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Abstract

For gasless combustion in a one-dimensional solid, we show a type of
nonlinear stability of the physical combustion front: if a perturbation of the front
is small in both a spatially uniform norm and an exponentially weighted norm,
then the perturbation stays small in the spatially uniform norm and decays in the
exponentially weighted norm, provided the linearized operator has no eigenvalues
in the right half-plane other than zero. Using the Evans function, we show that the
zero eigenvalue must be simple. Factors that complicate the analysis are: (1) the
linearized operator is not sectorial, and (2) the linearized operator has good spectral
properties only when the weighted norm is used, but then the nonlinear term is not
Lipschitz. The result is nevertheless physically natural. To prove it, we first show
that when the weighted norm is used, the semigroup generated by the linearized
operator decays on a subspace complementary to the operator’s kernel, by show-
ing that it is a compact perturbation of the semigroup generated by a more easily
analyzed triangular operator. We then use this result to help establish that solutions
stay small in the spatially uniform norm, which in turn helps establish nonlinear
convergence in the weighted norm.
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1. Introduction

We consider the system

∂t u1 = ∂xx u1 + ω(u1, u2), (1.1)

∂t u2 = −βω(u1, u2), (1.2)

with β > 0, ω(u1, u2) = u2ρ(u1), and

ρ(u1) =
{

e
− 1

u1 if u1 > 0,

0 if u1 � 0.
(1.3)

This system is a simple model for combustion of a solid fuel in one spatial dimen-
sion: u1 is temperature, u2 is concentration of unburned fuel, ρ is the unit reaction
rate, and β is the “exothermicity” parameter; the larger β is, the more fuel one must
burn to achieve a given increase in temperature. The value u1 = 0 represents a
background temperature at which the reaction does not take place. The unit reac-
tion rate ρ(u1) could be replaced by any C2 function that equals 0 for u1 � 0
and is positive for u1 > 0; we have chosen to use the one that is most common in
combustion theory.

We are interested in traveling combustion fronts (u1, u2)(ξ), ξ = x −σ t , where
σ is the speed of the front. Behind the front we require that (u1, u2) = (u�1, 0), where

u�1 > 0 is to be determined. Ahead of the front we require that (u1, u2) = (0, u�2),

where u�2 > 0 is the concentration of fuel in the medium. We will normalize so that

u�2 = 1.
The system (1.1)–(1.2) is symmetric with respect to translation and reflection

in x . Hence, any translate of a combustion front is a combustion front, and if the
system admits traveling waves moving to the right, it also admits traveling waves
moving to the left. Without loss of generality, we will consider only traveling waves
moving to the right, that is, with wave speed σ > 0. (There are no nonconstant
standing waves.)

In the literature, one finds numerical simulations of this system [3], studies
of simplified model equations [26], and some rigorous results. Proofs of exis-
tence of traveling wave solutions by phase-plane analysis have been given by
Billingham [8] and by Varas and Vega [37]. It turns out that the traveling waves

have (u1, u2)(−∞) =
(

1
β
, 0

)
and, of course, (u1, u2)(∞) = (0, 1). There is a

positive number c such that for each σ � c, there is a unique (up to translation)
traveling wave with speed σ . The one with speed c, which we denote (h1, h2)(ξ),
ξ = x − ct , approaches both end states exponentially. The others approach the

burned end state (u1, u2) =
(

1
β
, 0

)
exponentially and the unburned end state

(u1, u2) = (0, 1) very slowly (slower than algebraically, that is, slower that |ξ |−a

for any a). Varas and Vega argue that all traveling waves but (h1, h2) disappear
if one perturbs the problem by allowing heat loss to the environment, and hence
should be ignored. We will shortly suggest a different argument for why (h1, h2)

is the most important of the traveling waves.
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Stability of a traveling wave, sometimes called nonlinear stability, means that
a small perturbation of the wave converges to some translate of the wave. (More
precisely, this notion is called “stability with asymptotic phase”). Stability is stud-
ied using a spatial variable moving at the speed of the wave, so that the wave
becomes a stationary solution. If one writes the PDE (1.1)–(1.2) in the moving
coordinate and linearizes at the traveling wave, one obtains a linear differential
equation ∂t V = BV , with V in the function space X in which one chooses to allow
perturbations. We shall always use a space X that includes the difference between
any two translates of the traveling wave, and the derivative of the traveling wave
with respect to ξ .

Typically one approaches the issue of nonlinear stability by first studying spec-
tral stability and then linearized stability. Because the traveling wave can be shifted,
0 is an eigenvalue of B with eigenfunction (h′

1, h′
2).

In this paper, we shall say that a traveling wave is spectrally stable in X if

(S1) 0 is a simple eigenvalue of B, and
(S2) the rest of the spectrum of B lies in Re λ < −ν for some ν > 0.

We shall say that a traveling wave is linearly stable in X if B generates a
C0-semigroup etB such that

(L1) etB has a simple eigenvalue 1, and
(L2) etB has a codimension-one invariant subspace on which ‖etB‖ � K e−νt for

some K > 0 and ν > 0.

If B is sectorial, then spectral stability implies linearized stability; if, in addition,
the nonlinear terms satisfy a certain Lipschitz condition, then spectral stability also
implies nonlinear stability. If B is not sectorial, a result of Bates and Jones [2]
says that if the nonlinear terms yield a map from X to itself with sufficiently small
Lipschitz number, then linearized stability implies nonlinear stability. For operators
that are not sectorial, however, spectral stability does not in general imply linearized
stability.

We will work in spaces based on L2(R), H1(R), and BUC(R) (bounded, uni-
formly continuous functions from R to R with the L∞ norm). Spaces based on
L2(R) are not suitable to the study of nonlinear stability; we include them because
it is convenient to study linear operators on H1(R) by first studying them on L2(R).

Let E0 denote L2(R), H1(R), or BUC(R). The linearization of the PDE at
(h1, h2) defines an operator on E2

0 = E0 × E0 that we denote A0.
There are several previous studies of the stability of (h1, h2). In [37] Varas and

Vega obtain a bound on the possible size of eigenvalues with nonnegative real part
and square-integrable eigenfunctions. Balasuriya et al. [1] performed numerical
Evans function computations that indicate that the 0 eigenvalue is simple. Their
computations also indicate that there are no positive real eigenvalues. On the other
hand, numerical simulations by Bayliss and Matkowsky [3] suggest that as β
increases, the traveling wave loses stability due to a pair of complex eigenvalues
crossing the imaginary axis.

Of course, eigenvalue information, even if complete, cannot by itself yield even
spectral stability. In fact, the essential spectrum of A0 includes the imaginary axis,
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Fig. 1. A combustion front forms and propagates towards the right, where there is fuel,
leaving behind high-temperature region

so spectral stability does not hold. In any event, nonlinear stability certainly does
not hold in BUC(R)2, because of the existence of a family of nearby traveling
waves with the same end states.

What sort of stability is it physically reasonable to expect? Consider, for example
an initial state with (u1, u2) = (u�1, 0), 0 < u�1 <

1
β

, for x � − 1
2 ; (u1, u2) = (0, 1)

for 1
2 � x ; and some interpolation between these values for − 1

2 < x < 1
2 . Such

an initial state is physically important: at the left, the temperature is positive but
below combustion temperature and there is no fuel; at the right, the temperature is
0 and there is plenty of fuel. If the temperature u�1 is great enough, one expects a
combustion front to form, with temperature u1 = 1

β
, and to propagate to the right.

A growing region of temperature near 1
β

remains behind the front and diffuses.
See Fig. 1. Numerical simulations indicate that the front that forms is close to a
translate of (h1, h2) at the right and moves with the speed of (h1, h2). See [10] for
numerical simulations of a related equation. In the spatial variable ξ = x − ct , in
which any translate of (h1, h2) is fixed, such a solution becomes very close to a
translate of (h1, h2) on a region −a(t) < ξ < ∞, where a(t) → ∞ as t → ∞;
nevertheless, at any time, the solution remains far from the translate of (h1, h2) far
to the left, where the temperatures are approximately u�1 and 1

β
respectively.

A mathematical notion that captures this kind of stability of the combustion
front is stability with respect to a norm with weight function eαξ , α > 0 small. The
norm is applied to the difference of two solutions, not to the solutions themselves.
A solution that approaches a translate of the traveling wave in this norm becomes
very close to it at the right, but may continue to be far from it far to the left. In this
norm, the solution just considered approaches a translate of the traveling wave. The
same norm is used in the study of convective instability [33], which occurs when
perturbations are convected to the left without decreasing in size.

For a small α > 0, let

Eα = {v(ξ) : w(ξ) = eαξ v(ξ) ∈ E0},

with norm ‖v‖α = ‖eαξ v‖0 = ‖w‖0. The considerations just given suggest study-
ing stability of the combustion front to perturbations in the space E2

α .
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The linearization of the PDE at (h1, h2) defines an operator Aα on E2
α =

Eα × Eα . Working in E2
α rather than E2

0 shifts the essential spectrum to the left;
the essential spectrum of Aα lies in Re λ < −ν1 < 0, thus allowing the possibility
of spectral stability. However, Aα has a vertical line in its spectrum, so that the
C0-semigroup generated by Aα is not an analytic semigroup. An additional diffi-
culty is that the nonlinear terms in the PDE do not yield a Lipschitz map from E2

α

to itself, so that standard results on well-posednes of the PDE (as opposed to its
linearization at (h1, h2)) cannot be used in E2

α .
In this paper we resolve these issues and obtain a physically natural stability

result. We do the following:

(1) For each of the three choices for E0, we prove that 0 is a simple eigenvalue of
Aα that is isolated in its spectrum. The eigenvalues of Aα are the zeros of the
Evans function D(λ), which is independent of α. Of course, D(0) = 0. We
prove that D′(0) is positive, which implies the result.

(2) We prove that D(λ) is positive for large positive real λ. This result is consistent
with spectral stability.

(3) For each of the three choices for E0, we prove that if the only zero of D(λ) in
Re λ � 0 is λ = 0, then in E2

α the combustion front is both spectrally stable
and linearly stable.

(4) Let E0 be either H1(R) or BUC(R). Let E = E0 ∩Eα with ‖v‖ = max(‖v‖0,

‖v‖α). The nonlinear terms in the PDE yield a Lipschitz map from E2 to itself,
so the PDE is well posed in E2. However, in E2 the essential spectrum of the
linearization of the PDE at (h1, h2) contains the origin. Suppose the only zero
of D(λ) in Re λ � 0 is λ = 0. We prove that if (1.1)–(1.2) is solved for
the initial condition (u0

1, u0
2) with ‖(u0

1, u0
2) − (h1, h2)‖ small, then there is

a small number q∗ such that (i) ‖(u1, u2)(t, ξ) − (h1, h2)(ξ − q∗)‖0 stays
small, and (ii) ‖(u1, u2)(t, ξ)− (h1, h2)(ξ − q∗)‖α → 0 as t → ∞. Thus if
the perturbation is small in two norms, it stays small in one and decays in the
other.

