =compact manifold.

 $f: M \to \mathbb{R}$ is a Morse function.

 $\gamma: M \to \mathbb{R}$ has 0 as a regular value (so $\gamma^{-1}(0)$ is a manifold).

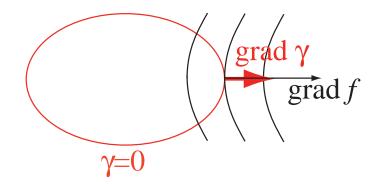
Lagrange function:

$$\mathcal{L}: M \times \mathbb{R} \to \mathbb{R}, \quad \mathcal{L}(x, \eta) = f(x) + \eta \gamma(x).$$

Critical point set of \mathcal{L} :

Crit(
$$\mathcal{L}$$
) = {(x, η) : $df(x) + \eta d\gamma(x) = 0, \quad \gamma(x) = 0$ },

There is a bijection $\operatorname{Crit}(\mathcal{L}) \simeq \operatorname{Crit}(f|\gamma^{-1}(0)), (x, \eta) \mapsto x.$



We'll investigate the morse homology of \mathcal{L} .

g = a Riemannian metric on M.

e =standard metric on \mathbb{R} .

 $g \oplus e$ is a metric on $M \times \mathbb{R}$.

Gradient vector field of \mathcal{L} with respect to $g \oplus e$:

 $\nabla \mathcal{L}(x,\eta) = (\nabla f + \eta \nabla \gamma, \ \gamma(x)).$

ODE for the negative gradient flow of \mathcal{L}

$$\dot{x} = -\left(\nabla f(x) + \eta \nabla \gamma(x)\right),$$

 $\dot{\eta} = -\gamma(x).$

Rescale the metric on the second factor: $g \oplus \lambda^{-2}e$. Distance $\lambda \rightarrow$ distance 1.

New negative gradient ODE:

$$\dot{x} = -\left(\nabla f(x) + \eta \nabla \gamma(x)\right),$$

 $\dot{\eta} = -\lambda^2 \gamma(x).$

Theorem. Morse homology is unchanged (for λ for which the chain complex C^{λ} is defined).

Homology of C^{λ} is not the homology of $M \times \mathbb{R}$.

Limit as $\lambda \to 0$

Lagrange function:

$$\mathcal{L}(x,\eta) = f(x) + \eta \gamma(x).$$

Negative gradient flow with rescaled metric, a fast-slow system for small λ .

$$\dot{x} = -\left(\nabla f(x) + \eta \nabla \gamma(x)\right),$$

 $\dot{\eta} = -\lambda^2 \gamma(x).$

Set $\lambda = 0$:

$$\begin{split} \dot{x} &= - \left(\nabla f(x) + \eta \nabla \gamma(x) \right), \\ \dot{\eta} &= 0. \end{split}$$

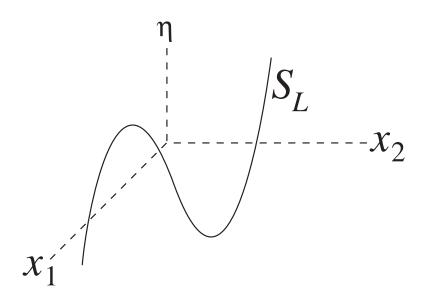
1. The slow manifold is the set of equilibria for $\lambda = 0$:

$$\begin{split} \dot{x} &= -\left(\nabla f(x) + \eta \nabla \gamma(x)\right), \\ \dot{\eta} &= 0. \end{split}$$

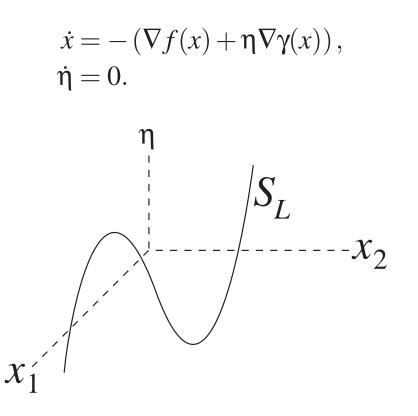
$$\mathcal{S}_{\mathcal{L}} = \{(x,\eta): \nabla f(x) + \eta \nabla \gamma(x) = 0\}.$$

Assume

- 0 is a regular value of $\nabla f(x) + \eta \nabla \gamma(x)$ (so S_{\perp} is a curve).
- $\eta|_{\mathcal{S}_{\mathcal{L}}}$ has nondegenerate critical points.



