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GASLESS COMBUSTION FRONTS WITH HEAT LOSS∗

ANNA GHAZARYAN† , STEPHEN SCHECTER‡ , AND PETER L. SIMON§

Abstract. For a model of gasless combustion with heat loss, we use geometric singular per-
turbation theory to show existence of traveling combustion fronts. We show that the fronts are
nonlinearly stable in an appropriate sense if an Evans function criterion, which can be verified nu-
merically, is satisfied. For a solid reactant and exothermicity parameter that is not too large, we
verify numerically that the criterion is satisfied.
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1. Introduction. We consider the gasless combustion model

∂tu1 = ∂xxu1 + u2ρ(u1 − ū1)− δu1,(1.1)

∂tu2 = κ∂xxu2 − βu2ρ(u1 − ū1)(1.2)

with β > 0, δ ≥ 0, κ ≥ 0, and

(1.3) ρ(u) =

{
e−

1
u if u > 0,

0 if u ≤ 0.

Here u1 is temperature, u2 is reactant concentration, u1 = ū1 is the temperature
below which the reaction does not occur (ignition temperature), and u1 = 0 is the
ambient temperature. We assume that ū1 ≥ 0, so the reaction does not occur at the
ambient temperature. ρ is the unit reaction rate, which is a function of temperature.
Temperature, x, and t have been scaled to normalize the first equation. β is the
exothermicity parameter; the larger β is, the more fuel one must burn to achieve a
given increase in temperature. κ is diffusivity of the reactant, which is the inverse of
the Lewis number; if κ = 0, the reactant is a solid. The term δu1 represents heat
loss from the system to the environment according to Newton’s law of cooling. The
4-tuple (β, ū1, δ, κ) is a vector of parameters.

Our interest is in traveling combustion fronts and their stability. Combustion
fronts are a type of traveling wave. If they travel to the right, they connect a burned
state at the left to an unburned state at the right. The unburned state is the state
before combustion occurs; the temperature is 0 (ambient temperature), and the re-
actant concentration is positive. If there is no heat loss to the environment (i.e., if
δ = 0), the burned state is at combustion temperature β−1 and has reactant concen-
tration 0 (all the reactant has burned). On the other hand, if there is heat loss to
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Fig. 1.1. Combustion front profiles with β = 0.5 and κ = 0 (solid reactant). Curves that
approach 1 (respectively, 0) at the right are reactant concentration (respectively, temperature). Solid:
δ = 0. Behind the front, temperature is 2 (there is no heat loss to the environment) and all reactant
has burned. Dashed: δ = 0.0380. Behind the front, temperature slowly falls due to heat loss to the
environment. Dotted: δ = 0.0561. Behind the front, temperature again slowly falls. One can see
more clearly than for δ = 0.0380 that there is unburned reactant behind the front.

the environment (δ > 0), the burned state cannot maintain a positive temperature;
it, like the unburned state, is at the ambient temperature, due to gradual heat loss
behind the combustion front. It turns out that in this case, some of the reactant
remains unburned at the burned state. See Figure 1.1.

The traveling combustion fronts of (1.1)–(1.2) have long been used for studies of
premixed laminar flames, a basic topic in combustion theory; see the recent review
article [21]. Questions of flame propagation and quenching translate into questions
about existence and stability of traveling waves. In section 2 we review the literature
on existence and stability of combustion waves for the gasless combustion model,
which often concerns various equivalent forms of the model.

We shall always limit our attention to fronts that approach both end states expo-
nentially. This is only a limitation when δ = 0 and ū1 = 0, i.e., when there is no heat
loss to the environment and ignition temperature and ambient temperature are equal.
Additional justifications for ignoring traveling waves that do not approach both end
states exponentially have been given in the literature. For example, they vanish in
the presence of heat loss to the environment, and they are only seen in simulations
when carefully prepared, physically implausible initial conditions are used. There is
a theoretical explanation for this observation; see [8].

In this paper we do several things that add to the known facts about the gasless
combustion model. In stating our results, and in the remainder of the paper, the
reactant concentration at the unburned state is normalized to be 1.

1. It is known that for δ = 0 (no heat loss) and small κ ≥ 0 (small diffusivity
of the reactant), the system (1.1)–(1.2) admits a unique combustion front with speed
given by a smooth function σ1(β, ū1, κ). In section 3, we use geometric perturbation
theory [12] to prove that these combustion fronts perturb to ones with small δ > 0.
The wave speed σ(β, ū1, δ, κ), with σ(β, ū1, 0, κ) = σ1(β, ū1, κ), is a smooth function.
Previously this was known only numerically.

We remark that here and throughout the paper, by a “unique combustion front”
we mean unique up to shift; traveling waves can always be shifted in space, which
corresponds to a shift of time.
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2. It is known that for δ = 0 and small κ ≥ 0, the unique combustion front is
nonlinearly exponentially stable in an appropriate sense, provided an Evans function
criterion is satisfied. In section 4, we prove, for δ > 0, the corresponding result for
the perturbations of these combustion fronts.

Let us give some background on this result. Denote the linearization of a PDE
at a traveling wave by ut = Lu. We have the following notions.

• Spectral stability: the spectrum of L is contained in Reλ ≤ −ν < 0, except
for a simple eigenvalue λ = 0, which traveling waves typically have because
they can be shifted.

• Linearized stability: there is a space Y of codimension one that is invariant
under etL, and constants ν > 0 and K ≥ 1, such that ‖etL|Y ‖ ≤ Ke−νt. (Y
is complementary to the eigenspace of L for the simple eigenvalue λ = 0.)

• Nonlinear or orbital stability: for the nonlinear system, perturbations of the
traveling wave stay close to the curve (in function space) of shifts of the
traveling wave.

• Nonlinear exponential (respectively, algebraic) stability with asymptotic phase:
the nonlinear system is nonlinearly stable, and in addition, perturbations of
the traveling wave decay exponentially (respectively, algebraically) to a shift
of the traveling wave.

These “definitions” are purposefully vague. Of course the space in which one calculates
spectra must be taken into account. In some situations, perturbations of the traveling
wave may be small in one space and satisfy the nonlinear stability or asymptotic
stability conditions in another. However, a standard result, which does not apply to
the gasless combustion model, is that if L is sectorial and spectrally stable on a space
X , then the traveling wave is linearly stable and nonlinearly exponentially stable with
asymptotic phase on X [19].

The essential spectrum of L is determined by the linearization of the PDE at the
end states of the wave. The discrete spectrum is found using the Evans function, an
analytic function from C to C. It is an infinite-dimensional analog of the characteristic
polynomial, in that its zeros correspond to eigenvalues, and the multiplicity of the
zero is the multiplicity of the eigenvalue [19].

The stability proof in section 4 is nonstandard due to the fact that the essential
spectrum of L touches the imaginary axis, so L is not spectrally stable. By using
a weighted space one can move the essential spectrum to the left, but the spaces
that achieve this are not closed under multiplication and so cannot easily be used to
study the nonlinear problem. When κ = 0 there is the additional difficulty that the
essential spectrum includes a vertical line, so L is not sectorial. We shall make use
of machinery appropriate to dealing with these issues that was developed in [9] and
[10], generalizing the methods of [8] (for gasless combustion with δ = 0 and κ = 0)
and [6] (for gasless combustion with δ = 0 and κ > 0).

It is standard in applied mathematics to check for stability by checking that the
spectrum of the linearization is contained in Reλ ≤ 0. Unfortunately, this condition
alone does not imply anything stronger. For the gasless combustion model, using the
machinery just mentioned allows one to pass from spectral calculations to detailed
information about how perturbations of the combustion wave behave.

More precisely, let E0 denote either H1(R) or BUC, the space of bounded uni-
formly continuous functions on R with the sup norm, and let Eα denote the corre-
sponding space with weight function eαξ, ξ = x − σt, where σ is the velocity of the
combustion front; α is positive and small. Functions in Eα decay exponentially as
ξ → ∞ but may grow exponentially as ξ → −∞; functions in E0 ∩Eα decay exponen-
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tially as ξ → ∞ and are bounded at the left. We show that as t→ ∞, perturbations
of the combustion front that are small in E0 ∩ Eα decay exponentially in Eα to a
shift of the combustion front. This is a type of nonlinear exponential stability with
asymptotic phase. Furthermore, for δ > 0, the u1-component of the perturbation
(temperature) decays exponentially in E0, and the u2-component of the perturbation
(reactant concentration) stays small in E0. This is a type of nonlinear orbital stability.
Moreover, if κ > 0 and the perturbation is, in addition, in L1, then the u2 component
of the perturbation stays small in L1 and decays algebraically in L∞ (like t−

1
2 ).

For δ > 0 these results have the following interpretation. If the combustion front
is perturbed in a way that is bounded or in H1 at the left and decays exponentially
at the right, the solution eventually looks like the combustion front at the right but
not necessarily at the left. The temperature component of the perturbation rapidly
decays in time; at the left this is because of heat loss to the environment. The reactant
component of the perturbation may not decay in time at the left when κ = 0; this
is because at the left, the temperature is too low for it to burn. (Both components
of the perturbation decay exponentially at the right in time in the weighted norm,
because initially they decay exponentially in space at the right, and, relative to the
front, they move left.) In addition, when κ > 0 and the perturbation is, in addition,
in L1, the reactant component of the perturbation at the left does at least decay by
diffusion as expected.