The fourth result, for E0 = BUC(R), implies that in the example just consid-
ered, if the condition on D(λ) holds and u�1 is not too far below the combustion
temperature 1

β
, then the solution will converge to the traveling wave in the weighted

norm, as we have described.
The first and second results are proved by fairly standard Evans function

calculations. In the terminology of [5], we use a “mixed” Evans function rather
than the “classical” Evans function used by Balasuriya, et al. This choice, plus a
simple change of variables, makes the calculations easy. Some care must be taken
because the equilibria of the traveling wave equation are not hyperbolic.

To check whether there are zeros of D(λ) in Re λ � 0 other than λ = 0,
one must do a numerical Evans function calculation of a winding number, taking
advantage of the fact that the Evans function is analytic. It turns out that if D(λ)
has a zero in Re λ � 0, then the corresponding eigenfunction decays exponentially
at ξ = ±∞, so λ must satisfy the bound of Varas and Vega. This remark fixes the
size of the contour on which the winding number should be calculated.
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The spectral stability result just says that if Aα has no eigenvalues other than
0 in Re λ � 0, then there is a number ν > 0 such that Aα has no spectrum other
than 0 in Re λ � −ν. It is necessary to prove this because the operator Aα does
not belong to a category for which it is known that if the essential spectrum lies in
Re λ < ω1 and ω1 < ω, then there are only a finite number of eigenvalues with
real part greater than ω. The linear stability result is necessary because the operator
Aα does not belong to a category for which it is known that information about its
spectrum yields information about the semigroup it generates. The proof of spectral
and linear stability relies on the fact that, because ∂u1ω(h1, h2)(ξ) approaches 0 as
ξ → ±∞, the semigroup generated by Aα is a compact perturbation of the semi-
group generated by a more easily analyzed triangular operator. A recent preprint
that uses related ideas is [7].

The nonlinear stability result uses an approach that originated in [31] in the
Hamiltonian context. Other examples of this approach are [4,16–18,20,22,27]. In
[19] the same approach is used to prove nonlinear stability of the combustion front
when a small diffusion term ε∂xx u2 is added to (1.2).

Let us briefly explain, using the spaces BUC(R) and BUC(R)α , the need to
work in two norms to prove nonlinear stability. Consider the Taylor expansion of
ω(u1, u2) = u2ρ(u1) about the traveling wave (h1, h2):

ω(h1 + v1, h2 + v2) = h2ρ(h1)+ v2ρ(h1)+ h2ρ
′(h1)v1 + v2ρ

′(h1)v1 + · · · ,
where we have omitted one quadratic term and all higher order terms. The norm of
the term v2ρ

′(h1)v1 in BUC(R)α is

sup
ξ

|eαξ v2(ξ)ρ
′(h1(ξ))v1(ξ)|. (1.4)

If v1 and v2 are in BUC(R)α , then eαξ v2(ξ) and ρ′(h1(ξ)) are bounded, but v1(ξ)

may not be bounded. This illustrates the difficulty of dealing with the nonlin-
ear terms in the space BUC(R)α . On the other hand, if we work in BUC(R) ∩
BUC(R)α , then v1(ξ) is bounded. Similarly, to prove the decay of (1.4) over time
in a solution of the PDE, we can try to show, as a step in the analysis, that v1 does
not grow in BUC(R).

In [16,22,27,31], boundedness in the spatially uniform norm is related to the
Hamiltonian structure. In [4,17,18,20], it is related to the stability of the bifurcating
patterns that are connected by the front. Here we use the fact that perturbations of
the traveling wave, after a component along the family of shifted traveling waves
is subtracted, satisfy a system of the form

∂tv1 = ∂ξξ v1 + c∂ξ v1 + · · · , ∂tv2 = (c∂ξ + a(t, ξ))v2 + · · · ,
with a(t, ξ) < −ν for some ν > 0. Ignoring the omitted terms, solutions of the
second equation satisfy the estimate ‖v2(t, ξ)‖BUC(R) � e−νt‖v2(0, ξ)‖BUC(R),
and the first equation generates a bounded semigroup in BUC(R).

There is a physical reason why, in a spatially uniform norm at the linear level,
the first equation, for the perturbation of the temperature v1, has only solutions
that are bounded, while the second equation, for the perturbation of the fuel v2,
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has solutions that decay. Note that the perturbation of the temperature of the front
at the left that we have already discussed does not decay in the sup norm. On the
other hand, suppose we add some fuel to the front at the left: let v1 = 0, and let
v2 = v

�
2, with v�2 small and positive, for ξ � − 1

2 ; v2 = 0 for 1
2 � ξ ; and v2 equals

some interpolation between these values for − 1
2 < ξ < 1

2 . Because of the high
temperature of the front at the left, the added fuel will all burn, so v2 will decay to
0 in the sup norm.

In fact, this difference between the equations for v1 and v2 at the linear level
persists at the nonlinear level: we show that ‖u1(t, ξ)− h1(ξ − q∗)‖0 stays small,
as we have indicated, but ‖u2(t, ξ)− h2(ξ − q∗)‖0 → 0 as t → ∞.

The remainder of the paper is organized as follows. In Section 2 we rewrite the
PDE (1.1)–(1.2) in moving coordinates, and review the construction of the traveling
waves. In Section 3 we prove the Evans function results. In Section 4 we study the
linear operator Aα . In Section 5 we prove the nonlinear stability results; an outline
of the proof is given at the start of that section. We give some extensions of our
results in Section 6.

In Appendix A we do a numerical Evans function calculation that indicates
that, for β = 1, there are no zeros of D(λ) with 0 � max(Re λ, Im λ) � 1,000
other than λ = 0. (We have not, however, calculated the bound given by Varas
and Vega in order to justify using a contour of this size.) The method of compu-
tation may be of some independent interest: it uses the boundary-value-problem
continuation routines of AUTO (available from http://cmvl.cs.concordia.ca/auto)
to compute solutions of linear differential equations, rather than the initial-value-
problem solvers that are usually used.

Finally, let us make several remarks.

(1) The fact that Aα has a vertical line in its spectrum, and hence is not sectorial,
is a consequence of the fact that the system (1.1)–(1.2) includes both a PDE
and an ODE. For traveling pulses (left and right states are the same) in systems
such as (1.1)–(1.2), Evans [15] showed that, for E0 = H1(R) or BUC(R),
if the linearization has its essential spectrum in Re λ < −ν1 < 0 and has no
eigenvalues other than a simple eigenvalue 0 in Re λ � 0, then the traveling
pulse is spectrally stable, linearly stable, and nonlinearly stable in E2

0 . His
argument was later simplified by Bates and Jones [2]. However, as far as we
know, there are no analogous results in the literature for traveling fronts (left
and right states different) in such systems. As mentioned earlier, our proof of
spectral and linear stability uses the fact that ∂u1ω(h1, h2)(ξ) approaches 0
as ξ → ±∞, which is a special feature of our problem. Thus our work does
not yield a generally applicable result about stability of fronts in systems that
include both ODEs and PDEs. Such a result will be the subject of a later paper.

(2) A consequence of simplicity of the 0 eigenvalue, which holds for all β, is that
there is no bifurcation from the eigenvalue 0 as β increases.

(3) Why do numerical simulations with the physically important initial condi-
tions described earlier always converge at the right to a translate of (h1, h2),
and not to a faster combustion front? Note that such an initial condition is, at
the right, an exponentially small perturbation of (h1, h2), which is, we recall,

http://cmvl.cs.concordia.ca/auto
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the only traveling wave (up to translation) that approaches the right end state
exponentially. It is possible that the traveling waves with faster wave speeds,
which approach (u1, u2) = (0, 1) very slowly, are similarly stable to suf-
ficiently small perturbations of themselves. This is what occurs for certain
scalar reaction-diffusion equations [39]. This analogy suggests that (h1, h2)

derives its importance from the fact that physically relevant initial conditions,
which have (u1, u2) = (0, 1) for ξ greater than some value, are exponentially
small perturbations of it, not small perturbations of one of the other waves.

2. Traveling waves

In (1.1)–(1.2), we replace the spatial coordinate x with one, ξ , that is moving
with speed σ : ξ = x − σ t . We obtain

∂t u1 = ∂ξξu1 + σ∂ξu1 + ω(u1, u2), (2.1)

∂t u2 = σ∂ξu2 − βω(u1, u2). (2.2)

A steady solution of (2.1)–(2.2) is a traveling wave solution of (1.1)–(1.2) with
speed σ . Steady solutions of (2.1)–(2.2) satisfy the system of ODEs

0 = ∂ξξu1 + σ∂ξu1 + ω(u1, u2), (2.3)

0 = σ∂ξu2 − βω(u1, u2). (2.4)

We are interested in solutions of (2.3)–(2.4) that satisfy the boundary conditions

(u1, u2, ∂ξu1)(−∞) = (u�1, 0, 0), (u1, u2, ∂ξu1)(∞) = (0, 1, 0). (2.5)

Such solutions represent traveling combustion fronts. The speed σ and the left
temperature u�1 are, at this stage, unknowns to be determined.

In the system (2.3)–(2.4) we set u3 = ∂ξu1 and use prime to denote the deriv-
ative with respect to ξ . We obtain the first-order system

u′
1 = u3, (2.6)

u′
2 = β

σ
ω(u1, u2), (2.7)

u′
3 = −σu3 − ω(u1, u2). (2.8)

We write u = (u1, u2, u3), treat β as fixed, and write the system (2.6)–(2.8) as
u′ = f (u, σ ). We restrict our attention to σ > 0. A solution of (2.3)–(2.4) that
satisfies the boundary conditions (2.5) corresponds to a solution of (2.6)–(2.8)
that goes from an equilibrium (u�1, 0, 0) (each such point is an equilibrium) to the
equilibrium (0, 1, 0).

The function Iσ (u1, u2, u3) = σu1 + σ
β

u2 + u3 is a first integral of (2.6)–
(2.8); one easily checks that I ′

σ = 0. To take advantage of this fact, we define new
variables y = (u1, u2, y3) by y = P(σ )u,

P(σ ) =
⎛
⎝1 0 0

0 1 0
σ σ

β
1

⎞
⎠ .
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In the new variables, the differential equation u′ = f (u, σ ) becomes y′ = g(y, σ ),
given by

u′
1 = −σu1 − σ

β
u2 + y3, (2.9)

u′
2 = β

σ
ω(u1, u2), (2.10)

y′
3 = 0. (2.11)

The system (2.9)–(2.11) has two sets of equilibria: low-temperature equilib-
ria (u1, u2, y3) with u1 � 0, u2 arbitrary, and y3 = σu1 + σ

β
u2; and 0-reactant

equilibria (u1, 0, y3) with u1 arbitrary and y3 = σu1. The equilibrium (0, 1, 0)

of (2.6)–(2.8) corresponds to the equilibrium
(

0, 1, σ
β

)
of (2.9)–(2.11), which is

low-temperature. Since y3 is constant on solutions, the equilibrium (u�1, 0, 0) of

(2.6)–(2.8) must correspond to the equilibrium
(

1
β
, 0, σ

β

)
of (2.9)–(2.11), which is

0-reactant. We set y3 = σ
β

in (2.9)–(2.10), and obtain the system

u′
1 = g1(u1, u2, σ ) = −σu1 − σ

β
u2 + σ

β
, (2.12)

u′
2 = g2(u1, u2, σ ) = β

σ
ω(u1, u2), (2.13)

a system in the plane with a parameter σ and equilibria
(

1
β
, 0

)
and (0, 1) that we

wish to connect.
The linearization of (2.12)–(2.13) is

(
v′

1

v′
2

)
=

( −σ −σ
β

β
σ
∂u1ω(u1, u2)

β
σ
∂u2ω(u1, u2)

) (
v1

v2

)
. (2.14)

Note that

∂u1ω

(
1

β
, 0

)
=0, ∂u2ω

(
1

β
, 0

)
=e−β, ∂u1ω(0, 1)=0, ∂u2ω(0, 1)=0.