 $\mathcal{S}_{\mathcal{L}}^{\textit{sing}} = \text{critical points of } \eta | \mathcal{S}_{\mathcal{L}}.$

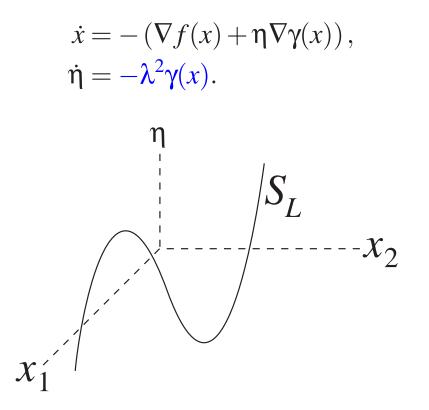


2. The fast equation is $\dot{x} = -(\nabla f(x) + \eta \nabla \gamma(x))$.

Let $f_{\eta} = f + \eta \gamma : M \to \mathbb{R}$ with η regarded as constant.

- *x* is a critical point of f_{η} if and only if $(x, \eta) \in S_{\mathcal{L}}$.
- *x* is a degenerate critical point of f_{η} if and only if $(x, \eta) \in S_{\mathcal{L}}^{sing}$.
- Assume the fast equation is Morse-Smale except at isolated bifurcation values of η where a single degeneracy occurs (degenerate critical point or nontransverse intersection of stable and unstable manifolds).

3. The slow equation:



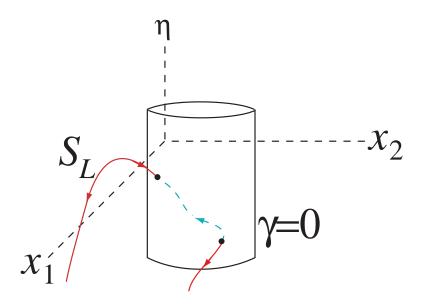
Away from critical points of $\eta | S_{\mathcal{L}}$:

- S_L is parameterized by η : $x(\eta)$.
- $\mathcal{S}_{\mathcal{L}}$ is normally hyperbolic.
- Slow equation: $\dot{\eta} = -\gamma(x(\eta))$.

$$\dot{x} = -(\nabla f(x) + \eta \nabla \gamma(x)),$$

 $\dot{\eta} = -\lambda^2 \gamma(x).$

Slow equation: $\dot{\eta} = -\gamma(x(\eta))$.

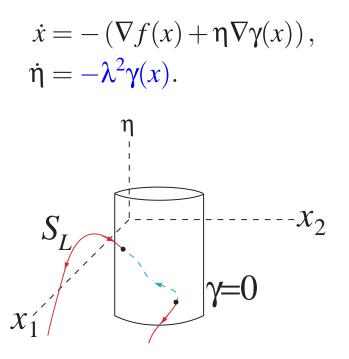


Equilibria of the slow equation are points of $S_{\mathcal{L}}$ where $\gamma = 0$.

- They are hyperbolic.
- They are the points of $Crit(\mathcal{L})$, the critical point set of $\mathcal{L}(x, \eta) = f(x) + \eta \gamma(x)$.
- \bullet They are the equilibria of the negative gradient flow of $\mathcal L$.

Assume:

• If $(x,\eta) \in S_{\mathcal{L}}$ and $\gamma(x) = 0$, η is not a bifurcation value for the fast equation.