The behavior of temperature and reactant concentration at the left for δ > 0 is
the reverse of their behavior for δ = 0; compare [8] and [6]. Without heat loss to
the environment, the temperature behind the combustion front is high, so perturba-
tions in the reactant concentration quickly decay (because the reactant burns), while
perturbations in the temperature at best decay by diffusion.

3. In section 5, we show analytically, for δ > 0, that the Evans function for the
combustion front of section 3 has a simple zero at the origin. This fact, which is
equivalent to simplicity of the zero eigenvalue for the linearization of the system at
the traveling wave, is needed for the stability result in section 4. A similar result was
obtained for δ = 0 in [8] and [7]. As in those papers, the result is a consequence of
the nondegenerate splitting of invariant manifolds that occurs in the construction of
the front.

4. Also in section 5, for κ = 0, β not too large, and δ > 0, we provide numerical
evidence that the Evans function for the combustion front of section 3 has no zeros
in Reλ ≥ 0, other than the simple zero at the origin. Similar numerical results have
previously been obtained for the other cases; see section 2.

If we replace u2ρ(u1) by a more general function ω(u1, u2), then, except in sub-
section 5.3 where we do some numerics, the only properties of ω that are actually
used are ω is defined and C3 on {(u1, u2) : 0 ≤ u2 ≤ 1}; ω(u1, u2) = 0 for u1 ≤ 0;
ω > 0 for u1 > 0 and u2 > 0; ω(u1, 0) = 0 for all u1; and

∂ω
∂u2

(u1, 0) > 0 for u1 > 0.

2. Literature on the gasless combustion model. Instead of the combustion
model (1.1)–(1.2), several equivalent forms are often used in the literature.

One equivalent form is

∂tu1 = ∂xxu1 + u2ρ̂(u1 − ū1)− δu1,(2.1)

∂tu2 = κ∂xxu2 − u2ρ̂(u1 − ū1),(2.2)

where ρ̂ is a function chosen from a one-parameter family of functions with properties
similar to those of ρ, ū1 ≥ 0, δ ≥ 0, and κ ≥ 0. To derive (2.1)–(2.2) from (1.1)–(1.2),
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in (1.1)–(1.2) make the substitution u1 = 1
β ũ1. After dropping the tildes, one obtains

(2.1)–(2.2) with ρ̂(u) = βρ(uβ ).
Another equivalent form is

∂tu1 = ∂xxu1 + u2ε
−2e

1
ε ρ(ε(u1 − ū1))− δ̂u,(2.3)

∂tu2 = κ∂xxu2 − u2ε
−2e

1
ε ρ(ε(u1 − ū1))(2.4)

with ε > 0, ū1 ≥ 0, δ̂ ≥ 0, and κ ≥ 0. Studying the limit ε → 0 is called high
activation energy asymptotics. To derive (2.3)–(2.4) from (1.1)–(1.2), in (1.1)–(1.2)
make the substitutions

β = ε−1, u1 = εũ1, u2 = ũ2, t = ε−1e
1
ε t̃, x =

(
ε−1e

1
ε

) 1
2

x̃.

After dropping the tildes, one obtains (2.3)–(2.4) with δ̂ = ε−1e
1
ε δ.

Remark 2.1. An alternative to (1.1)–(1.2) that is not equivalent to it is the
system

∂tu1 = ∂xxu1 + u2ρ(u1)− δ(u1 − u†1),(2.5)

∂tu2 = κ∂xxu2 − βu2ρ(u1).(2.6)

In this system, which is better physically motivated than (1.1)–(1.2), u1 = 0 is ab-

solute zero, and u†1 ≥ 0 is ambient temperature. Unfortunately, if u†1 > 0, physically
meaningful traveling waves do not exist. This is called the cold boundary difficulty:
traveling waves only exist when the ambient temperature is absolute zero. Neverthe-
less, approximate traveling waves have been studied numerically [11].

The system (2.5)–(2.6) is sometimes altered by replacing the Arrhenius reaction
rate function ρ(u1) by the discontinuous function

(2.7) ρū1(u) =

{
e−

1
u if u ≥ ū1,

0 if u < ū1,

where ū1 > 0 is ignition temperature. If 0 ≤ u†1 ≤ ū1, physically meaningful traveling
waves often exist [1].

We shall now briefly review the literature on existence and stability of traveling
combustion fronts for (1.1)–(1.2). As previously mentioned, we limit our discussion
to fronts that approach their end states exponentially. Without loss of generality we
restrict our attention to waves with positive velocity.

2.1. Literature on traveling combustion fronts for (1.1)–(1.2) with no
heat loss (δ = 0). We consider fronts with values (u1, u2) = (u∗1, 0) at the left and
(u1, u2) = (0, 1) at the right, where u∗1 is the temperature of combustion. It must
be determined; it turns out to be β−1. We therefore assume ū1 < β−1, i.e., ignition
temperature is less than the temperature of combustion.

2.1.1. Existence and uniqueness. For infinite Lewis number (κ = 0) and
ū1 = 0, existence of a traveling front is shown in [4, 22]: the system reduces to one
second-order equation by means of a first integral, and the proof is by phase plane
analysis. The same proof would work for 0 < ū1 < β−1. Uniqueness follows from
the Melnikov integral calculation in [8]: the Melnikov integral is nonzero and has the
same sign at any front. This material will be reviewed in subsection 3.1. Earlier
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proofs using shooting were given in [14, 15]. We denote the speed of the traveling
front by σ0(β, ū1); from the fact that the Melnikov integral is nonzero, it is a smooth
function.

For finite Lewis number (κ > 0), there are the following existence and uniqueness
results. The papers [3] and [16] use the system (2.1)–(2.2); we have converted their
results into results for the system (1.1)–(1.2).

1. κ = 1, ū1 = 0: the system reduces to one second-order equation, and existence
is proved by phase plane analysis [4]. The same proof would work for 0 <
ū1 < β−1. For 0 < ū1 < β−1, uniqueness is shown in [3].

2. κ > 0, 0 < ū1 < β−1: proof of existence by Leray–Schauder degree [3]. For
0 < κ < 1, uniqueness is shown in [16].

3. κ > 0, ū1 = 0: proof of existence by Leray–Schauder degree [16].
4. κ > 0 small, ū1 = 0: proof of existence and uniqueness by geometric singular

perturbation theory [7]. The same proof would work for 0 < ū1 < β−1. This
method of proof also shows that the speed of the traveling wave for small κ
is close to that for κ = 0, and in fact is a smooth function of (β, ū1, κ) for
β > 0, 0 ≤ ū1 < β−1, and 0 ≤ κ < κ0(β, ū1) for some positive function κ0.

2.1.2. Stability. For ū1 = 0, it is shown in [8] for κ = 0 and in [6] for small
κ > 0 that the front is nonlinearly stable in an appropriate sense, provided the
Evans function has no zeros in Reλ ≥ 0 other than a simple zero at the origin. The
same proof would work for 0 < ū1 < β−1. Simplicity of the zero at the origin is
a consequence of the fact that the Melnikov integral mentioned above is nonzero;
equivalently, it is a consequence of the nondegenerate splitting of invariant manifolds
that occurs in the construction of the front.

Numerical computation with ū1 = 0 indicates that the Evans function condition
holds for β not too large (for κ = 0 see [8], for κ > 0 see [17, 2]). However, for larger
β, the wave becomes unstable due to a pair of eigenvalues crossing into the right
half-plane [17, 2].

2.2. Literature on traveling combustion fronts for (1.1)–(1.2) with heat
loss (δ > 0). For δ > 0, spatially homogeneous equilibria of (1.1)–(1.2) all have
temperature u1 equal to 0. We consider fronts with values (u1, u2) = (0, u∗2) at the
left and (u1, u2) = (0, 1) at the right, where u∗2, the concentration of unburned reactant
behind the front, must be determined.

2.2.1. Infinite Lewis number (κ = 0). We found no results in the literature.

2.2.2. Finite Lewis number (κ > 0). Existence:
1. For the system (2.3)–(2.4) with ε small, κ = 1, and ū1 > 0: proof of existence

of two solutions for small δ̂ by Leray–Schauder degree [5].
2. For the system (1.1)–(1.2) with β = 1, κ > 0, and ū1 > 0: proof of existence

of two solutions for small δ by Leray–Schauder degree [18].
Numerical results: Figure 5 in [21], which uses the system (2.3)–(2.4), is typical of

the numerical results in the literature. For (ε, ū1) = (0.1, 0), it shows the wave speed

plotted against δ̂ for different values of κ > 0. For δ̂ small there are two traveling
waves; they meet in a saddle-node bifurcation at some δ̂ = δ̂0, and there are no
traveling waves for δ̂ > δ̂0. As δ̂ → 0, the speed of one traveling wave appears to
approach the speed of the combustion front for δ̂ = 0, and the speed of the other
traveling wave appears to approach 0.