(2.15)

Therefore the equilibrium ( 1
β
, 0) is a hyperbolic saddle, and the equilibrium (0, 1)

has one negative eigenvalue and one 0 eigenvalue. According to [37], there is a
unique value σ = c > 0 for which the system (2.12)–(2.13) has a solution that
approaches ( 1

β
, 0) exponentially as ξ → −∞, and approaches (0, 1) exponentially

as ξ → ∞. See Fig. 2. We denote the solution (h1, h2)(ξ).
The connection between the unstable manifold of ( 1

β
, 0) and the stable man-

ifold of (0, 1) breaks in a nondegenerate manner as σ varies, provided a certain
Melnikov integral M is nonzero.
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1 ?
u1= 0
.

u2

u1

Fig. 2. Phase portrait of (2.12)–(2.13). There is a unique σ = c > 0 for which the unstable

manifold of
(

1
β , 0

)
meets the stable manifold of (0, 1). For smaller σ , the unstable manifold

of
(

1
β , 0

)
misses above; for larger σ , the unstable manifold of

(
1
β , 0

)
approaches (0, 1)

along its center direction

To define the integral, we first note that the linearization of (2.12)–(2.13) along
the solution (h1, h2)(ξ) is (2.14) with σ = c and (u1, u2) = (h1, h2)(ξ). The
adjoint equation is

(
φ′

1 φ′
2

) = (
φ1 φ2

) (
c c

β

−β
c ∂u1ω(h1, h2)(ξ) −β

c ∂u2ω(h1, h2)(ξ)

)
. (2.16)

Up to scalar multiplication, (2.14) with σ = c and (u1, u2) = (h1, h2)(ξ) has the
unique bounded solution (h′

1, h′
2)(ξ). Let

(
φ∗

1 (ξ) φ
∗
2 (ξ)

) = exp

(
−

∫ ξ

0
a(η) dη

) (−h′
2(ξ) h′

1(ξ)
)
, (2.17)

with a(ξ) = −c+ β
c ∂u2ω(h1, h2)(ξ), the trace of (2.14) with σ = c and (u1, u2) =

(h1, h2)(ξ). The facts gathered in the following proposition are easily shown.

Proposition 2.1. Up to scalar multiplication, (2.17) is the unique solution of (2.16)
that approaches (0, 0) as ξ → −∞. For all ξ , φ∗

1 (ξ) < 0 and φ∗
2 (ξ) < 0. As

ξ → −∞, (2.17) approaches (0, 0) like ecξ . There is a number k > 0 such that as
ξ → ∞, (2.17) approaches (0,−k) exponentially.

From [40] we have

M =
∫ ∞

−∞
(
φ∗

1 (ξ) φ∗
2 (ξ)

) (
∂σ g1(h1(ξ), h2(ξ), c)
∂σ g2(h1(ξ), h2(ξ), c)

)
dt

=
∫ ∞

−∞
exp

(
−

∫ ξ

0
a(η) dη

) (−h′
2(ξ) h′

1(ξ)
) (

−h1(ξ)− 1
β

h2(ξ)+ 1
β

− β

c2ω(h1(ξ), h2(ξ))

)
dt

=
∫ ∞

−∞
exp

(
−

∫ ξ

0
a(η) dη

) (−h′
2(ξ) h′

1(ξ)
) ( 1

c h′
1(ξ)

− 1
c h′

2(ξ)

)
dt

= −2

c

∫ ∞

−∞
exp

(
−

∫ ξ

0
a(η) dη

)
h′

1(ξ)h
′
2(ξ) dt > 0

because h′
1(ξ) < 0 and h′

2(ξ) > 0.
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The formula for M that we have used is usually given for the case in which both
equilibria are hyperbolic. It is also correct for equilibria with a 0 eigenvalue if the
position of the equilibrium does not change as the parameter changes [35], which
is the case here: for all σ the equilibrium with the 0 eigenvalue is (0, 1).

3. Eigenvalues and Evans function

Throughout this section we consider only E0 = L2(R) or BUC(R), since
spectral theory is better developed for these spaces.

3.1. Region of consistent splitting

Let X be a Banach space, and let L : X → X be a closed, densely defined
linear operator. Its resolvent set ρ(L) is the set of λ ∈ C such that L − λI has a
bounded inverse. The complement of ρ(L) is the spectrum Sp(L). It is the union
of the discrete spectrum Spd(L), which is the set of isolated eigenvalues of L of
finite algebraic multiplicity, and the essential spectrum Spess(L), which is the rest.

L − λI is Fredholm of index zero if its range is closed, its kernel has finite
dimension n, its range has finite codimension m, and n = m. The Fredholm resol-
vent set ρF(L) is the set of all λ ∈ C such that L − λI is Fredholm of index zero.
The set ρF(L) is open, and its complement is contained in Spess(L).

Let BUCk(R) be the space of functions v on R such that v, v′, . . . , v(k) ∈
BUC(R), with the norm of v equal to ‖v‖L∞ + ‖v′‖L∞ + · · · + ‖v(k)‖L∞ .

Let V = (v1, v2). The linearization of (2.1)–(2.2), with σ = c, at (h1, h2)(ξ)

is

∂t V = AV, A=
(
∂ξξ + c∂ξ + ∂u1ω(h1, h2)(ξ) ∂u2ω(h1, h2)(ξ)

−β∂u1ω(h1, h2)(ξ) c∂ξ − β∂u2ω(h1, h2)(ξ)

)
.

(3.1)

The mapping V 	→ AV yields a closed, densely defined linear operator Aα on E2
α .

The domain of Aα is the direct sum of the domains of the operators ∂ξξ and ∂ξ .
For E0 = L2(R), the domain of ∂ξ (respectively ∂ξξ ) is the set of functions v such
that eαξ v belongs to H1(R) (respectively H2(R)). For E0 = BUC(R), H1(R) and
H2(R) should be replaced by BUC1(R) and BUC2(R) respectively.

The complex number λ is an eigenvalue of Aα if there is a nontrivial V in the
domain of Aα such that

λV = AV . (3.2)

Let v = (v1, v2, v3), and let

B(ξ) =
⎛
⎝ 0 0 1
β
c ∂u1ω(h1, h2)(ξ)

β
c ∂u2ω(h1, h2)(ξ) 0

−∂u1ω(h1, h2)(ξ) −∂u2ω(h1, h2)(ξ) −c

⎞
⎠ , C =

⎛
⎝0 0 0

0 1
c 0

1 0 0

⎞
⎠ .

Then (3.2) can be written as the first-order system vξ = (B(ξ)+ λC)v. The com-
plex number λ is an eigenvalue of Aα provided vξ = (B(ξ)+ λC)v has a solution
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v(ξ) in E3
α . We remark that v1ξ is in the same space as v1 because V is in the domain

of Aα on E2
α .

We note that the system u′ = f (u, c), given by (2.6)–(2.8) with σ = c, has the
solution h(ξ) = (h1, h2, h′

1)(ξ), and the linearization of u′ = f (u, c) along h(ξ)
is

v′ = ∂u f (h(ξ), c)v = B(ξ)v.

Define a closed, densely defined linear operator T λ
α on E3

α by v 	→ vξ −(B(ξ)+
λC)v.

The region of consistent splitting for the weight function eαξ is the set of λ such
that the matrices B(∞)+ λC and B(−∞)+ λC have no eigenvalue with real part
−α, and have the same number of eigenvalues with real part greater than −α.

Proposition 3.1. Let E0 = L2(R) or BUC(R). Then:

(1) Aα −λI is Fredholm of index zero if and only if T λ
α is Fredholm of index zero.

(2) T λ
α is Fredholm of index zero if and only if λ is in the region of consistent

splitting for the weight function eαξ .
(3) The null spaces and generalized eigenspaces of Aα − λI and T λ

α have the
same dimension.

Proof. (1) is proved in [34]. (Sandstede and Scheel do not discuss weighted
spaces or systems in which some equations do not have a second-derivative term,
but the argument would be similar.) (2) follows from results of Palmer [28,29].
For (3), see [32]. 
�

The first two results imply that ρF(Aα) is precisely the region of consistent
splitting for the weight function eαξ . We denote by �α the component of ρF(Aα)

that is unbounded at the right. The boundary of �α is contained in the set of λ for
which B(∞)+ λC or B(−∞)+ λC has an eigenvalue with real part −α. This set
is contained in the essential spectrum of Aα . We shall identify it using (2.15).

In the remainder of the paper we shall always assume, usually without mention,
that

0 < α <
1

2
c. (3.3)

This assumption implies that

(h′
1, h′

2) ∈ E2
α, (3.4)

and that α2−cα < 0, which we shall need. It also achieves some ease of exposition,
as we shall see.

The matrix B(∞) + λC has the eigenvalues λ
c and − 1

2 (c ± √
c2 + 4λ). Let

λ = γ + iθ . One of these eigenvalues has real part −α provided γ = −cα

or γ = α2 − cα − θ2

(c−2α)2
. (Here assumption (3.3) has been used to avoid the

case α = 1
2 c). Let γ α+(θ) = max(−cα, α2 − cα − θ2

(c−2α)2
). If γ > γ α+(θ), then

B(∞)+λC has one eigenvalue with real part smaller than −α and two eigenvalues
with real part greater than −α.
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γ

θγ =−cα

Ωα

Fig. 3. The curve γ = γ α(θ) (thick) with 0 < α < 1
2 c, and the region �α

The matrix B(−∞)+ λC has the eigenvalues βc e−β + λ
c and− 1

2 (c±
√

c2 + 4λ).

Again let λ = γ + iθ , and let γ α−(θ) = max(−cα − βe−β, α2 − cα − θ2

(c−2α)2
). If

γ > γ α−(θ), then B(−∞)+ λC also has one eigenvalue with real part smaller than
−α and two eigenvalues with real part greater than −α.

Let γ α(θ) = max(γ α+(θ), γ α−(θ)) = γ α+(θ). See Fig. 3. We have shown:

Proposition 3.2. Let λ = γ + iθ . For 0 < α < 1
2 c, the graph of γ = γ α(θ) is

contained in Spess(Aα), and �α = {λ = γ + iθ : γ > γ α(θ)}. The complement
of �α is contained in Re λ � α2 − cα < 0.

The same calculations show that the imaginary axis is in Spess(A0), and �0 is
just the set of λ with Re λ > 0.

In �α the matrices B(∞) + λC and B(−∞) + λC each have one eigenvalue
with real part smaller than −α and two eigenvalues with real part greater than −α.
For λ ∈ �α , we denote the eigenvalue of B(∞)+ λC with real part less than −α
by μ(λ) = − 1

2 (c + √
c2 + 4λ), and we denote the corresponding 1-dimensional

eigenspace E+(λ). We denote the 2-dimensional eigenspace of B(−∞)+ λC for
the eigenvalues with real part greater than −α by E−(λ). If λ ∈ �α , then λ is an
eigenvalue of Aα if and only if there is a solution of v′ = (B(ξ)+ λC)v such that

v
‖v‖ lies in E−(λ) at ξ = −∞ and in E+(λ) at ξ = ∞. For λ = 0, h′ satisfies this
condition.