Three Morse indices:

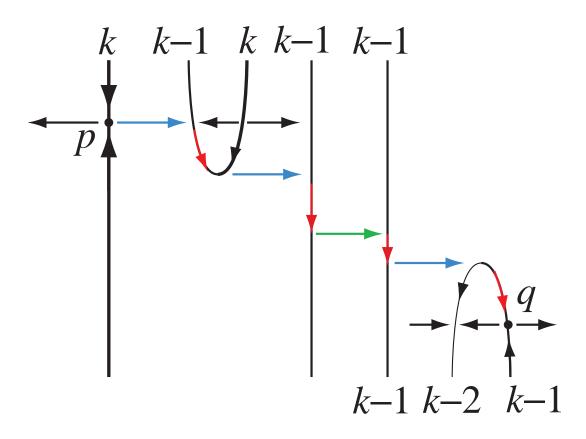
- For any $p = (x, \eta) \in S_{\mathcal{L}}$, $index(x, f_{\eta})$.
- For $p = (x, \eta) \in \operatorname{Crit}(\mathcal{L})$, index (p, \mathcal{L}) .
- For $p = (x, \eta) \in \operatorname{Crit}(\mathcal{L})$, index $(x, f | \gamma^{-1}(0))$.

Relation for $p = (x, \eta) \in Crit(\mathcal{L})$:

- index (p, \mathcal{L}) = index $(x, f|\gamma^{-1}(0)) + 1$.
- If *p* is a repeller of the slow equation, then index $(p, L) = index(x, f_{\eta}) + 1$.
- If *p* is an attractor of the slow equation, then index $(p, L) = index(x, f_{\eta})$.

Slow-fast orbits connecting $p \in \operatorname{Crit}(\mathcal{L})$ with $\operatorname{index}(p, \mathcal{L}) = k$ to $q \in \operatorname{Crit}(\mathcal{L})$ with $\operatorname{index}(q, \mathcal{L}) = k - 1$:

Case 1: Both are attractors of the slow equation.



- → generic fast connection
- → nongeneric fast connection
- → slow orbit

18

Theorem. Let

•

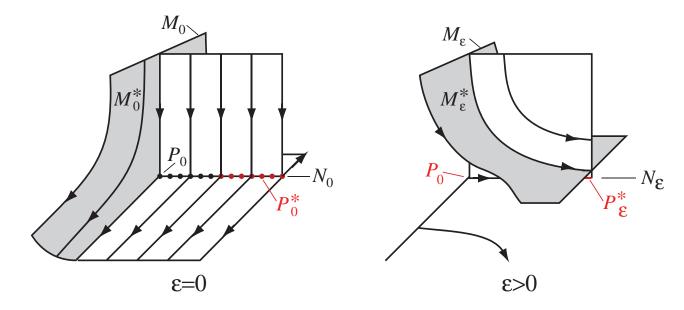
$$p \in \operatorname{Crit}(\mathcal{L})$$
 with index $(p, \mathcal{L}) = k$,
 $q \in \operatorname{Crit}(\mathcal{L})$ with index $(q, \mathcal{L}) = k - 1$

The slow-fast orbits from *p* to *q* are in one-to-one correspondence with the trajectories from *p* to *q* for small λ .

So the slow-fast orbits can be used to define a chain complex C^0 isomorphic to C^{λ} , the chain complex for small λ .

Proof. Geometric singular perturbation theory plus control afforded by the energy, with one little point.

Consider $\dot{y} = g(y, \varepsilon)$, $\varepsilon \ge 0$. Situation:



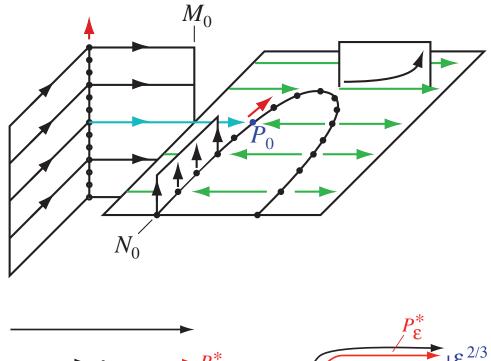
(1) $M_{\varepsilon} = \text{cross section of tracked manifold.}$

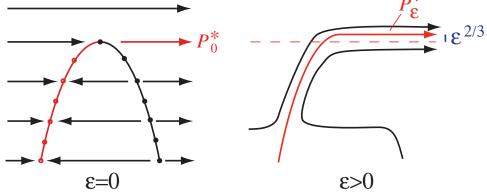
- (2) N_{ϵ} = normally hyperbolic invariant manifold.
- (3) M_{ε} is transverse to $W^{s}(N_{\varepsilon})$.