Spectral stability: see the review article [21], which uses the form (2.3)–(2.4).
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Fig. 2.1. Figure 9 of [21], showing, for the system (2.3)–(2.4) with ε = 0.1, ū1 = 0, and

κ = L−1
A = 0.5, the curve in δ̂σ̂-space (σ̂ = wave speed) for which traveling waves exist. In the

figure, γ corresponds to our δ̂ and c to our σ̂.

1. Essential spectrum: At both ends of the wave, the spectrum of the corre-
sponding constant-coefficient operator lies in the left half-plane but touches
the imaginary axis. See Figure 6 in [21].

2. Discrete spectrum: Determined using the Evans function. A typical result is
shown in Figure 9 in [21], reproduced here as Figure 2.1. The figure shows,

for (ε, ū1, κ) = (0.1, 0, 0.5), the curve in δ̂σ̂-space (σ̂ = wave speed) for which

traveling waves exist. On the upper part of the curve (δ̂ small, σ̂ near the

speed of the traveling wave for δ̂ = 0) all eigenvalues except for 0 lie in the
left half-plane. At a point marked H on the upper part of the curve a pair of
complex eigenvalues crosses into the right half-plane. Thereafter the traveling
waves are unstable. However, as one moves along the curve, these eigenvalues
become real, and then, at the saddle-node bifurcation point (see [21, p. 346]),
one of these real eigenvalues crosses back over the imaginary axis.
Figure 5 in [21] shows how this bifurcation diagram changes as κ varies with ε
held fixed. As κ increases (LA decreases), H and the saddle-node bifurcation
point come together in a Takens–Bogdanov point. After that the saddle-
node bifurcation point is still present but H is not. Above the saddle-node
bifurcation point all eigenvalues except for 0 lie in the left half-plane, and at
the saddle-node bifurcation point, one crosses into the right half-plane.
On the other hand, as κ decreases (LA increases), eventually H moves left to

δ̂ = 0. For lower κ (higher LA) all traveling waves are unstable.
For ε near 0, this whole picture can be derived asymptotically [21].
The fact that for ε = 0.1 and small κ, all traveling waves are unstable, is
consistent with [17], in which it is found that for δ = 0 and κ small, the com-
bustion front, which is stable for small β, loses stability in a Hopf bifurcation
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when β increases past about 7 (or when ε fall below about 0.14).
For β below about 7 and κ small, the traveling wave is stable for δ = 0, and,
as in Figure 2.1, we would find stability on the upper branch, at least near
δ = 0.
It appears that for all (β, κ) that have been studied, the traveling waves with
δ below the saddle-node bifurcation value are unstable.

Linearized and nonlinear stability: not discussed in the literature. Since the essen-
tial spectrum of the linearization touches the imaginary axis, the spectral information
just discussed does not imply either linearized or nonlinear stability.

3. Existence of traveling waves with speed of order one. In (1.1)–(1.2), we
replace the spatial coordinate x with one ξ that is moving with velocity σ: ξ = x−σt.
We obtain

∂tu1 = ∂ξξu1 + σ∂ξu1 + u2ρ(u1 − ū1)− δu1,(3.1)

∂tu2 = κ∂ξξu2 + σ∂ξu2 − βu2ρ(u1 − ū1).(3.2)

A steady solution of (3.1)–(3.2) is a traveling wave solution of (1.1)–(1.2) with velocity
σ. Steady solutions of (3.1)–(3.2) satisfy the system of ODEs

0 = ∂ξξu1 + σ∂ξu1 + u2ρ(u1 − ū1)− δu1,(3.3)

0 = κ∂ξξu2 + σ∂ξu2 − βu2ρ(u1 − ū1).(3.4)

3.1. Infinite Lewis number (κ = 0), no heat loss (δ = 0). This subsection
should be regarded as a review.

We consider (3.3)–(3.4) with (β, ū1) fixed and δ = κ = 0. We are interested in
solutions with σ > 0 that satisfy the boundary conditions

(3.5) (u1, ∂ξu1, u2)(−∞) = (u∗1, 0, 0), (u1, ∂ξu1, u2)(∞) = (0, 0, 1).

The temperature of combustion u∗1 > ū1 and the speed σ > 0 are yet to be determined.
In addition we require that the solution approach its end states exponentially. As
mentioned in the introduction, this is only a limitation when δ = 0 and ū1 = 0.

In the system (3.3)–(3.4) with δ = κ = 0, we set v1 = ∂ξu1 and use a prime to
denote the derivative with respect to ξ. We obtain the first-order system

u′1 = v1,(3.6)

v′1 = −σv1 − u2ρ(u1 − ū1),(3.7)

u′2 =
β

σ
u2ρ(u1 − ū1),(3.8)

which has the vector of parameters (β, ū1, σ). A solution of (3.3)–(3.4) that satisfies
the boundary conditions (3.5) corresponds to a solution of (3.6)–(3.8) that goes from
an equilibrium (u∗1, 0, 0) to the equilibrium (0, 0, 1).

The set of equilibria of (3.6)–(3.8) is the half-plane Hū1 = {(u1, v1, u2) : u1 ≤
ū1 and v1 = 0} together with the ray Rū1 = {(u1, v1, u2) : u1 > ū1 and v1 = u2 = 0}.
Hū1 is normally hyperbolic: the equilibria in Hū1 have two zero eigenvalues and one
negative eigenvalue. (See the appendix for an introduction to normally hyperbolic
invariant manifolds.) Rū1 is also normally hyperbolic: the equilibria in Rū1 have one
positive and one negative eigenvalue. To find a solution to the boundary value problem
that satisfies the exponential approach condition, we need to find a solution in the
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u1

u1

u2

(β/σ)w1

(1/σ)w1

Fig. 3.1. Phase portrait of (3.9), (3.11) for a fixed w1 with w1 > σū1.

intersection ofWu(Rū1), the unstable manifold of the ray Rū1 , which has dimension 2,
and W s(0, 0, 1), the stable manifold of the equilibrium (0, 0, 1), which has dimension
1. Of course these manifolds depend on the vector of parameters (β, ū1, σ).

The function (u1, v, u2) → σu1+ v+ σ
βu2 is a first integral of (3.6)–(3.8). To take

advantage of this fact, we replace v1 by w1 defined by w1 = σu1 + v1 +
σ
βu2. In the

new variables, the differential equation (3.6)–(3.8) becomes

u′1 = −σu1 + w1 − σ

β
u2,(3.9)

w′
1 = 0,(3.10)

u′2 =
β

σ
u2ρ(u1 − ū1).(3.11)

Each plane w1 = constant is invariant. Corresponding to Hū1and Rū1 we have

H̃(β,ū1,σ) =

{
(u1, w1, u2) : u1 ≤ ū1 and u2 = −βu1 + β

σ
w1

}
,(3.12)

R̃(β,ū1,σ) =

{
(u1, w1, u2) : u1 =

1

σ
w1, w1 > σū1, and u2 = 0

}
.(3.13)

For a fixed w1 with w1 > σū1, the phase portrait of (3.9), (3.11) is shown in
Figure 3.1. The half-line of equilibria is part of H̃(β,ū1,σ), and the isolated equilibrium

on the u1-axis is part of R̃(β,ū1,σ). Where the unstable manifold of the isolated
equilibrium goes depends on the vector of parameters (β, ū1, σ, w1) in (3.9), (3.11).

Set w1 = σ
β , so that the equilibrium (u1, u2) = (0, βσw1) on the u2 axis is at (0, 1)

as desired. The isolated equilibrium is then (u1, u2) = ( 1β , 0), so we assume ū1 <
1
β .

If we now vary σ, it is not hard to see that for small σ, the unstable manifold of ( 1β , 0)

lies above the stable manifold of (0, 1), and for large σ it lies below [4, 22]. Therefore
there is a value σ∗ of σ for which the unstable manifold of ( 1β , 0) meets the stable

manifold of (0, 1).
For the system (3.9), (3.11), one can define a separation function S̃0(β, ū1, σ)

between the unstable manifold of ( 1β , 0) and the stable manifold of (0, 1); S0 is positive

(respectively, negative) when the former is above (respectively, below) the latter.

Then one can show that if S̃0(β, ū1, σ) = 0 then ∂S̃0

∂σ (β, ū1, σ) < 0; this is done [8]
by calculating an integral, called a Menikov integral, whose value gives the partial
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derivative. Therefore the unstable manifold of ( 1β , 0) always crosses from above the

stable manifold of (0, 1) to below it as σ increases. It follows that σ∗ is unique,
and the intersection breaks in a nondegenerate manner as σ varies. We let σ∗ =
σ0(β, ū1); because the Melnikov integral is nonzero, σ0 is smooth by the implicit
function theorem. For the given (β, ū1), the heteroclinic solution we have found is the
unique traveling wave with positive velocity that satisfies the exponential approach
condition, and σ0(β, ū1) is its velocity.

S̃0(β, ū1, σ) can be reinterpreted as referring to the system (3.9)–(3.11). It is then
a separation function between the two-dimensional manifold Wu(R̃(β,ū1,σ)) and the
one-dimensional stable manifold of the equilibrium (0, σβ , 1).