3.2. Change of variables

Because of the previous section, we are interested in the linear system v′ =
(B(ξ)+ λC)v. We shall also need to consider its adjoint system φ′ = −φ(B(ξ)+
λ̄C), and the product φ̄(ξ, λ̄)v(ξ, λ), where v(ξ, λ) and φ(ξ, λ̄) are solutions of
these equations. (We use an overbar to denote complex conjugation).

Recall that the change of variable y = P(c)u used in Section 2 converts the
system u′ = f (u, c) to y′ = g(y, c), with g(y, c) = P(c) f (P(c)−1y, c). The
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system y′ = g(y, c) has the solution

k(ξ) = P(c)h(ξ) =
(

h1(ξ), h2(ξ),
c

β

)
.

It approaches ( 1
β
, 0, c

β
) exponentially as ξ → −∞, and approaches (0, 1, c

β
) expo-

nentially as ξ → ∞.
Let

E(ξ) = P(c)B(ξ)P(c)−1 =
⎛
⎝ −c − c

β
1

β
c ∂u1ω(h1, h2)(ξ)

β
c ∂u2ω(h1, h2)(ξ) 0

0 0 0

⎞
⎠ ,

F = P(c)C P(c)−1 =

⎛
⎜⎜⎜⎝

0 0 0

0 1
c 0

1 1
β

0

⎞
⎟⎟⎟⎠ .

Then the linearization of y′ = g(y, c) along k(ξ) is z′ = E(ξ)z, with
z = (z1, z2, z3).

The system z′ = E(ξ)z can also be obtained by applying the change of
variables z = P(c)v to the linear system v′ = B(ξ)v. Applying this change of
variables to the linear system v′ = (B(ξ)+ λC)v, we obtain z′ = (E(ξ)+ λF)z.
Making the corresponding change of variablesψ = φP(c)−1 in the adjoint system
φ′ = −φ(B(ξ) + λ̄C), we obtain ψ ′ = −ψ(E(ξ) + λ̄F), which is the adjoint
system to z′ = (E(ξ)+ λF)z. The product of solutions is unchanged:

ψ̄(ξ)z(ξ) = φ̄(ξ)P(c)−1 P(c)v(ξ) = φ̄(ξ)v(ξ).

Thus, instead of studying v′ = (B(ξ) + λC)v and its adjoint, we will, when con-
venient, study z′ = (E(ξ) + λF)z and its adjoint. The asymptotic behavior of
corresponding solutions is, of course, the same.

3.3. Evans function

For λ ∈ �α , a right eigenvector of E(∞)+ λF for the eigenvalue μ(λ) is

ẑ(λ) =
⎛
⎝ −1

0
−(c + μ(λ))

⎞
⎠ .

Let z(ξ, λ) be the unique solution of z′ = (E(ξ)+ λF)z such that

lim
ξ→∞ e−μ(λ)ξ z(ξ, λ) = ẑ(λ).

z(ξ, 0) is a positive multiple of k′(ξ) = (h′
1(ξ), h′

2(ξ), 0), which is a solution of
z′ = E(ξ)z. Note that h′

1(ξ) < 0; that is why we chose ẑ(λ) to have its first
component negative.
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If λ ∈ �α , then λ̄ ∈ �α , and the unique eigenvalue of −(E(−∞)+ λ̄F) with
real part greater than −α is −μ(λ̄) = −μ(λ) = 1

2 (c+
√

c2 + 4λ̄). A corresponding

left eigenvector is ψ̂(λ̄), where

ψ̂(λ) =
(
μ(λ)

μ(λ)2c
β(μ(λ)c−βe−1/β−λ) 1

)
.

Let ψ(ξ, λ̄) be the unique solution of ψ ′ = −ψ(E(ξ)+ λ̄F) such that

lim
ξ→−∞ eμ(λ̄)ξψ(ξ, λ̄) = ψ̂(λ̄).

Let ψ∗(ξ) = ψ(ξ, 0).
Recall

(
φ∗

1 (ξ) φ
∗
2 (ξ)

)
defined by (2.17), and define

φ∗
3 (ξ) = −

∫ ξ

−∞
φ∗

1 (η) dη.

Proposition 3.3. As ξ → −∞, φ∗
3 (ξ) → 0 like ecξ ; and there is a number d > 0

such that as ξ → ∞, φ∗
3 (ξ) → d exponentially. ψ∗(ξ) is a positive multiple of(

φ∗
1 (ξ) φ

∗
2 (ξ) φ

∗
3 (ξ)

)
.

Proof. ψ∗(ξ) satisfies ψ ′ = −ψE(ξ). Therefore
(
ψ∗

1 (ξ) ψ
∗
2 (ξ)

)
satisfies (2.16)

and, of course, approaches
(
0 0

)
as ξ→−∞. Hence

(
ψ∗

1 (ξ) ψ
∗
2 (ξ)

)
is a scalar mul-

tiple of
(
φ∗

1 (ξ) φ
∗
2 (ξ)

)
. Defining φ∗

3 (ξ) as above, we see that
(
φ∗

1 (ξ) φ
∗
2 (ξ) φ

∗
3 (ξ)

)
solves ψ ′ = −ψE(ξ) and approaches

(
0 0 0

)
as ξ → −∞. Therefore ψ∗(ξ)

is a multiple of
(
φ∗

1 (ξ) φ
∗
2 (ξ) φ

∗
3 (ξ)

)
. The formula for φ∗

3 (ξ) and Proposition 2.1
shows that φ∗

3 (ξ) → d > 0 as ξ → ∞. Since ψ∗
3 (ξ) is also positive, the multiple

is positive. 
�
For λ ∈ �α , solutions z(ξ) of z′ = (E(ξ) + λF)z have eαξ z(ξ) bounded as

ξ → −∞ if and only if ψ̄(ξ, λ̄)z(ξ) = 0 (a property that does not depend on ξ ).
On �α we define the (mixed) Evans function

D(λ) = ψ̄(ξ, λ̄)z(ξ, λ). (3.5)

(The product is independent of ξ .) Note that {λ : Re λ � 0} is contained in �α for
any choice of α, and for Re λ � 0, the definition of D(λ) is independent of the
choice of α.

For λ ∈ �α , λ is an eigenvalue of (3.1) with eigenfunction in Eα if and
only if D(λ) = 0. It is known that D(λ) is analytic; D(λ) = 0 if and only if
λ ∈ ρ(Aα)∩�α; and the algebraic multiplicity of λ as an eigenvalue of Aα equals
its multiplicity as a root of D(λ) [32]. Since D(λ) is not identically 0 (by, for
example, Theorem 3.4 below), it follows that every point of �α is in either ρ(Aα)

or Spd(Aα).

Since
(
φ∗

1 (ξ) φ
∗
2 (ξ)

) (
h′

1(ξ)

h′
2(ξ)

)
= 0, and D(0) is a positive multiple of the prod-

uct of
(
φ∗

1 (ξ) φ
∗
2 (ξ) φ

∗
3 (ξ)

)
and k′(ξ) = (h′

1(ξ), h′
2(ξ), 0), we have D(0) = 0.
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3.4. Formula for D′(0)

Sandstede [32] gives the formula: up to multiplication by a positive number,

D′(0) = −
∫ ∞

−∞
ψ∗(ξ)Fk′(ξ) dξ. (3.6)

He states this formula for the case in which both equilibria are hyperbolic. Since
our equilibria have 0 eigenvalues, we shall rederive the formula for our case.

We denote the solution of z′ = E(ξ)z by z(ξ) = �(ξ, η)z(η). Then the solution
of the adjoint equation ψ ′ = −ψE(ξ) is ψ(η) = ψ(ξ)�(ξ, η).

Let D(λ) be given by (3.5) with ξ = 0. Then for λ real we have

D′(λ) = ∂λψ(0, λ)z(0, λ)+ ψ(0, λ)∂λz(0, λ). (3.7)

To calculate ∂λψ(0, 0), we note that

∂ξλψ(ξ, λ) = ∂λξψ(ξ, λ) = ∂λ(−ψ(ξ, λ)(E(ξ)+ λF))

= −∂λψ(ξ, λ)(E(ξ)+ λF)− ψ(ξ, λ)F.

In other words, ∂λψ(ξ, λ), satisfies the linear differential equation

ψ ′ = −ψ(E(ξ)+ λF)− ψ(ξ, λ)F.

Therefore, by the variation of constants formula,

∂λψ(0, 0) = ∂λψ(−T, 0)�(−T, 0)−
∫ 0

−T
ψ∗(η)F�(η, 0) dη. (3.8)

By an analogous argument,

∂λz(0, 0) = �(0, T )∂λz(T, 0)+
∫ 0

T
�(0, η)Fz(η, 0) dη. (3.9)

We multiply (3.8) on the right by z(0, 0), (3.9) on the left by ψ(0, 0) = ψ∗(0), and
add. Using (3.7) with λ = 0, we obtain

D′(0)=∂λψ(−T, 0)z(−T, 0)+ ψ∗(T )∂λz(T, 0)−
∫ T

−T
ψ∗(η)Fz(η, 0) dη.

(3.10)

Let T → ∞ in (3.10). Then ∂λψ(−T, 0) → 0, z(−T, 0) → 0, ψ∗(T ) is bounded,
and ∂λz(T, 0) → 0. We obtain (3.6) up to multiplication by a positive number.
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3.5. Calculation of D′(0)

Theorem 3.4. Let D be given by (3.5). Then D′(0) > 0.

Proof. Up to multiplication by a positive number, we calculate:

D′(0) = −
∫ ∞

−∞
ψ∗(ξ)Fk′(ξ) dξ

= −
∫ ∞

−∞
(
ψ∗

1 (ξ) ψ∗
2 (ξ) ψ∗

3 (ξ)
)⎛
⎜⎝

0 0 0

0 1
c 0

1 1
β

0

⎞
⎟⎠

⎛
⎜⎝

h′
1(ξ)

h′
2(ξ)

0

⎞
⎟⎠ dξ

= −1

c

∫ ∞

−∞
ψ∗

2 (ξ)h
′
2(ξ) dξ −

∫ ∞

−∞
ψ∗

3 (ξ)(h
′
1(ξ)+ 1

β
h′

2(ξ)) dξ.

= −1

c

∫ ∞

−∞
ψ∗

2 (ξ)h
′
2(ξ) dξ + 1

c

∫ ∞

−∞
ψ∗

3 (ξ)h
′′
1(ξ) dξ.

We integrate the second integral by parts:∫ ∞

−∞
ψ∗

3 (ξ)h
′′
1(ξ) dξ = ψ∗

3 (∞)h′
1(∞)− ψ∗

3 (−∞)h′
1(−∞)

−
∫ ∞

−∞
(ψ∗

3 )
′(ξ)h′

1(ξ) dξ.