(4) $M_{\varepsilon} \cap W^{s}(N_{\varepsilon})$ projects diffeomorphically along the stable fibration to $P_{\varepsilon} \subset N_{\varepsilon}$.

- (5) g is not parallel to P, at least at order ε .
- (6) For $\varepsilon > 0$, in time of order $1/\varepsilon$, P_{ε} becomes P_{ε}^* with one higher dimension.
- (7) P_{ε}^* is a smooth perturbation of a manifold P_0^* .

General Exchange Lemma. Part of M_{ε}^* , $\varepsilon > 0$, is a smooth perturbation of $W^u(P_0^*)$.





Replace (7) with:

(7') P_{ε}^* is C^r close to a manifold P_0^* .

General Exchange Lemma v.2. M_{ε}^* , $\varepsilon > 0$, is C^{r-1} close to $W^u(P_0^*)$.

Limit as $\lambda \to \infty$

Lagrange function:

$$\mathcal{L}(x,\eta) = f(x) + \eta \gamma(x).$$

Negative gradient flow with rescaled metric:

$$\dot{x} = -\left(\nabla f(x) + \eta \nabla \gamma(x)\right),$$

 $\dot{\eta} = -\lambda^2 \gamma(x).$

Change of variables appropriate for large η :

$$\lambda = \frac{1}{\epsilon}, \quad \eta = \frac{\rho}{\epsilon}, \quad t = \epsilon \tau.$$

System becomes

$$\frac{dx}{d\tau} = -\left(\mathbf{\epsilon}\nabla f(x) + \rho\nabla\gamma(x)\right)$$
$$\frac{d\rho}{d\tau} = -\gamma(x).$$

Not a slow-fast system, but set $\epsilon = 0$ (i.e. $\lambda = \infty$):

$$\frac{dx}{d\tau} = -\rho \nabla \gamma(x)$$
$$\frac{d\rho}{d\tau} = -\gamma(x).$$
Set of equilibria for $\varepsilon = 0$: $N_0 = \{(x, \rho) : \gamma(x) = 0 \text{ and } \rho = 0\}.$
$$p$$
$$x_1$$
$$N_0$$
grad γ

 N_0 is a compact codimension-two submanifold of $M \times \mathbb{R}$.

For $\varepsilon = 0$, N_0 is normally hyperbolic:

• Eigenvalues are 0 with multiplicity 2 and $\pm \|\nabla \gamma(x)\|_{g(x)}$.

$$\frac{dx}{d\tau} = -\left(\mathbf{\epsilon}\nabla f(x) + \rho\nabla\gamma(x)\right),\\ \frac{d\rho}{d\tau} = -\gamma(x).$$

For small $\varepsilon > 0$, there is normally hyperbolic invariant manifold N_{ε} near N_0 .

Locally chose coordinates on *M* with $\gamma = x_n$.

Let $y = (x_1, ..., x_{n-1})$, so $x = (y, x_n)$.

Locally N_{ε} is parameterized by *y*.

The system restricted to N_{ε} , after division by ε , is

$$\dot{\mathbf{y}} = -\nabla_{\mathbf{y}} f(\mathbf{y}, \mathbf{0}) + O(\mathbf{\varepsilon}),$$

where $\nabla_{y} f(y, x_n)$ denotes the first n - 1 components of $\nabla f(y, x_n)$.

This is a perturbation of the negative gradient flow of $(f,g)|\gamma^{-1}(0)$.

Assume: $(f,g)|\gamma^{-1}(0)$ is Morse-Smale. Then its negative gradient flow is structurally stable.