Returning to u1v1u2-space, for the system (3.6)–(3.8) we have a separation func-
tion S0(β, ū1, σ) between the two-dimensional manifold Wu(Rū1 ) and the one-dimen-
sional stable manifold of the equilibrium (0, 0, 1). When S0 = 0, the two manifolds
intersect in a heteroclinic solution from ( 1β , 0, 0) to (0, 0, 1). There is a smooth func-

tion σ0(β, ū1) such that S0 = 0 if and only if σ = σ0(β, ū1), and
∂S
∂σ there is nonzero.

In consequence we have the following theorem.
Theorem 3.1. For κ = δ = 0 and fixed (β, ū1), there is a unique speed σ =

σ0(β, ū1) such that the gasless combustion model (1.1)–(1.2) has a traveling wave of
speed σ that connects a burned state (u∗1, 0, 0) to the unburned state (0, 0, 1). The
combustion temperature u∗1 is 1

β . The function σ0(β, ū1) is smooth.

3.2. Infinite Lewis number (κ = 0) with heat loss (δ > 0). We consider
(3.3)–(3.4) with (β, ū1) fixed, δ > 0, and κ = 0. We are interested in solutions with
σ > 0 that satisfy the boundary conditions

(3.14) (u1, ∂ξu1, u2)(−∞) = (0, 0, u∗2), (u1, ∂ξu1, u2)(∞) = (0, 0, 1).

The unburned reactant concentration behind the front u∗2 and the speed σ are yet to
be determined.

As in the previous subsection, in the system (3.3)–(3.4) we set v1 = ∂ξu1 and use
a prime to denote the derivative with respect to ξ. We obtain the first-order system

u′1 = v1,(3.15)

v′1 = −σv1 − u2ρ(u1 − ū1) + δu1,(3.16)

u′2 =
β

σ
u2ρ(u1 − ū1),(3.17)

which has the vector of parameters (β, ū1, σ, δ). A solution of (3.3)–(3.4) that satisfies
the boundary conditions (3.14) corresponds to a solution of (3.15)–(3.17) that goes
from an equilibrium (0, 0, u∗2) to the equilibrium (0, 0, 1).

3.2.1. Equilibria. For δ > 0, the set of equilibria of (3.15)–(3.17) is the u2-axis.
The linearization of (3.15)–(3.17) at a point (u1, v1, u2) has the matrix

(3.18)

⎛
⎝ 0 1 0
−u2ρ′(u1 − ū1) + δ −σ −ρ(u1 − ū1)

β
σu2ρ

′(u1 − ū1) 0 β
σρ(u1 − ū1)

⎞
⎠ .

On the u2-axis, (3.18) becomes

(3.19)

⎛
⎝0 1 0
δ −σ 0
0 0 0

⎞
⎠ ,
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)b()a(

u1 u1

u1
v1

u2u2

v1u1

Fig. 3.2. (a) The half-plane H(β,ū1,σ,0) of equilibria, and the ray of equilibria Rū1 (part of
the u1-axis). The two-dimensional normally attracting manifold M(β,ū1,σ,0) for (3.6)–(3.8) is also
shown; it includes both these sets, together with the unstable manifolds of points on Rū1 . (b) The
two-dimensional normally attracting manifold M(β,ū1,σ,δ), δ > 0, for (3.15)–(3.17). It includes the
u2-axis, which is a line of equilibria, and the unstable manifolds of these equilibria. Within the
half-plane H(β,ū1,σ,δ), which is part of M(β,ū1,σ,δ), the unstable manifolds are parallel lines. The
entire unstable manifold of the origin is the line L(β,ū1,σ,δ), which lies in the plane u2 = 0.

so the equilibria all have the eigenvalues

(3.20) 0 and λ±(σ, δ) = −σ
2
±
(
σ2

4
+ δ

) 1
2

.

Since δ > 0, we have λ− < 0 and λ+ > 0. Therefore each equilibrium has a one-
dimensional unstable manifold and a one-dimensional stable manifold. We need to
find a solution that lies in the intersection of the unstable manifold of the u2-axis,
which is two dimensional, and the stable manifold of (0, 0, 1), which is one dimensional.

For δ = 0 the equilibria are the half-plane Hū1 of the previous section, which we
now denote H(β,ū1,σ,0) (the last component is δ), and Rū1 ; see Figure 3.2(a).

3.2.2. Normally hyperbolic invariant manifolds. For δ=0, the unstable
manifolds of points on Rū1 fit together with the half-plane H(β,ū1,σ,0) to make a
normally attracting two-dimensional manifold that we denote M(β,ū1,σ,0). See Fig-
ure 3.2(a). For an introduction to normally hyperbolic invariant manifolds, see the
appendix.

For small δ > 0, M(β,ū1,σ,0) perturbs to a two-dimensional normally attracting
manifold M(β,ū1,σ,δ). M(β,ū1,σ,δ) is just the u2-axis, a line of equilibria, together with
the unstable manifolds of these equilibria. One can check that M(β,ū1,σ,δ) includes
the half-plane

H(β,ū1,σ,δ) = {(u1, v1, u2) : u1 ≤ ū1 and v1 = λ+(σ, δ)u1},
and the line

L(β,ū1,σ,δ) = {(u1, v1, u2) : v1 = λ+(σ, δ)u1 and u2 = 0}.
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(a) (b)

1 1

u1 u1

u1
v1

u2u2

v1u1

Fig. 3.3. Invariant manifolds and connecting orbit for σ = σ(β, ū1, δ): (a) δ = 0 and (b) δ > 0.

(It is enough to check that these sets are invariant under (3.15)–(3.17) and near
M(β,ū1,σ,0).) For δ > 0, the line L(β,ū1,σ,δ) is the unstable manifold of the origin. Note
that λ+(σ, 0) = 0, so L(β,ū1,σ,0) contains Ru1 . See Figure 3.2(b).

The system (3.15)–(3.17) restricted toH(β,ū1,σ,δ)∪L(β,ū1,σ,δ) is just u
′
1 = λ+(δ, σ)u1,

u′2 = 0.
Theorem 3.2. For κ = 0, fixed (β, ū1), and δ > 0 small, there is a unique

speed σ = σ1(β, ū1, δ) near the speed σ0(β, ū1) of Theorem 3.1 such that the gasless
combustion model (1.1)–(1.2) has a traveling wave of speed σ that connects a burned
state (0, 0, u∗2) to the unburned state (0, 0, 1). The unburned reactant concentration u∗2
is positive, and u∗2 → 0 as δ → 0. The function σ1(β, ū1, δ), defined for small δ ≥ 0,
with σ1(β, ū1, 0) = σ0(β, ū1), is smooth. As δ → 0, in u1v1u2-space the corresponding
heteroclinic solution of (3.15)–(3.17) approaches the union of the heteroclinic solution
with δ = 0 of Theorem 3.1, with speed σ = σ0(β, ū1), and the line segment from (0, 0, 0)
to ( 1β , 0, 0).

See Figure 3.3. The line segment from (0, 0, 0) to ( 1β , 0, 0) corresponds to declining
temperature behind the combustion front due to heat loss to the environment.

To prove the theorem, just note that the separation function S0(β, ū1, σ) of subsec-
tion 3.1 extends to a separation function S1(β, ū1, σ, δ) between the two-dimensional
manifold M(β,ū1,σ,δ) and the one-dimensional stable manifold of (0, 0, 1); we have

S1(β, ū1, σ, 0) = S0(β, ū1, σ). Since S1 = 0 and ∂S1

∂σ 	= 0 at (β, ū1, σ0(β, ū1), 0), by
the implicit function theorem there is a function σ1(β, ū1, δ), with δ ≥ 0 small and
σ1(β, ū1, 0) = σ0(β, ū1), such that S1 = 0 when σ = σ1(β, ū1, δ). For such σ, a branch
of the stable manifold of (0, 0, 1) lies in M(β,ū1,σ,δ). Since M(β,ū1,σ,δ) is foliated by
the unstable manifolds of equilibria, in backward time it approaches an equilibrium
(0, 0, u∗2). We cannot have u∗2 = 0 because our solution lies in the invariant set u2 > 0,
and the unstable manifold of the origin, L(β,ū1,σ,δ), lies in the invariant plane u2 = 0.
By continuity of the intersection of the invariant manifolds, u∗2 → 0 as δ → 0.

3.3. Finite Lewis number (κ > 0). The approach of this section was used in
[2] and [7] for δ = 0.
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We consider (3.3)–(3.4) with (β, ū1) fixed, δ ≥ 0, and κ > 0. For δ = 0 we use
the boundary conditions
(3.21)

(u1, ∂ξu1, u2, ∂ξu2)(−∞) = (u∗1, 0, 0, 0), (u1, ∂ξu1, u2, ∂ξu2)(∞) = (0, 0, 1, 0).

The combustion temperature u∗1 and the speed σ are yet to be determined. For δ > 0
we use the boundary conditions
(3.22)

(u1, ∂ξu1, u2, ∂ξu2)(−∞) = (0, 0, u∗2, 0), (u1, ∂ξu1, u2, ∂ξu2)(∞) = (0, 0, 1, 0).