We have ψ∗
3 (∞) finite, h′

1(∞) = 0, ψ∗
3 (−∞) = 0, and h′

1(−∞) = 0. Therefore
the boundary terms vanish. We conclude that, up to multiplication by a positive
number,

D′(0) = 1

c

∫ ∞

−∞
−ψ∗

2 (ξ)h
′
2(ξ)− (ψ∗

3 )
′(ξ)h′

1(ξ) dξ

= 1

c

∫ ∞

−∞
−ψ∗

2 (ξ)h
′
2(ξ)+ ψ∗

1 (ξ)h
′
1(ξ) dξ

= −2

c

∫ ∞

−∞
exp

(
−

∫ ξ

0
a(η) dη

)
h′

1(ξ)h
′
2(ξ) dξ > 0. (3.11)


�
Note that D′(0) equals the Melnikov integral calculated in Section 2. We discuss

this fact in the next section.

3.6. Relation to separation functions

According to Sandstede [32], an alternative expression for D′(0), up to mul-
tiplication by a positive number, is

D′(0) =
∫ ∞

−∞
ψ∗(ξ)∂σ g(k(ξ), c) dξ. (3.12)
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To check this in our problem, we note that

ψ∗(ξ)∂σ g(k(ξ), c) = (
ψ∗

1 (ξ) ψ
∗
2 (ξ) ψ

∗
3 (ξ)

) ⎛
⎝−h1(ξ)− 1

c h2(ξ)

− β

c2ω(h1, h2)(ξ)

0

⎞
⎠

= 1

c
(ψ∗

1 (ξ)h
′
1(ξ)− ψ∗

2 (ξ)h
′
2(ξ))

and compare (3.11).
The right-hand side of (3.12) can be interpreted as the derivative of the sep-

aration function between two invariant manifolds. In fact, for the system (2.9)–
(2.11), with parameter σ > 0, consider the line of equilibria Lσ = {(u1, 0, y3) :
u1 arbitrary, y3 = σu1}. For each σ , W s

σ (0, 1, σ
β
) is one-dimensional, and W u

σ (Lσ )
is two-dimensional. One can define a separation function S(σ ) between these
manifolds such that S(c) = 0 and

S′(c) =
∫ ∞

−∞
ψ∗(ξ)∂σ g(k(ξ), c) dξ.

On the other hand, the intersection of W s
σ

(
0, 1, σ

β

)
and W u

σ (Lσ ), if it is non-

empty, must lie in the planew = σ
β

. Restricting (2.9)–(2.11) to this plane, and using
u1 and u2 as coordinates, we obtain the system (2.12)–(2.13), in which σ > 0 is a

parameter. The points (0, 1) and
(

1
β
, 0

)
are equilibria, with one-dimensional invari-

ant manifolds W s
σ (0, 1) and W u

σ

(
1
β
, 0

)
. W s

c (0, 1) and W u
c

(
1
β
, 0

)
meet along the

curve (h1, h2)(ξ). One can define a separation function Ŝ(σ ) between W s
σ (0, 1)

and W u
σ

(
1
β
, 0

)
such that Ŝ(c) = 0. Ŝ′(c) is the Melnikov integral M calculated in

Section 2.

3.7. D(λ) for large positive λ

To treat large positive λ, it is more convenient to consider the system
v′ = (B(ξ)+λC)v from Subsection 3.2. We consider this system with λ restricted
to be real and positive. We write the system as

v′ = (B(ξ)+ λC)v, (3.13)

ξ ′ = 1. (3.14)

Let λ = 1
δ
, δ > 0, and let ξ = δη. We obtain

dv
dη

= (δB(ξ)+ C)v, (3.15)

dξ

dη
= δ. (3.16)

The eigenvalues of C are 0, with algebraic multiplicity two, and 1
c . The generalized

eigenspace for the eigenvalue 0 is v1v3-space. Therefore, for δ = 0, the product
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of v1v3-space and ξ -space is a normally hyperbolic invariant manifold for (3.15)–
(3.16).

Hence (3.15)–(3.16) has, for each small δ > 0, a linear normally hyperbolic
invariant manifold near the product of v1v3-space and ξ -space, given by

v2 = (a(ξ)v1 + b(ξ)v3)δ + O(δ2). (3.17)

It will not be necessary to calculate a(ξ) and b(ξ).
The system (3.15)–(3.16) restricted to this manifold is⎛

⎜⎝
dv1

dη
dv3

dη

⎞
⎟⎠ =

(
0 δ

1 + O(δ) O(δ)

) (
v1
v3

)
, (3.18)

dξ

dη
= δ. (3.19)

Let δ = ε2 with ε > 0, v1 = εw1, and ζ = εη:⎛
⎜⎝

dw1

dζ
dv3

dζ

⎞
⎟⎠ =

(
0 1

1 + O(ε2) O(ε)

)(
w1
v3

)
, (3.20)

dξ

dζ
= ε. (3.21)

The eigenvalues of (3.20) with ε = 0 are ±1. Therefore, for ε = 0, ξ -space is a
normally hyperbolic invariant manifold for (3.20)–(3.21).

For (3.20) with ε = 0, eigenvectors corresponding to the eigenvalues ±1 are
(1,±1). Let (w1(ζ, ε), v3(ζ, ε)) be a solution of (3.20) that approaches 0 as ζ →
∞. Then, up to scalar multiplication,

(w1(0, ε), v3(0, ε)) = (1,−1 + O(ε)).

Substituting v1 = εw1 yields

(v1(0, ε), v3(0, ε)) = (ε,−1 + O(ε)).

Then, using (3.17), we see that if v(η, ε) is a solution of (3.15), with δ = ε2, that
approaches 0 as η → ∞, then v(0, ε) is a multiple of (ε,O(ε2),−1 + O(ε)). We
choose ṽ(0, ε) to be −1 times this vector:

ṽ(0, ε) = (−ε,O(ε2), 1 + O(ε)). (3.22)

The reason for this choice is to achieve consistency with the earlier choice of
z(ξ, λ), which had its first component negative. Then the corresponding solution
v(ξ, λ) of v′ = (B(ξ)+ λC)v also has its first component negative. Therefore, up
to multiplication by a positive constant,

v
(

0,
1

ε2

)
= ṽ(0, ε). (3.23)
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The adjoint equation φ′ = −φ(B(ξ)+ λC) (recall that λ is real) can be treated
analogously. In the system

φ′ = −φ(B(ξ)+ λC), (3.24)

ξ ′ = 1, (3.25)

let λ = 1
δ

with δ > 0 and ξ = δη:

dφ

dη
= −φ(δB(ξ)+ C), (3.26)

dξ

dη
= δ. (3.27)

On the normally hyperbolic invariant manifold

φ2 = (a(ξ)φ1 + b(ξ)φ3)δ + O(δ2),

where a(ξ) and b(ξ) need not be computed, we obtain(
dφ1

dη
dφ3
dη

)
= (

φ1 φ3
) (

O(δ2) − δ

−1 + O(δ) δc

)
, (3.28)

dξ

dη
= δ. (3.29)

Let δ = ε2 with ε > 0, εφ1 = χ1, and ζ = εη:(
dχ1

dζ
dφ3
dζ

)
= (

χ1φ3
) (

O(ε3) −1
−1 + O(ε2) O(ε)

)
, (3.30)

dξ

dζ
= ε. (3.31)

The eigenvalues of (3.30) with ε = 0 are ±1. Therefore, for ε = 0, ξ -space is
a normally hyperbolic invariant manifold for (3.30).

For (3.30) with ε = 0, left eigenvectors corresponding to the eigenvalues 1
and −1 are

(
1 −1

)
and

(
1 1

)
respectively. Let (χ1(ζ, ε), φ3(ζ, ε)) be a solution of

(3.30) that approaches 0 as ζ → −∞. Then, up to scalar multiplication,(
χ1(0, ε) φ3(0, ε)

) = (
1 −1 + O(ε)

)
.

Substituting εφ1 = χ1 yields

ε
(
φ1(0, ε) φ3(0, ε)

) = (
1 −ε + O(ε2)

)
.

Hence if φ(η, ε) is a solution of (3.26), with δ = ε2, that approaches 0 as
η → −∞, then φ(0, ε) is a multiple of

(
1 O(ε2) −ε + O(ε2)

)
We choose φ̃(0, ε)

to be −1 times this vector:

φ̃(0, ε) = (−1 O(ε2) ε + O(ε2)
)
. (3.32)

The reason for this choice is to achieve consistency with the earlier choice of
ψ(ξ, λ), which had its third component positive. Then, the corresponding solution
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φ(ξ, λ) of φ′ = −φ(B(ξ)+ λC) also has its third component positive. Therefore,
up to multiplication by a positive constant,

φ

(
0,

1

ε2

)
= φ̃(0, ε). (3.33)

Using (3.33), (3.23), (3.32), and (3.22), we conclude that, for small ε > 0,

D

(
1

ε2

)
= φ

(
0,

1

ε2

)
v

(
0,

1

ε2

)
= φ̃(0, ε)ṽ(0, ε) = 2ε + O(ε2) > 0.

Thus D(λ) > 0 for large positive real λ.
Since D(0) = 0 and D′(0) > 0, this result is consistent with stability and with

the numerical computations of [1].

4. Spectral and linearized stability

Our goal in this section is to prove the following result. We recall the standing
assumption that 0 < α < 1

2 c. We return to allowing E0 to be any of L2(R), H1(R),
or BUC(R).

Theorem 4.1. Let E0 be L2(R), H1(R), or BUC(R). Suppose the only zero of
D(λ) in {λ : Re λ � 0} is λ = 0. Then the traveling wave is spectrally stable and
linearly stable in E2

α .

If V (ξ) is an element of E2
α , then W (ξ) = eαξV (ξ) is an element of E2

0 , and
‖V ‖α = ‖W‖0.

Let

Ã=
(
∂ξξ + (c − 2α)∂ξ+α2 − cα+∂u1ω(h1, h2) ∂u2ω(h1, h2)

−β∂u1ω(h1, h2) c∂ξ − cα−β∂u2ω(h1, h2)

)
.

(4.1)

Proposition 4.2. V (t, ξ) is a solution of ∂t V = AV with values in E2
α if and only

if W (t, ξ) = eαξV (t, ξ) is a solution of ∂t W = ÃW with values in E2
0 .

The proof is a simple calculation.
Let Ã be the closed, densely defined operator on E2

0 defined by W 	→ ÃW ,
with the maximal domain. The operator Mα defined by V (ξ) 	→ eαξV (ξ) is an
isometric isomorphism from E2

α to E2
0 that conjugates Aα to Ã: MαAαM−1

α = Ã.
Thus we can prove Theorem 4.1 by proving that Ã satisfies (S1), (S2), (L1), and
(L2) from the Section 1.

4.1. Semigroup background

We recall some definitions. A collection of linear operators T (t), t � 0, on a
Banach space X is a C0-semigroup provided
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(1) Each T (t) is a bounded linear operator from X to X .
(2) T (0) = I.
(3) For all t, s � 0, T (t + s) = T (t)T (s).
(4) For each fixed u ∈ X , T (t)u is a continuous function from [0,∞) into X .

Define a linear operator L from X to X by Lu = limt→0+ 1
t (T (t)u − u). The set

of u for which the limit exists is D(L), the domain of L. D(L) is a dense subset of
X , and L is a closed linear operator, but L is typically unbounded. One says that L
generates the C0-semigroup T (t), and we write T (t) = etL, t � 0.