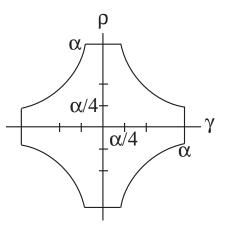
Within N_{ε} we have the same equilibria and connections. The equilibria have one higher index.

$$\frac{dx}{d\tau} = -\left(\mathbf{\epsilon}\nabla f(x) + \rho\nabla\gamma(x)\right),$$
$$\frac{d\rho}{d\tau} = -\gamma(x).$$

Are there other connections?

- They are the only connections that stay in a neighborhood of N_{ε} .
- $E_{\varepsilon}(x, \rho) = \varepsilon f(x) + \rho \gamma(x)$ decreases along solutions.
- Since $\gamma = O(\epsilon)$ on N_{ϵ} , the energy difference between two equilibria is $O(\epsilon)$.
- However, if a solution leaves a neighborhood of N_{ϵ} , its energy drops by O(1).

Let $V = \{(x, \rho) : |\gamma(x)| < \alpha, |\rho| < \alpha, |\rho\gamma(x)|\} < \frac{\alpha^2}{4}\}.$



Make a small ε -dependent alteration in *V*: replace the portions of ∂V on which $\gamma = \pm \alpha$ or $\gamma = \pm \alpha$ by nearby invariant surfaces, so solutions can't cross them.

Theorem. For λ large, the Morse-Smale-Whitten complex of $(\mathcal{L}, g \oplus \lambda^{-2}e)$ equals that of $(f,g)|\gamma^{-1}(0)$ with grading shifted by one.

The slow-fast flow and Morse theory

How does the Morse complex of $\gamma^{-1}(c)$ change as *c* varies?

Replace $\gamma(x)$ by $\gamma(x) - c$. Then replace $\mathcal{L}(x, \eta)$ by

 $\mathcal{L}_c(x,\eta) = f(x) + \eta(\gamma(x) - c)$

Rescaled ODE for the negative gradient flow of \mathcal{L}_c

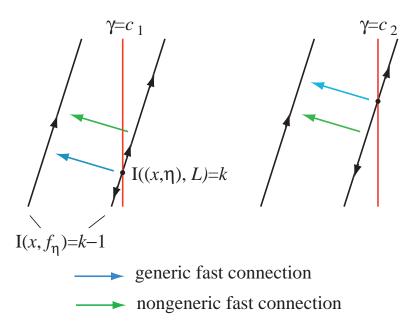
$$\begin{split} \dot{x} &= -\left(\nabla f(x) + \eta \nabla \gamma(x)\right), \\ \dot{\eta} &= -\lambda^2 (\gamma(x) - c). \end{split}$$

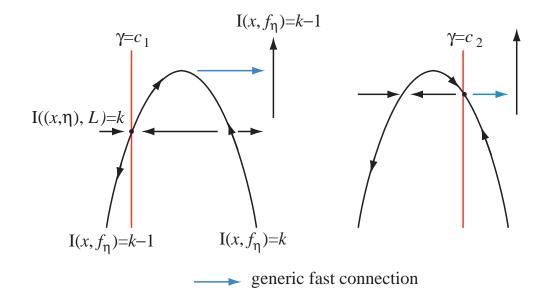
• $\mathcal{S}_{\mathcal{L}} = \mathcal{S}_{\mathcal{L}_c}$.

- The fast flow does not change.
- The slow flow changes as the intersection of $S_{\mathcal{L}}$ and $\gamma^{-1}(c) \times \mathbb{R}$ changes.

This should make it "easy" to check how slow-fast orbits appear and disappear as *c* varies.

If no critical value of $\boldsymbol{\gamma}$ is crossed, the homology of the chain complex should not change.





If a critical value of γ is crossed, the homology of the chain complex changes.

$$\dot{x} = -\left(\nabla f(x) + \eta \nabla \gamma(x)\right),$$

$$\dot{\eta} = -\lambda^2(\gamma(x) - c).$$

The slow flow changes at $\eta = \pm \infty$.