The unburned reactant concentration u∗2 and the speed σ are yet to be determined.
In the system (3.3)–(3.4) we set v1 = ∂ξu1, v2 = ∂ξu2, and use a prime to denote

the derivative with respect to ξ. We obtain the first-order system

u′1 = v1,(3.23)

v′1 = −σv1 − u2ρ(u1 − ū1) + δu1,(3.24)

u′2 = v2,(3.25)

κv′2 = −σv2 + βu2ρ(u1 − ū1).(3.26)

This system has the vector of parameters (β, ū1, σ, δ, κ). We restrict our attention
to κ > 0, δ ≥ 0, and σ > 0. For κ > 0, a solution of (3.3)–(3.4) that satisfies the
boundary conditions (3.21) (respectively, (3.22)) corresponds to a solution of (3.23)–
(3.26) that goes from an equilibrium (u∗1, 0, 0, 0) (respectively, (0, 0, u

∗
2, 0)) to, in both

cases, the equilibrium (0, 0, 1, 0).
For κ > 0 and δ = 0, the set of equilibria of (3.23)–(3.26) is the half-plane

Ĥū1 = {(u1, v1, u2, v2) : u1 ≤ ū1 and v1 = v2 = 0}, together with the ray R̂ū1 =
{(u1, v1, u2, v2) : u1 > ū1 and v1 = u2 = v2 = 0}. Hū1 is normally attracting: the

equilibria in Ĥū1 have two negative eigenvalues. R̂ū1 is also normally hyperbolic: the
equilibria in R̂ū1 have one positive and two negative eigenvalue. To solve the boundary
value problem (3.23)–(3.26), (3.21), we need to find a solution in the intersection of
Wu(R̂ū1), which has dimension 2, and Ŵ s(0, 0, 1, 0), which also has dimension 2.

For κ > 0 and δ > 0, the set of equilibria of (3.23)–(3.26) is the u2-axis. Lin-
earization shows that each equilibrium has a one-dimensional unstable manifold and a
two-dimensional stable manifold. To solve the boundary value problem (3.23)–(3.26),
(3.22), we need to find a solution in the intersection of the unstable manifold of the
u2-axis, which has dimension 2, and W s(0, 0, 1), which also has dimension 2.

By rescaling time, the system (3.23)–(3.26) can be converted to

u̇1 = κv1,(3.27)

v̇1 = κ
(− σv1 − u2ρ(u1 − ū1) + δu1

)
,(3.28)

u̇2 = κv2,(3.29)

v̇2 = −σv2 + βu2ρ(u1 − ū1).(3.30)

In geometric singular perturbation theory, with κ regarded as small, (3.23)–(3.26) is
the slow form of a slow-fast system; (3.27)–(3.30) is the fast form.

For κ = 0, the set of equilibria of (3.27)–(3.30) is the three-dimensional manifold
(slow manifold)

P(β,ū1,σ,δ,0) =

{
(u1, v1, u2, v2) : v2 =

β

σ
u2ρ(u1 − ū1)

}
.
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These equilibria have the negative eigenvalue −σ, so the slow manifold is normally
attracting.

For small κ > 0, P(β,ū1,σ,δ,0) perturbs to a normally attracting manifold P(β,ū1,σ,δ,κ).
These manifolds are parameterized by (u1, v1, u2). In terms of these variables, the sys-
tem (3.27)–(3.30), restricted to P(β,ū1,σ,δ,κ), is given to lowest order by (3.27)–(3.29)

with v2 = β
σu2ρ(u1 − ū1). After division by κ (undoing the rescaling that produced

(3.27)–(3.30)), we have (3.15)–(3.17). In geometric singular perturbation theory, this
system is called the slow system on the slow manifold.

The two-dimensional manifold M(β,ū1,σ,δ) of the previous subsection, and the
one-dimensional stable manifold of (0,0,1) used in that subsection, correspond to
submanifolds of P(β,ū1,σ,δ,0) that we denote M(β,ū1,σ,δ,0) and N(β,ū1,σ,δ,0).

For small κ > 0, these manifolds perturb to invariant manifolds M(β,ū1,σ,δ,κ) and
N(β,ū1,σ,δ,κ) of P(β,ū1,σ,δ,κ). M(β,ū1,σ,δ,κ) contains

• for δ = 0, the two-dimensional unstable manifold of the ray R̂ū1 of equilibria;
• for δ > 0, the two-dimensional unstable manifold of the u2-axis.

N(β, ū1, σ, δ, κ) is a one-dimensional portion of the two-dimensional stable manifold
of (0, 0, 0, 1).

The separation function S1(β, ū1, σ, δ) used in the proof of Theorem 3.2 extends
to a separation function S(β, ū1, σ, δ, κ) between M(β,ū1,σ,δ,κ) and N(β,ū1,σ,δ,κ); we
have S(β, ū1, σ, δ, 0) = S1(β, ū1, σ, δ). At points (β, ū1, σ, δ, κ) with σ = σ1(β, ū1, δ)
and κ = 0, we have S = 0 and the partial derivative of ∂S

∂σ 	= 0. Therefore, by the
implicit function theorem, there is a smooth function σ(β, ū1, δ, κ), with κ ≥ 0 small
and σ(β, ū1, δ, 0) = σ1(β, ū1, δ), such that S = 0 when σ = σ(β, ū1, δ, κ). For such σ,
N(β,ū1,σ,δ,κ) lies in M(β,ū1,σ,δ,κ).

For δ > 0, κ > 0, and such σ, in backward time N(β,ū1,σ,δ,κ) approaches an
equilibrium, sinceM(β,ū1,σ,δ,κ) is foliated by the unstable manifolds of equilibria. That
equilibrium cannot be the origin because it is easy to see that the unstable manifold
of the origin lies in the invariant set u2 = v2 = 0.

We have proved the following theorem.
Theorem 3.3. For fixed (β, ū1), and small δ ≥ 0 and κ ≥ 0, there is a speed

σ = σ(β, ū1, δ, κ), with σ(β, ū1, δ, 0) = σ1(β, ū1, δ), such that the gasless combustion
model (1.1)–(1.2) has a traveling wave of speed σ with the following properties:

1. for κ > 0 and δ = 0, the wave connects a burned state (u∗1, 0, 0, 0) to the
unburned state (0, 0, 1, 0). The combustion temperature u∗1 is positive, and
u∗1 → 1

β as δ → 0;

2. for κ > 0 and δ > 0, the wave connects a burned state (0, 0, u∗2, 0) to the
equilibrium (0, 0, 1, 0). The unburned reactant concentration u∗2 is positive,
and u∗2 → 0 as δ → 0.

The function σ(β, ū1, δ, κ) is smooth. For small δ ≥ 0 and κ ≥ 0, there are no other
traveling waves with speed near σ0(β, ū1).

Remark 3.4. There is considerable numerical evidence, such as Figure 2.1, show-
ing that for δ positive and small, there is a traveling wave with speed near zero. So far
as we know, there is no theoretical analysis of the asymptotic behavior of this wave
as δ → 0 with (β, ū1, κ) fixed.

4. Stability of the traveling waves. For δ = 0, we refer to [8] for κ = 0 and
to [6] for κ > 0, although the proof given below would work for δ = 0 as well with
small changes.

Theorems 3.14 and 3.16 of [10] allow one to conclude the stability results sketched
in the introduction, once one has checked that the nonlinear term has the correct
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form and verified some spectral conditions in various spaces. In this section we do the
verifications and state the conclusions. The weighted spaces that are used depend on
the rate of approach of the traveling wave to its end states, so we check that as well.

Fix (β, ū1, δ, κ) with δ > 0. Let (u1∗, u2∗)(ξ) be a solution of (3.3)–(3.4), with
σ = σ(β, ū1, δ, κ), and with boundary values given by (3.14) when κ = 0 and by (3.22)
when κ > 0.

In order to study the stability of this traveling wave using the theory of [10], we
must first shift its left state to the origin.

To do this, let z2 = u2 − u∗2. The PDE system (3.1)–(3.2) becomes

∂tu1 = ∂ξξu1 + σ∂ξu1 + (u∗2 + z2)ρ(u1 − ū1)− δu1,(4.1)

∂tz2 = κ∂ξξz2 + σ∂ξz2 − β(u∗2 + z2)ρ(u1 − ū1).(4.2)

We write (4.1)–(4.2) as Yt = DYξξ + σYξ +R(Y ) with

Y =

(
u1
z2

)
, D =

(
1 0
0 κ

)
, R

(
u1
z2

)
=

(
(u∗2 + z2)ρ(u1 − ū1)− δu1
−β(u∗2 + z2)ρ(u1 − ū1)

)
.

Note that R(0, z2) ≡ 0 but R(u1, 0) is not identically 0. One of these conditions is
needed to use the results of [10].

Let z2∗(ξ) = u2∗(ξ)− u∗2. Then Y∗(ξ) = (u1∗, z2∗)(ξ) is an equilibrium solution of
(4.1)–(4.2), with Y∗(−∞) = Y− = (0, 0) and Y∗(∞) = Y+ = (0, 1− u∗2).