Suppose λ0 is an isolated point of Sp(L), that is, λ0 ∈ Sp(L) and there is a
number d > 0 such that for 0 < |λ − λ0| < d, λ ∈ ρ(L). Define the (Riesz)
spectral projection

Pλ0(L) = − 1

2π i

∫
�

(L − λI)−1 dλ, (4.2)

where � is a simple closed curve in {λ : 0 < |λ−λ0| < d} that surrounds λ0. Then
the range and kernel of Pλ0(L) are both closed and invariant under L; the restriction
of L to the range of Pλ0(L) has spectrum equal to {λ0}; and the restriction of L to
the kernel of Pλ0(L) has spectrum equal to Sp(L)\{λ0}. We have

(L − λI)−1 = −Pλ0(L)(λ− λ0)
−1 −

∞∑
n=1

Dn(λ− λ0)
−(n+1)

+
∞∑

n=0

Sn+1(λ− λ0)
n, (4.3)

where D and S are bounded operators on the range and kernel of Pλ0(L) respec-
tively, both commute with Pλ0(L), and Sp(D) = {0}. The number λ0 is called
an isolated eigenvalue of L of finite algebraic multiplicity n, provided the range
of Pλ0(L) has dimension n [23, Sec. III.6.5]. This term was used in Section 3 to
define the discrete spectrum Spd(L), but we did not give a precise definition there.

In order to discuss bounds on the spectrum of a linear operator L, the following
definitions are useful. For ω ∈ R let Cω = {λ ∈ C : Re λ > ω}. Then we define:

• The spectral bound s(L) = sup{Re λ : λ ∈ Sp(L)}.
• The essential spectral bound sess(L), the infimum of all realω such that Sp(L)∩

Cω is a subset of Spd(L) and has only finitely many points.

For a bounded linear operator T : X → Y , we define:

• The spectral radius of T , the supremum of {|λ| : λ ∈ Sp(T )}.
• The essential spectral radius of T , the supremum of {|λ| : λ ∈ Spess(T )}.
• The seminorm

‖T ‖C = inf
K

‖T + K‖,

where the infimum is over the set of all compact operators K : X → X .
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If L generates a C0-semigroup T (t), t � 0, we define:

• The growth bound ω(L) = limt→∞ t−1 log ‖T (t)‖.
• The essential growth bound ωess(L) = limt→∞ t−1 log ‖T (t)‖C .

Proposition 4.3. Suppose L : X → X generates the C0-semigroup etL, t � 0.
Then

(1) For each t > 0, et Sp(L) ⊂ Sp(etL) and et Spess(L) ⊂ Spess(e
tL).

(2) s(L) � ω(L) and sess(L) � ωess(L).
(3) For each t > 0, etω(L) is the spectral radius of etL, and etωess(L) is the essential

spectral radius of etL.
(4) If K : X → X is a compact operator, then ωess(L + K) = ωess(L),
(5) Let ω > ωess(L) be a number such that no isolated eigenvalue of L has real

part ω. Then there is a finite set {λ1, . . . , λk} ⊂ C such that

Sp(L) ∩ Cω = Spd(L) ∩ Cω = {λ1, . . . , λk}.
Let E1, . . . , Ek be the generalized eigenspaces of λ1, . . . , λk respectively;
they are finite-dimensional. Then there is a closed subspace E0 of X such that
X = E0 ⊕ E1 ⊕ · · · ⊕ Ek and E0 is invariant under L. Moreover, there is a
number M > 0 such that ‖etL|E0‖ � Meωt .

Proof. For (1), see [25], p. 113, Theorem 3.5, and p. 150, Proposition 3.49. For
(2) see [25], p. 114 and p. 152, Theorem 3.51, or else [14, Sec. IV.3] and [14, Cor.
IV.2.11] for the last inequality. For (3) see [14, Sec. IV.1,2]. For (4) see [14, Prop.
IV.2.12]. To prove (5), note that the fact that the finite set {λ1, . . . , λk} exists follows
from the second inequality in (2). For the rest of (5), see [38], Section 4.3, statement
4.65, p. 181. Also, see [14, Cor. IV.2.11]. [23, Thm. IV.5.28]. Thus, λ0 ∈ Spd(L).
Compare [13, Thm. IX.1.5]. 
�

We remark that the inclusions in (1) can be proper, and the inequalities in (2)
can be strict [14, Chapter IV].

4.2. Proof of spectral and linearized stability

We can now give the proof of Theorem 4.1.

Proof. The assumption of the theorem implies that the only element of Sp(Ã)
with nonnegative real part is 0. By Theorem 4.4, to be proved below, Ã gener-
ates a C0-semigroup, and ωess(Ã) < 0. Therefore by Proposition 4.3 (5) we can
choose ν > 0 such that ωess(Ã) < −ν and the only element of Sp(Ã) with real
part greater than or equal to −ν is 0. The eigenvalue 0 is simple by Theorem 3.4.
Thus Ã is spectrally stable. Using Proposition 4.3 (5) again, we see that E2

0 can be
decomposed as the direct sum of two closed subspaces invariant under Ã: the first
has codimension 1, and the second, with dimension 1, is the eigenspace of Ã for

the eigenvalue 0. Furthermore, there exists K > 0 such that the restriction of etÃ,
t � 0, to the first subspace has norm at most K e−νt . Thus Ã is linearly stable. 
�
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The remainder of this section is devoted to the statement and proof of
Theorem 4.4.

We write

Ã =
(

Ã11 Ã12

Ã21 Ã22

)
,

where:

• Ã11v(ξ) = (∂ξξ + (c − 2α)∂ξ + α2 − cα + ∂u1ω(h1, h2)(ξ))v(ξ). Ã11 is an
operator on E0. We denote its domain E02. However, when we discuss E02, we
will usually consider it to be a Banach space with the graph norm it acquires
from Ã11. Thus, if E0 = L2(R), then E02 = H2(R); if E0 = H1(R), then
E02 = H3(R); and, if E0 = BUC(R), then E02 = BUC2(R).

• Ã12 is multiplication by ∂u2ω(h1, h2)(ξ).
• Ã21 is multiplication by −β∂u1ω(h1, h2)(ξ).
• Ã22v(ξ) = (c∂ξ − cα − β∂u2ω(h1, h2)(ξ))v(ξ). Ã22 is an operator on E0. We

denote its domain E01. However, when we discuss E01, we will usually consider
it to be a Banach space with the graph norm it acquires from Ã22. Thus, if
E0 = L2(R), then E01 = H1(R); if E0 = H1(R), then E01 = H2(R); and, if
E0 = BUC(R), then E01 = BUC1(R).

The domain of Ã is the direct sum of the domains of Ã11 and Ã22. We also define
operators

J1 =
(

Ã11 Ã12

0 Ã22

)
and J2 =

(
Ã11 0

0 Ã22

)
,

with the same domain.

Theorem 4.4. Let 0 < α < 1
2 c, and let E0 be L2(R), H1(R), or BUC(R). Then

Ã, J1, and J2 generate C0-semigroups. We have

ωess(Ã) = ωess(J1) = ωess(J2) = α2 − cα < 0. (4.4)

Proof. We shall begin by giving the proof with E0 = L2(R) or BUC(R). The
reason for working with E0 = L2(R) rather than E0 = H1(R) is that the spectral
theory for the differential operators is better developed in L2(R) than in H1(R).
At the end of the proof we will show that (4.4) with E0 = L2(R) implies (4.4) with
E0 = H1(R).

Let E0 be either L2(R) or BUC(R). The operator ∂ξξ + (c − 2α)∂ξ on E0 is
sectorial (see [21], pp. 136–137, and [30], Section 3.2, Corollary 2.3) and hence
generates an analytic semigroup ([21], Theorem 1.3.4). The operator c∂ξ generates
the semigroup P(t)u(ξ) = u(ξ + ct), which is clearly a C0-semigroup. There-

fore the diagonal operator

(
∂ξξ + (c − 2α)∂ξ 0

0 c∂ξ

)
generates a C0-semigroup.

Since Ã, J1, and J2 are bounded perturbations of this operator, each generates a
C0-semigroup ([30], Section 3.1, Theorem 1.1).
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To prove (4.4), we note that by Proposition 3.2 and Proposition 4.3 (2),

α2 − cα � ωess(Ã). (4.5)

We shall prove

ωess(Ã) = ωess(J1) � ωess(J2) = α2 − cα < 0. (4.6)

Then (4.4) follows from (4.5) and (4.6).
To prove (4.6), we first discuss the spectra of the operators Ã11 and Ã22. The

proof then goes as follows. We first show that ωess(Ã11) = α2 − cα < 0 and
ωess(Ã22) = −cα. Since J2 is diagonal, we have ωess(J2) = max(ωess(Ã11),

ωess(Ã22)) = ωess(Ã11) = α2 − cα. We then show from the triangularity of J1

that ωess(J1) � ωess(J2). Finally, we show that etÃ is a compact perturbation of
etJ1 , so ωess(Ã) = ωess(J1) by definition.

In order to discuss the spectrum of Ã11, we note that since Ã11 is a bounded per-
turbation of the sectorial operator ∂ξξ +(c−2α)∂ξ , it is sectorial ([30], Section 3.2,
Corollary 2.2). For Ã11, as for any sectorial operator, it is easy to see that sess(Ã11) =
sup{Re λ : λ ∈ Spess(Ã11)}. Since limξ→±∞ ∂u1ω(h1, h2)(ξ) = 0, the essential
spectra of Ã11 and the constant-coefficient operator ∂ξξ + (c − 2α)∂ξ − (α2 − cα)
have the same right boundary ([21], appendix to Chapter 5). The essential spectrum
of the constant-coefficient operator is easily computed to be the parabola{

λ = γ + iθ : γ = α2 − cα − θ2

(c − 2α)2

}
. (4.7)

Therefore sess(Ã11) = α2 − cα.
To discuss the spectrum of Ã22, we note that the operator Ã22 − λI, given by

v(ξ) 	→ (c∂ξ − cα − β∂u2ω(h1, h2)(ξ) − λ)v(ξ), is invertible if and only if the
linear ODE

vξ = c−1(cα + β∂u2ω(h1, h2)(ξ)+ λ)v(ξ) (4.8)

has an exponential dichotomy on R. (To see this, note that −c−1Ã22 belongs to
the well-studied class of differential operators generating evolution semigroups [9],
and apply the Dichotomy Theorem for evolution semigroups [9, Thm. 3.17].) This
occurs if and only if the numbers c−1(cα + β∂u2ω(h1, h2)(±∞)+ λ) have the
same sign, which occurs if and only if Re λ < −cα − βe−β or −cα < Re λ.
Therefore

Sp(Ã22) = {λ ∈ C : −cα − βe−β � Re λ � −cα}. (4.9)

We conclude that Sp(Ã22) = Spess(Ã22) and s(Ã22) = sess(Ã22) = −cα.
The remainder of the proof of (4.6) with E0 either L2(R) or BUC(R) goes as

follows.

(1) Since Ã11 is sectorial, it generates an analytic semigroup which enjoys the

spectral mapping property: Sp(etÃ11)\{0} = et Sp(Ã11), t > 0 [14, Cor.IV.3.12].
It follows that

sess(Ã11) = ωess(Ã11) = α2 − cα. (4.10)
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(2) The semigroup generated by Ã22 also enjoys the spectral mapping property
[9, Thm. 3.13]. Then from the description of Sp(Ã22) above, we see that

s(Ã22) = sess(Ã22) = ωess(Ã22) = ω(Ã22) = −cα. (4.11)

(3) The semigroup etJ2(t) is the direct sum of the semigroups generated by

etÃ11 and etÃ22 . Hence (1) and (2) imply that ωess(J2) = max{ωess(Ã11),

ωess(Ã22)} = α2 − cα.
(4) We claim that the semigroup etJ1 , t � 0, is given by

etJ1 =
(

etÃ11 R12(t)

0 etÃ22

)
, R12(t) =

∫ t

0
e(t−τ)Ã11Ã12eτÃ22 dτ. (4.12)

To see this, note first that J1 = J2 +
(

0 Ã12
0 0

)
. Then, using the variation of

constants formula [14, Sec. III.1.7(IE*)], we obtain

etJ1 = etJ2 +
∫ t

0
e(t−τ)J1

(
0 Ã12
0 0

)
eτJ2 dτ. (4.13)

Writing etJ1 in the block-operator form etJ1 = (
Ri j (t)

)2
i, j=1, (4.13) yields

etJ1 =
(

R11(t) R12(t)
R21(t) R22(t)

)

=
(

etÃ11 0

0 etÃ22

)
+

∫ t

0

(
R11(t − τ) R12(t − τ)

R21(t − τ) R22(t − τ)

) (
0 Ã12
0 0

)
(

eτÃ11 0

0 eτÃ22

)
dτ

=
(

etÃ11 0

0 etÃ22

)
+

∫ t

0

(
0 R11(t − τ)Ã12eτÃ22

0 R21(t − τ)Ã12eτÃ22

)
dτ.

Therefore R11(t) = etÃ11 , R21(t) = 0, R22(t) = etÃ22 , and R12(t) is given
by (4.12).

(5) Since etJ1 is triangular, we see by setting t = 1 that if a complex number λ

belongs to any two of the three resolvent sets ρ(eJ1), ρ(eÃ11), and ρ(eÃ22),

then λ belongs to all three resolvent sets. Indeed, if λ ∈ ρ(eÃ11) ∩ ρ(eÃ22),
then

(eJ1 −λI)−1 =
(
(eÃ11 −λI)−1 −(eÃ11 − λI)−1R12(1)(eÃ22 − λI)−1

0 (eÃ22 −λI)−1

)
,

(4.14)

so λ ∈ ρ(eJ1). If λ ∈ ρ(eJ1) ∩ ρ(eÃ11), respectively λ ∈ ρ(eJ1) ∩ ρ(eÃ22),

then one can directly check that the operator eÃ22 −λI, respectively eÃ11 −λI,
is both injective and surjective.
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(6) We claim that ωess(J1) � max{ωess(Ã11), ωess(Ã22)}. Recall that if L is the
generator of a C0-semigroup, then by Proposition 4.3 (5), ωess(L) is the log
of the radius of Spess(eL). For ω ∈ R, let �ω = {z ∈ C : |z| > eω}. Then
ωess(L) is the infimum of the set of ω ∈ R with the property that Sp(eL)∩�ω
is a finite subset of Spd(eL).

Fix ω > max{ωess(Ã11), ωess(Ã22)}. We must show that�ω ∩ Sp(eJ1) ⊂
Spd(eJ1) and consists of finitely many points. We know that�ω∩Sp(eÃ11) ⊂
Spd(eÃ11) and consists of finitely many points. Similarly, �ω ∩ Sp(eÃ22)

⊂ Spd(eÃ22); however, by (2) the latter is empty, so�ω ∩ Sp(eÃ22) is empty.

Since Sp(eJ1) ⊂ Sp(eÃ11) ∪ Sp(eÃ22) by (5), we have �ω ∩ Sp(eJ1) ⊂
�ω∩Sp(eÃ11), which consists of finitely many points in Spd(eÃ11). It remains
to show that if λ0 ∈ �ω ∩ Sp(eJ1) then the Riesz projection Pλ0(e

J1) has
finite dimensional range. From (4.2) and (4.14), we have

Pλ0 (e
J1 ) = − 1

2π i

∫
γ

(eJ1 − λI)−1 dλ

= − 1

2π i

∫
γ

(
(eÃ11 − λI)−1 (eÃ11 −λI)−1R12(1)(eÃ22 − λI)−1

0 (eÃ22 − λI)−1

)
dλ.

(4.15)

Now the function λ 	→ (eÃ22 − λI)−1 is analytic at λ = λ0, and Pλ0(e
Ã11)

is the residue of the function λ 	→ (eÃ11 − λI)−1 at λ = λ0. Using

(4.15) and (4.3) with L replaced by eÃ11 , we then infer that Pλ0(e
J1) =(

Pλ0(e
Ã11) Pλ0(e

Ã11)B
0 0

)
, where B is a bounded operator. Therefore, the

range of Pλ0(e
J1) is finite dimensional if and only if the range of Pλ0(e

Ã11) is

finite dimensional. Since the range of Pλ0(e
Ã11) is in fact finite dimensional,

we are done.
(7) Let I0 : E02 → E0 denote the imbedding operator. We claim that Ã21I0 :

E02 → E0 is a compact operator. To prove this, let χn be an appropriately
chosen sequence of C∞ scalar cut-off functions supported in the interval
[−n, n]. Note that ∂u1ω(h1, h2)(ξ), along with its derivatives of all orders
with respect to ξ , approaches 0 as ξ → ±∞. It follows that each operator
χnÃ21I0 : E02 → E0 is compact. Since χnÃ21I0 → Ã21I0 in the operator
norm as n → ∞, the result follows.

(8) We will need the following abstract Voigt’s Lemma [14, Thm. C7] that estab-
lishes compactness of integrals of strongly continuous operator-valued func-
tions. (We note that this lemma also shortens some arguments in [2, Sec. 4].)
Assume that K is a strongly continuous function from a closed interval [α, β]
into the set of bounded linear operators between two Banach spaces X and Y;
that is, for each x ∈ X , the function t → K(t)x is continuous. Voigt’s Lemma
says that if K(t) is a compact operator for each t ∈ (α, β), then the operator∫ β
α

K(t) dt is compact as well.
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(9) We claim that ωess(Ã) = ωess(J1). This follows from the definition of ωess,
provided we can show that the difference etÃ − etJ1 is a compact operator
for each t > 0. Using the variation of constants formula and (4.12), we have

etÃ − etJ1 =
∫ t

0
e(t−τ)Ã

(
0 0

Ã21 0

)
eτJ1 dτ

=
∫ t

0
e(t−τ)Ã

(
0 0

Ã21 0

)(
eτÃ11 R12(τ )

0 eτÃ22

)
dτ

=
∫ t

0
e(t−τ)Ã

(
0 0

Ã21eτÃ11 Ã21R12(τ )

)
dτ.

In view of (8), to finish the proof of the claim it remains to show, for each τ ∈ (0, t),

the following two assertions: First, Ã21eτÃ11 is compact as an operator from E0 to
E0, and, second, the operator

Ã21R12(τ ) =
∫ τ

0
Ã21e(τ−σ)Ã11Ã12eσÃ22 dσ (4.16)

is compact as an operator from E0 to E0. Applying Voigt’s Lemma in (4.16) once

again, the second assertion holds as soon as we know that Ã21e(τ−σ)Ã11 is compact
for each σ ∈ (0, τ ); this, however, follows from the first assertion. To prove the first
assertion, we recall that the semigroup generated by Ã11 is analytic. Therefore, for

each τ > 0 the operator eτÃ11 can be viewed as a bounded operator from E0 into
the domain of Ã11 with the norm inherited from E0 ([21], p. 23), and hence as a
bounded operator into the domain of Ã11 equipped with the graph norm it acquires
from Ã11. This space is just E02. The first assertion then follows from (7).

Equality (4.6) for E0 = L2(R) or BUC(R) now follows from (9), (6), and (3).
Finally, we show that (4.4) for E0 = L2(R) implies (4.4) for E0 = H1(R).
Write Ã = C + B, where, for V = (v1, v2),

CV =
(
∂ξξ + (c − 2α)∂ξ + α2 − cα 0

0 c∂ξ − cα

) (
v1
v2

)
,

BV =
(
∂u1ω(h1, h2)(ξ) ∂u2ω(h1, h2)(ξ)

−β∂u1ω(h1, h2)(ξ) −β∂u2ω(h1, h2)(ξ)

) (
v1
v2

)
.

Define

B′V =
(
∂ξu1ω(h1, h2)(ξ) ∂ξu2ω(h1, h2)(ξ)

−β∂ξu1ω(h1, h2)(ξ) −β∂ξu2ω(h1, h2)(ξ)

) (
v1
v2

)
.

We shall use the notation ÃH1 (respectively ÃL2 ) to indicate that Ã is acting
on the space H1(R) × H1(R) (respectively L2(R) × L2(R)), ∂ξ H1 (respectively
∂ξ L2 ) to indicate that ∂ξ is acting on the space H1(R) (respectively L2(R)), etc.

We claim that

ωess(ÃH1)=ωess(ÃL2), ωess(J1 H1)=ωess(J1 L2), ωess(J2 H1)=ωess(J2 L2);
(4.17)
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these equalities imply the result. We shall prove only the first equality in (4.17);
the other two are proved similarly.

We recall that the operator ∂ξ L2 has domain H1(R) and spectrum iR. Therefore
the operator

D =
(
∂ξ L2 + I 0

0 ∂ξ L2 + I

)
: H1(R)× H1(R) → L2(R)× L2(R)

is an isomorphism. Let I0 : H1(R)× H1(R) → L2(R)× L2(R) be the imbedding
operator. Using the identities

DCH1 = CL2D, DBH1 = BL2D + B′
L2I0,

we obtain

D ÃH1 D−1 = D (CH1 + BH1)D−1 = CL2 + BL2 + B′
L2I0D−1

= ÃL2 + K, (4.18)

where K = B′
L2I0D−1.

Note that for i = 1, 2, ∂ξuiω(h1, h2)(ξ), along with its derivatives of all orders
with respect to ξ , approaches 0 as ξ → ±∞. It follows that B′

L2I0 : H1(R) ×
H1(R) → L2(R) × L2(R) is compact; the argument is the same as that in step 7
above. Since D−1 : L2(R)× L2(R) → H1(R)× H1(R) is a bounded operator, it
follows that K is compact.

Finally, we show the first equality in (4.17). From (4.18) and Proposition 4.3
(4), we obtain

ωess(ÃH1) = ωess(D ÃH1 D−1) = ωess(ÃL2 + K) = ωess(ÃL2).


�

5. Nonlinear stability

In this section we consider only E0 = H1(R) or BUC(R). We recall that
Eα = {v(ξ) : w(ξ) = eαξ v(ξ) ∈ E0}, with norm ‖v‖α = ‖eαξ v‖0 = ‖w‖0, and
we recall from Section 1 that E = E0 ∩ Eα with norm ‖v‖ = max(‖v‖0, ‖v‖α).