4.1. Rate of approach of Y∗(ξ) to end states. Recall the numbers λ±(σ, δ)
given by (3.20). For κ = 0, (3.20) implies that there is a number K > 0 such that

(4.3) for ξ ≤ 0, ‖Y∗(ξ)‖ ≤ Keλ+(σ,δ)ξ,

and

(4.4) for ξ ≥ 0, ‖Y∗(ξ)− Y+‖ ≤ Keλ−(σ,δ)ξ.

In the case κ > 0, the traveling wave equation is (3.23)–(3.26), and the eigenvalues of
the linearization at any equilibrium are λ±(σ, δ), 0, and −σ

κ . For small κ > 0,

(4.5) −σ
κ
< λ−(σ, δ) < 0 < λ+(σ, δ).

Therefore for small κ > 0 we have (4.3), and, because the traveling waves constructed
in subsection 3.3 lie in the normally attracting invariant manifold of that subsection,
we have (4.4).

4.2. Linearization. The linearization of (4.1)–(4.2) at Y∗(ξ) is

Ỹt = LỸ = DỸξξ + σỸξ +DR(Y∗(ξ))Ỹ .

Note thatDR(Y±)Ỹ = diag(−δ, 0)Ỹ , so the linearization of (4.1)–(4.2) at the constant
solutions Y± is just

Ỹt = L±Ỹ = DỸξξ + σỸξ + diag(−δ, 0)Ỹ .
Thus L− = L+.

We shall refer to “L on L2” when we should more properly say “the operator
defined by L on L2(R), with its natural domain,” etc.

The spectrum of L± on L2 (and hence on H1 or on BUC, the space of bounded
uniformly continuous functions with the sup norm) can be computed by Fourier trans-
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form. It is the union of two curves, {λ = θ+iω : θ = − (
ω
σ

)2−δ}, which is the spectrum

of ∂ξξ+σ∂ξ−δ, and {λ = θ+ iω : θ = −κ (ω
σ

)2}, which is the spectrum of κ∂ξξ+σ∂ξ.
The right-hand boundary of this set of two curves is the right-hand boundary of the
essential spectrum of L on L2 or H1 or BUC.

4.3. Weighted spaces. Given α = (α−, α+) ∈ R2, let γα(ξ) be a smooth pos-
itive function that equals eα−ξ for ξ ≤ −1 and equals eα+ξ for ξ ≥ 1. As in the
introduction, let E0 denote H1 or BUC, with norm (the unweighted norm) ‖ ‖0. Let
Eα denote the corresponding weighted space with weight function γα: u ∈ Eα if and
only if γα(ξ)u(ξ) ∈ E0, and ‖u‖α = ‖γα(ξ)u(ξ)‖0. (This definition of Eα is a little
more general than that used in the introduction.)

The previous subsection shows that on E0 the essential spectrum of L touches the
imaginary axis. On the other hand, we have the following result, which is needed to
use the theory of [10].

Lemma 4.1. Consider the system (4.1)–(4.2) with δ > 0 and κ ≥ 0 small, and
σ = σ(β, ū1, δ, κ). Suppose 0 < α− < λ+(σ, δ) and 0 < α+ < −λ−(σ, δ). Then the
essential spectrum of L on Eα is contained in a half-plane Reλ ≤ −ν < 0.

The proof of the lemma is a calculation. The operator L on Eα is similar to the
operator γαLγ

−1
α on E0, and hence has the same spectrum. The latter is given by

(4.6) L̂W = γαLγ
−1
α W.

Setting ξ = ±∞ in (4.6) yields

L̂±W

=

(
∂ξξ + (σ − 2α±)∂ξ + (α2

± − σα± − δ) 0
0 κ∂ξξ + (σ − 2κα±)∂ξ + (κα2

± − σα±

)
W.

The spectrum of L̂− on E0 is the union of two curves,{
λ = θ + iω : θ = −

(
ω

σ − 2α−

)2

+ (α2
− − σα− − δ)

}
,

which is the spectrum of ∂ξξ + (σ − 2α−)∂ξ + (α2
− − σα− − δ), and{

λ = θ + iω : θ = −κ
(

ω

σ − 2α−

)2

+ (κα2
− − σα−)

}
,

which is the spectrum of κ∂ξξ + (σ − 2κα−)∂ξ + (κα2
− − σα−). An analogous result

holds for the spectrum of L̂+ on E0.
From the choice of α± in the lemma, we have

0 < α− < λ+(σ, δ) = −σ
2
+

(
σ2

4
+ δ

) 1
2

,(4.7)

0 < α+ < −λ−(σ, δ) = σ

2
+

(
σ2

4
+ δ

) 1
2

.(4.8)

If κ > 0, (4.5) implies

(4.9) α− < λ+(σ, δ) < −λ−(σ, δ) < σ

κ
and α+ < −λ−(σ, δ) < σ

κ
.

Therefore κα2
− − σα− < 0 and κα2

+ − σα− < 0. Of course these statements are also
true when κ = 0. Therefore
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1. the spectrum of L̂− on E0 lies in Reλ ≤ −ν− = max(α2
− − σα− − δ, κα2

− −
σα−) < 0;

2. the spectrum of L̂+ on E0 lies in Reλ ≤ −ν+ = max(α2
+ − σα+ − δ, κα2

+ −
σα+) < 0.

The lemma follows.

4.4. Results. Our stability result is the following theorem.
Theorem 4.2. Consider the system (4.1)–(4.2) with δ > 0 and κ ≥ 0 small, and

σ = σ(β, ū1, δ, κ). Let α− and α+ be chosen as in Lemma 4.1. Let α = (α−, α+)
and let η = (0, α+). Assume in addition that the Evans function for the traveling
wave Y∗(ξ) has no zeros in the half-plane Reλ ≥ 0 other than a simple zero at the
origin. Suppose Y 0 ∈ Y∗ + E2

η with ‖Y 0 − Y∗‖η small, and let Y (t) be the solution of
(4.1)–(4.2) in Y∗ + E2

η with Y (0) = Y 0. Then we have the following.
1. Y (t) is defined for all t ≥ 0.
2. Y (t) = Ỹ (t)+Y∗(ξ− q(t)) with Ỹ (t) in a fixed subspace of E2

η complementary

to the span of Y ′
∗ . Let Ỹ (t) = (ũ1(t), z̃2(t)).

3. ‖Ỹ (t)‖η + |q(t)| is small for all t ≥ 0.

4. ‖Ỹ (t)‖α decays exponentially as t→ ∞.
5. There exists q∗ such that |q(t) − q∗| decays exponentially as t→ ∞.
6. There is a constant C independent of Y 0 such that ‖z̃2(t)‖0 ≤ C‖Ỹ 0‖η for

all t ≥ 0.
7. ‖ũ1(t)‖0 decays exponentially as t→ ∞.

This theorem follows from Theorem 3.14 in [10]. The hypotheses of that theorem
are verified by Lemma 4.1 and the following observations:

1. R(0, z2) ≡ 0 (noted at the end of subsection 4.1);
2. the operator κ∂ξξ + σ∂ξ on E0 generates a bounded semigroup;
3. the operator ∂ξξ+σ∂ξ−δ on E0 has its spectrum contained in Reλ ≤ −δ < 0.

We remark that for a fixed δ > 0, if the Evans function condition in Theorem 4.2
holds for κ = 0, then it holds for small κ > 0. The analogous fact for δ = 0 is proved
in [7]. The proof for δ > 0 is similar but easier.

Theorem 3.16 in [10] implies some additional conclusions when κ > 0 in The-
orem 4.2. Consider the Banach space E0 ∩ L1(R) with the norm ‖u‖E0∩L1(R) =
max{‖u‖E0, ‖u‖L1(R)}. Suppose Y 0 ∈ Y∗ + (Eη ∩ L1(R))2 with ‖Y 0 − Y∗‖η and
‖Y 0 − Y∗‖L1 sufficiently small, and as in Theorem 4.2 let Y (t) be the solution of

(4.1)–(4.2) in Y∗ + E2
η with Y (0) = Y 0, Let h(t) = min(1, t−

1
2 ). Then for fixed κ > 0

and for all t ≥ 0,
1. Y (t) ∈ (Eη ∩ L1(R))2;
2. there is a constant C independent of Y 0 such that

‖z̃2(t)‖L1 ≤ Cmax
(
‖z̃02)‖L1 , ‖Ỹ 0‖α

)
and

‖z̃2‖L∞ ≤ Ch(t)max
(
‖z̃02‖L1 , ‖Ỹ 0‖η

)
;

3. ‖ũ1‖L1 decays exponentially as t→ ∞.

5. Evans function. We continue to assume that δ > 0 and κ ≥ 0 are small, so
that (4.4) and (4.5) hold, and that α− and α+ are chosen as in Lemma 4.1.

5.1. Definition. For fixed (β, ū1, δ, κ) with κ > 0, we write the traveling wave
system (3.23)–(3.26) as Xξ = F (X, σ). Let X∗(ξ) = (u1∗, u′1∗, u2∗, u′2∗)(ξ), with
velocity σ∗ = σ(β, ū1, δ, κ), and let B(ξ) = FX(X∗(ξ), σ∗). (The prime denotes the
derivative with respect to ξ.)
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The complex number λ is an eigenvalue of L on Eα with eigenfunction Ỹ provided
Ỹ ∈ E2

α and λỸ = LỸ . This second-order linear differential equation can be written
as the first-order system on R4

(5.1) Xξ = (B(ξ) + λC)X,

with C a constant matrix. If X is a solution of (5.1) in E4
α, then the first and third

components of X give a solution Ỹ of Ỹt = LỸ in E2
α; and every such solution of

Ỹt = LỸ arises this way.
Recall the numbers−ν± < 0 defined in the proof of Lemma 4.1. For Reλ ≥ − 1

2ν−,
(5.1) has linear independent solutions X1(ξ, λ) and X2(ξ, λ) such that eα−ξX i(ξ),
i = 1, 2, is bounded for ξ ≤ 0. (For Reλ > 0 these two solutions decay at the
left; to extend them to Reλ ≥ − 1

2ν− we must allow them to grow slowly at the
left.) Similarly, for Reλ ≥ − 1

2ν+, (5.1) has linear independent solutions X
3(ξ, λ) and

X4(ξ, λ) such that eα+ξX i(ξ, λ), i = 3, 4, is bounded for ξ ≥ 0. By a theorem of Kato
[13], these solutions may be chosen to depend analytically on λ. The Evans function
D(λ) is defined for Reλ ≥ max(− 1

2ν−,− 1
2ν+) by

D(λ) = det
(
X1(0, λ), . . . , X4(0, λ)

)
.

It is 0 if and only if λ is an eigenvalue of L on Eα.
5.2. Derivative at λ = 0. Two general facts about the Evans function are

(1) D(0) = 0 because the derivative of the traveling wave is an eigenfunction of L
for the eigenvalue 0, and (2) the nonzero derivative of the separation function used
to construct the traveling wave implies dD

dλ (0) 	= 0. In this subsection we sketch the
argument for the present situation.

For δ ≥ 0 and κ > 0 small, along X∗(ξ), the two-dimensional tangent spaces
to M(β,ū1,σ∗,δ,κ) (defined in subsection 3.3) and to the stable manifold of (0, 0, 1, 0)
have just a one-dimensional intersection. Then the X i(ξ, 0) span a space of dimension
3, and they can be chosen so that X1(ξ, 0) = X3(ξ, 0) = X ′

∗(ξ), which we assume.
Hence up to scalar multiplication there is a unique solution ψ∗(ξ) in E4

(−α+,−α−) of

the adjoint equation ψξ = −B(ξ)�ψ. We have ψ∗(ξ)�X i(ξ, 0) = 0 for i = 1, . . . , 4,
and, according to [19], up to a nonzero multiple,

(5.2)
dD

dλ
(0) =

∫ ∞

−∞
ψ∗(ξ)�CX ′

∗(ξ) dξ.

Let us further assume that the derivative of the separation function used in sub-
section 3.3 with respect to σ is nonzero at (β, ū1, σ

∗, δ, κ). (Subsection 3.3 shows that
this is true for small δ ≥ 0 and small κ > 0.) Up to a nonzero multiple, its value at
σ∗ is given by the Melnikov integral

(5.3) M =

∫ ∞

−∞
ψ∗(ξ)�Fσ(X∗(ξ), σ∗) dξ,

which is therefore nonzero. It is easy to check that

CX ′
∗(ξ) = −Fσ(X∗(ξ), σ∗).

Since M is nonzero, it follows that dD
dλ (0) 	= 0, so 0 is a simple zero of the Evans

function.
Formula (5.2) is correct despite the 0 eigenvalues at the end states; see [8]. Also,

(5.3) is indeed the derivative of the separation function despite the 0 eigenvalues,
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because the manifolds being connected (the line of equilibria (0, 0, u2, 0) and the equi-
librium (0, 0, 1, 0)) are independent of σ; see [20] for a similar case.

A similar discussion holds for κ = 0.

5.3. Numerics for κ = 0. For fixed (β, ū1, δ) and κ = 0, the traveling wave
system is (3.15)–(3.17). Following the previous subsection, we write the traveling wave
as X∗(ξ) = (u1∗, u′1∗, u2∗)(ξ). In our numerics we take ū1 = 0. Then the complex
number λ is an eigenvalue of L on Eα provided the the following first-order system
has a solution in E3

α:

(5.4) Xξ = (B(ξ) + λC)X =

⎛
⎝ 0 1 0
λ− u2∗(ξ)ρ′(u1∗(ξ)) + δ −σ −ρ(u1∗(ξ))

β
σu2∗(ξ)ρ

′(u1∗(ξ)) 0 λ
σ + β

σρ(u1∗(ξ))

⎞
⎠X.

The eigenfunction Ỹ is given by the first and third components of X .
We have

(B(±∞) + λC) =

⎛
⎝ 0 1 0
λ+ δ −σ 0
0 0 λ

σ

⎞
⎠ .

The eigenvalues are

λ

σ
and μ±(σ, δ, λ) = −σ

2
±
(
σ2

4
+ λ+ δ

) 1
2

.

For Reλ ≥ max(− 1
2ν−,− 1

2ν+), (5.4) has linear independent solutions X1(ξ, λ)
and X2(ξ, λ) such that eα−ξX i(ξ, λ), i = 1, 2, is bounded for ξ ≤ 0; they correspond
to the eigenvalues λ

σ and μ+(σ, δ, λ), which have real part small negative or larger.
Similarly, (5.4) has, up to scalar multiplication, a unique solution X3(ξ, λ) such that
eα+ξX3(ξ) is bounded for ξ ≥ 0. It corresponds to the eigenvalue μ−(σ, δ, λ), which
has a large negative real part. These solutions can be chosen to depend analytically
on λ. The Evans function D(λ) is defined for Reλ ≥ max(ω−, ω+) < 0 by

D(λ) = det
(
X1(0, λ), X2(0, λ), X3(0, λ)

)
.

It is analytic, and it is 0 if and only if λ is an eigenvalue of L on Eα. The algebraic
multiplicity of λ as an eigenvalue of L equals its multiplicity as a zero of D.

Up to scalar multiplication, there is a unique solution ψ(ξ, λ) of the adjoint equa-
tion ψξ = −(B(ξ)+λC)�ψ such that e−α+ξψ(ξ) is bounded on ξ ≤ 0. It corresponds
to the eigenvalue −μ−(σ, δ, λ) of −(B(±∞) + λC)�, which has a large positive real
part. The Evans function can be equivalently defined as D(λ) = ψ(0, λ)�X3(0, λ).
(More commonly, one uses λ̄ instead of λ in the definition of the adjoint equation,
and ψ̄(0, λ)�X3(0, λ) in the definition of the Evans function, but the two definitions
of the Evans function are equivalent.)

For the traveling wave we use linear approximations on (−∞,−k] and on [k,∞),
and a numerically computed approximation on [−k, k].

To approximate D(λ), choose −k
 < 0 < kr. Let X(kr) = (1, μ−, 0), which is the
eigenvector of B(±∞) + λC for the eigenvalue μ−, and solve Xξ = (B(ξ) + λC)X
backward to obtain X(0); let ψ(−k
) = (λ + δ, μ−, 0), which is the eigenvector of
−(B(±∞) + λC)� for the eigenvalue −μ−, and solve ψξ = −(B(ξ) + λC)Tψ forward
to obtain ψ(0). Then D(λ) is approximately ψ(0)�X(0). One computes D(λ) on
an appropriate large closed curve Γ that surrounds 0. From the analyticity of D, if
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Fig. 5.1. For the system (1.1)–(1.2) with (β, ū1, κ) = (1, 0, 0), pairs (δ, σ) for which traveling
waves exist. Compare Figure 2.1.
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Fig. 5.2. For point A in Figure 5.1, the image of D̃(λ) on a right half-circle of radius 1 centered
at z0 = −0.01.

the winding number is 1, the only zero of the Evans function inside Γ is 0. This is
numerical evidence that the only zero of the Evans function in Reλ ≥ 0 is 0.

A drawback of this approach is that computed values of D(λ) have enormous
moduli (because of the exponential growth of X(ξ) and ψ(ξ)), and the curve D(λ)
can exhibit numerous twists (because of the behavior of the imaginary parts of X(ξ)
and ψ(ξ) as they change enormously). To correct these effects, one can first define
X̃(ξ) = e−μ−(ξ−kr)X(ξ), let X̃(kr) = (1, μ−, 0), note that X̃ξ = (B(ξ)+λC−μ−I)X̃ ,

and solve this equation backward to obtain X̃(0). Similarly, one can define ψ̃(ξ) =
eμ−(ξ+k�)ψ(ξ), let ψ̃(−k
) = (λ+ δ, μ−, 0), note that ψ̃ξ = (B(ξ)+λC +μ−I)�ψ̃, and
solve this equation forward to obtain ψ̃(0); finally one defines D̃(λ) to be ψ̃(0)�X̃(0).
Since D̃(λ) = eμ−(kr+k�)D(λ), the two functions have the same winding number about
0 on Γ.

We now show some computational results with (β, ū1, κ) = (1, 0, 0).
The computed curve in the δσ-plane for which traveling waves exist is shown in

Figure 5.1.
For point A in Figure 5.1, we computed D̃(λ) on several curves consisting of a

right half-circle centered at z0 = −0.01, together with the vertical diameter of that
circle. The numbers k
 and kr were increased until the desired precision was achieved.
Figures 5.2 and 5.3 show the images when the radius is 1 and 100, respectively. The
winding number about 0 is 1 in both cases.
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Fig. 5.3. For point A in Figure 5.1, the image of D̃(λ) on a right half-circle of radius 100
centered at z0 = −0.01.
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Fig. 5.4. For point B in Figure 5.1, the image of D̃(λ) on a right half-circle of radius 0.1
centered at z0 = −0.01.

For point B in Figure 5.1, the image of the same curve with radius 0.1 is shown
in Figure 5.4. The winding number is 2, because the Evans function has a positive
real root. The new root, which causes instability of the traveling wave, crosses the
imaginary axis into the right half-plane at the turning point of the curve in Figure 5.1.

Appendix. Normally hyperbolic invariant manifolds. The tangent space
of Rn+m at p ∈ Rn+m, TpR

n+m, is just a copy of Rn+m, but the vectors in Rn+m

are thought of as having tails at p. An element of TpR
n+m is just a pair (p, v) with

v ∈ Rn+m. The tangent bundle of Rn+m, TRn+m, is the union of the spaces TpR
n+m

over all p. More precisely, TRn+m = R
n+m × R

n+m; an element of TRn+m is just a
pair (p, v). If N is a subset of Rn+m, TRn+m|N is the union over all p ∈ N of the
TpR

n+m, i.e., TRn+m|N = N × Rn+m.
Now let N be a smooth submanifold of Rn+m of dimension m. TpN is just the

m-dimensional subspace of TpR
n+m consisting of vectors tangent to N at p. The

tangent bundle of N , TN , is the union over all p ∈ N of the spaces TpN . More
precisely,

TN = {(p, v) ∈ R
n+m × R

n+m : p ∈ N and v is tangent to N at p}.
TN is a subbundle of TRn+m|N . In general to define a k-dimensional subbundle B
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of TRn+m|N , choose, for each p ∈ N , a k-dimensional subspace Bp of Rn+m; then
B = {(p, v) : p ∈ N and v ∈ Bp. The subspace Bp must depend smoothly on p, i.e.,
B must be a smooth submanifold of TRn+m of dimension k +m. Each space Bp is a
fiber of B, and the division of B into fibers is called a fibration.

Let B and C be two subbundles of TRn+m|N . We write TRn+m|N = B ⊕ C if
for each p ∈ N , TpR

n+m = Bp ⊕ Cp. This is called a splitting of TRn+m|N .
If g : Rn+m → Rn+m is a smooth function, then its derivative at p, Dg(p), is an

(n + m) × (n + m) matrix that induces a linear map from TpR
n+m to Tg(p)R

n+m,
given by Dg(p)v = w.

Let ṗ = f(p) be a differential equation on Rn+m (the dot is the derivative with
respect to t), and let φt be the flow (i.e., φt(q), with q fixed, is the solution of the
initial value problem ṗ = f(p), p(0) = q).

Let N be a compact submanifold or submanifold with boundary of Rn+m that is
inflowing invariant under ṗ = f(p), i.e., at points p on the boundary, f(p) points into
the interior of N . N is called a normally hyperbolic invariant manifold if there is a
splitting TRn+m|N = S ⊕ U ⊕ TN , such that under Dφt, as t increases, all vectors
in S shrink at a faster exponential rate than any vector in TN , and as t decreases,
all vectors in U shrink at a faster exponential rate than any vector in TN . There
are less restrictive definitions, but this one suffices for our purposes. The spaces Sp

(respectively, Up) are called stable (respectively, unstable) fibers.
The requirement that N be inflowing invariant is easily relaxed; for example, one

has normally invariant manifolds of equilibria. We will ignore this technicality.
Normally hyperbolic invariant manifolds have stable and unstable manifolds with

flow-preserved fibrations, and the whole structure persists under perturbation. This
structure is most easily described in local coordinates.

Let ṗ = f(p, ε) be a differential equation on Rn+m with parameter ε, and let
φtε be the flow (i.e., φtε(q), with ε and q fixed, is the solution of the initial value
problem ṗ = f(p, ε), p(0) = q). Let N0 be a normally hyperbolic invariant manifold
for ṗ = f(p, 0) of dimension m, and suppose the fibers of S (respectively, U) have
dimension k (respectively, l), with k + l = n. Near a point of N0 one can choose
ε-dependent Fenichel coordinates p = (x, y, z, ε) ∈ Rk × Rl × Rm × R such that, for
small ε, ṗ = f(p, ε) becomes

ẋ = A(x, y, z, ε)x,(A.1)

ẏ = B(x, y, z, ε)y,(A.2)

ż = h(z, ε) + xTC(x, y, z, ε)y;(A.3)

the matrices A and B are k × k and l × l, respectively, and C is an m-tuple of k × l.
One cannot assume that A(0, 0, z, 0) has eigenvalues with negative real part or that
B(0, 0, z, 0) has eigenvalues with positive real part, since the exponential convergence
of vectors under the linearized flow need only occur as t→ ±∞. Nevertheless, this is
true in the examples below.

We list some facts and terminology.
1. For each ε, the subspaces y = 0, x = 0, and their intersection are invariant.

For fixed ε, the set {(x, y, z) | x = 0 and y = 0} (dimension m) corresponds
to a part of a normally hyperbolic invariant manifold Nε; the set y = 0
(dimensionm+k) corresponds to a part of the stable manifold ofNε,W

s(Nε);
and the set x = 0 (dimension m + l) corresponds to a part of the unstable
manifold of Nε, W

u(Nε).
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2. If (x(t), 0, z(t)) is a solution inW s(Nε), then (0, 0, z(t)) is a solution inNε; and
if (0, y(t), z(t)) is a solution in Wu(Nε), then (0, 0, z(t)) is again a solution
in Nε. Thus each solution in W s(Nε) (respectively, Wu(Nε)) approaches
exponentially a solution in Nε as time increases (respectively, decreases).

3. Given a point p = (0, 0, z0) inNε, the stable (respectively, unstable) fiber of p is
the set of all points (x, 0, z0) (dimension k) (respectively, (0, y, z0) (dimension
l)). For each t, the time-t map of the flow takes fibers to fibers; in this sense,
the fibration is flow invariant. Solutions that start in the stable (respectively,
unstable) fiber of p approach the solution that starts at p exponentially at t
increases (respectively, decreases).

We give some examples.
1. A hyperbolic equilibrium is a hyperbolic invariant manifold of dimension 0.
2. Suppose N0 is a compact manifold of equilibria of dimension m, and each

equilibrium in N0 has k eigenvalues with negative real part and l eigenvalues
with positive real part. Then N0 is a compact normally hyperbolic invariant
manifold. The stable (respectively, unstable) fiber of a point p in N0 is just
its stable (respectively, unstable) manifold. In (A.3), h(z, 0) ≡ 0.

3. Consider the system

ẇ = f(w, z, ε),(A.4)

ż = εg(w, z, ε)(A.5)

with w ∈ Rn, z ∈ Rm, and 0 ≤ ε < ε0. System (A.4)–(A.5) is a fast-slow
system: w is the fast variable and z is the slow variable. The fast limit is
(A.4)–(A.5) with ε = 0. If 0 is a regular value of f , then {(w, z) : f(w, z, 0) =
0} is a manifold of dimension m called the slow manifold. The slow manifold
is the set of equilibria of the fast system. Let N0 be a compact subset of
the slow manifold that is a manifold with boundary of dimension m. N0 is
normally hyperbolic if there are numbers k and l with k+ l = n such that at
each point (w, z) of N0, Dzf(w, z, 0) has k eigenvalues with negative real part
and l eigenvalues with positive real part. By the implicit function theorem,
N0 can be described as w = χ(z, 0). Then for ε > 0 small there is a normally
hyperbolic invariant manifold Nε near N0, given by w = χ(z, ε).

The name “geometric singular perturbation theory” comes from the fact that
after a rescaling of time, (A.4)–(A.5) can be rewritten as

εẇ = f(w, z, ε),(A.6)

ż = g(w, z, ε),(A.7)

which is a singularly perturbed system.
In Example 3, Nε is given by an expansion w = χ0(z) + εχ1(z) + · · · , and the

system restricted to Nε, with coordinate z, is given by

(A.8) ż = εg(χ0(z) + εχ1(z) + · · · , z, ε) = εg(χ0(z), z, 0) +O(ε2).

Thus, after division by ε, system (A.4)–(A.5) restricted to Nε is given by ż =
g(χ0(z), z, 0) + O(ε). The differential equation ż = g(χ0(z), z, 0) is called the slow
equation.
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