We shall prove nonlinear stability by studying the system (2.1)–(2.2) in the
space E2, where short-time existence and uniqueness of solutions hold. We decom-
pose the solution into a shifted traveling wave (h1, h2)(ξ − q(t)), with q(t) to be
determined, and a component in R(Aα)∩ E2. We then use Theorem 4.1 and Gron-
wall’s inequality to show that over the short term, solutions decay exponentially in
‖ ‖α . Next we use this result and a linear analysis in ‖ ‖0 to show that over that time,
solutions that start small in ‖ ‖0 stay small in ‖ ‖0, and in fact the second component
decays. Finally we combine these estimates to extend the time to infinity and prove
the nonlinear stability results.

After some preliminaries in Subsections 5.1 and 5.2, we formulate the system
to be studied in Subsection 5.3 and derive some estimates on the nonlinear oper-
ators that appear in it in Subsection 5.4. We prove the nonlinear stability results
in Subsection 5.5. In order to allow the outline of the argument to stand out more
clearly, the proofs of three propositions are delayed until Subsections 5.6–5.8.
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5.1. Preliminaries

We gather in the following lemma some facts we will need about the functions
ρ and ω in (1.1)–(1.3).

Let Y = (y1, y2), Z = (z1, z2), etc.

Lemma 5.1. (1) ρ(y + z) = ρ(y)+ ρ1(y, z)z where

ρ1(y, z) =
∫ 1

0
ρ′(y + t z)dt. (5.1)

(2) ρ(y + z) = ρ(y)+ ρ′(y)z + ρ2(y, z)z2 where

ρ2(y, z) =
∫ 1

0

∫ 1

0
ρ′′(y + st z)t ds dt. (5.2)

(3) Dω(Y ) = (
y2ρ

′(y1) ρ(y1)
)
.

(4) ω(Y + Z) = ω(Y )+ Dω(Y )Z + n(Y, Z)z1 where

n(Y, Z) = y2ρ2(y1, z1)z1 + ρ1(y1, z1)z2. (5.3)

Proof. We only prove (4):

ω(Y + Z)− ω(Y )− Dω(Y )Z

= (y2 + z2)ρ(y1 + z1)− y2ρ(y1)− y2ρ
′(y1)z1 − ρ(y1)z2

= y2(ρ(y1 + z1)− ρ(y1)− ρ′(y1)z1)+ (ρ(y1 + z1)− ρ(y1)z2)

= y2ρ2(y1, z1)z
2
1 + ρ1(y1, z1)z1z2

= (y2ρ2(y1, z1)z1 + ρ1(y1, z1)z2)z1.


�
Let

L =
(
∂ξξ + c∂ξ 0

0 c∂ξ

)
, B =

(
1

−β
)
.

With this notation, we can rewrite (2.1)–(2.2) as

∂tU = LU + Bω(U ). (5.4)

Let H(ξ) = (h1, h2)(ξ), the traveling wave. In order to consider perturbations of
the traveling wave, we substitute U = H + V into (5.4). Using L H + Bω(H) = 0,
we obtain

∂t V = LV + B Dω(H)V + Bn(H, V )v1. (5.5)

We introduce the notation:

R(ξ) = (
r1(ξ) r2(ξ)

) = Dω(H(ξ)) = (
h2(ξ)ρ

′(h1(ξ)) ρ(h1(ξ))
)
. (5.6)

Then A given by (3.1) is just L + B R(ξ), and the linearization of (5.4) at H is

∂t V = AV = LV + B R(ξ)V . (5.7)

Equation (5.5) becomes

∂t V = AV + Bn(H, V )v1. (5.8)
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5.2. Linear operators

We recall the standing assumption that 0 < α < 1
2 c, so that H ′ ∈ E2

α .

5.2.1. Three spaces Recall that A0 and Aα are the linear operators on E2
0 and E2

α

respectively given by V → AV . Each of these operators is a bounded perturbation
of the operator given by V → LV on the same space, and the domain is just the
domain of the operator given by V → LV on the same space. On E2

0 and E2
α ,

the operator given by V → LV generates a strongly continuous semigroup, and
these semigroups agree on E2, the intersection of the two spaces. Since A0 and
Aα are bounded perturbations of the operator given by V → LV , the semigroups
generated by A0 and Aα agree on E2. Since the norm on E2 is the maximum of the
two norms, the restriction of either semigroup on the intersection space is strongly
continuous in the norm of E2. Let A denote the generator of the restricted semi-
group on E2. Again, since the norm on E2 is the maximum of two norms, it follows
that the domain of A is the intersection of the domains of A0 and Aα , and thus A
is given by V → AV for V in its domain. We summarize this discussion in the
following proposition.

Proposition 5.2. D(A) = D(A0)∩D(Aα). (1) If V ∈ D(A), then A0V = AαV =
AV , and (2) if V ∈ E2 then etA0 V = etAαV = etAV .

As we have mentioned in Subsection 3.1, 0 ∈ Spess(A0). Since ‖v‖ =
max(‖v‖0, ‖v‖α) and D(A) = D(A0)∩ D(Aα), we have ρ(A) = ρ(A0)∩ ρ(Aα)
and Spd(A) = Spd(A0) ∩ Spd(Aα). Therefore 0 ∈ Spess(A).

On the other hand, since we saw in Subsection 3.1 that 0 ∈ ρF(Aα), Aα is
Fredholm of index zero. We have seen that 0 is a simple eigenvalue of Aα and of
Ã. The kernel of Aα is spanned by H ′ = (h′

1, h′
2).

5.2.2. Projections We shall denote the kernel and range of an operator L by N(L)
and R(L) respectively.

Since 0 is isolated in the spectrum of Aα , we can define the Riesz spectral
projection Pc

α = P0(Aα) onto the one-dimensional space N (Aα). Pc
α commutes

with Aα . Since Aα is Fredholm of index zero and 0 is a simple eigenvalue of Aα ,
E2
α = R(Aα)⊕ N (Aα), and N(Pc

α) = R(Aα). Since R(Pc
α) = N(Aα) is spanned

by H ′, we write Pc
αV = πα(V )H ′, where πα : E2

α → R is a bounded linear
functional such that πα(cH ′) = c.

Let Ps
α = I − Pc

α . Ps
α is projection onto R(Aα), with kernel N(Aα). It also

commutes with Aα . From Theorem 4.1 we have:

Corollary 5.3. There are numbers K > 0 and ν > 0 such that ‖etAαPs
α‖ � K e−νt .

We may assume

ν <
β

2
e−β; (5.9)

we recall that β is the exothermicity parameter in (1.2).
Unfortunately the formula V 	→ Bn(H, V )v1 does not define a Lipschitz map-

ping from E2
α to itself. It does define Lipschitz mappings from E2

0 to itself and from
E2 to itself, as we shall see.
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5.3. System to be studied

Using the notation of Subsection 5.1, for (ξ, q) ∈ R
2, let

S(ξ, q) = R(ξ − q)− R(ξ). (5.10)

Then

L + B R(ξ − q) = L + B R(ξ)+ BS(ξ, q) = A + BS(ξ, q). (5.11)

We consider (5.4) on Eα; our considerations at this point are formal, since the
PDE is not known to be well-posed on Eα . Let

U (t, ξ) = H(ξ − q(t))+ V (t, ξ)

with V (t, ξ) in R(Aα) for each t . Using the fact that

L H(ξ − q)+ Bω(H(ξ − q)) = 0,

we obtain

− H ′(ξ − q(t))q̇(t)+∂t V =(A+BS(ξ, q(t))) V +Bn(H(ξ − q(t)), V )v1.

(5.12)

Applying Ps
α and Pc

α to (5.12), we obtain:

∂t V = AV +Ps
α

(
BS(ξ, q(t))V +Bn(H(ξ − q(t)), V )v1+H ′(ξ − q(t))q̇(t)

)
,

(5.13)

−Pc
αH ′(ξ − q(t))q̇(t) = Pc

α (BS(ξ, q(t))V + Bn(H(ξ − q(t)), V )v1) . (5.14)

From (5.14) we obtain

− q̇(t)π(H ′(ξ − q(t)))=π (BS(ξ, q(t))V +Bn(H(ξ − q(t)), V )v1) (5.15)

Lemma 5.4. There is a number δ1 > 0 such that if |q| � δ1, then

1

2
� |π(H ′(ξ − q))| � 3

2
.

Proof. The mapping q → H ′(ξ −q) is continuous from R to Eα , and π(H ′(ξ)) =
1. 
�

Assuming |q| � δ1, we introduce the notation

N (V, q) = Bn(H(ξ − q), V )v1, (5.16)

G(V, q) = BS(ξ, q)V + N (V, q), (5.17)

κ(V, q) = −(π(H ′(ξ − q)))−1π(G(V, q)). (5.18)

We have

2

3
� |(π(H ′(ξ − q)))−1| � 2. (5.19)
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Since κ(V, q) has been chosen to make

Pc
α

(
G(V, q)+ κ(V, q)H ′(ξ − q)

) = 0,

we may rewrite (5.13)–(5.14) as the following system on R(Aα)× R:

∂t V = AV + G(V, q)+ κ(V, q)H ′(ξ − q), (5.20)

q̇ = κ(V, q). (5.21)

5.4. Nonlinear operators

Let U ⊂ R
l and let C0(U ) denote the space of bounded C0 functions m : U →

R with the sup norm, which we now denote ‖ · ‖C0 . More generally, let Ck(U )
denote the space of Ck functions m : U → R such that m, Dm, . . . , Dkm are all
bounded functions, with the Ck norm:

‖m‖Ck = ‖m‖C0 + ‖Dm‖C0 + · · · + ‖Dkm‖C0 .

Recall that E0 = H1(R) or BUC(R).

Proposition 5.5. (1) If u ∈ E0 then u ∈ C0(R) and there is a constant C > 0 such
that ‖u‖C0 � C‖u‖0.

(2) There is a constant C > 0 such that if u, v ∈ E0, then uv ∈ E0 and ‖uv‖0 �
C‖u‖0‖v‖0.

(3) If u ∈ E then u ∈ C0(R) and there is a constant C > 0 such that ‖u‖C0 �
C‖u‖.

(4) There is a constant C > 0 such that if u, v ∈ E , then uv ∈ Eα and ‖uv‖α �
C‖u‖0‖v‖α .

(5) There is a constant C > 0 such that if u, v ∈ E , then uv ∈ E and ‖uv‖ �
C‖u‖‖v‖.

Proof. (1) is obvious for E0 = BUC(R) and well-known for E0 = H1(R); the
same is true for (2). Since ‖u‖0 � ‖u‖, (3) follows from (1). To show (4), let
u, v ∈ E . Then, using (2),

‖uv‖α = ‖eαξuv‖0 = ‖uw‖0 � C‖u‖0‖w‖0 = C‖u‖0‖v‖α.
To show (5), let u, v ∈ E . Then by (2), ‖uv‖0 � C‖u‖0‖v‖0 � C‖u‖‖v‖, and by
(4), ‖uv‖α � C‖u‖0‖v‖α � C‖u‖‖v‖. Therefore uv ∈ E and ‖uv‖ � C‖u‖‖v‖.


�
Proposition 5.6. Let m(ξ, q, u) ∈ C2(R3). Consider the formula

(q, u(ξ), v(ξ)) 	→ m(ξ, q, u(ξ))v(ξ). (5.22)

(1) Formula (5.22) defines a mapping from R × E2
0 to E0 that is Lipschitz on any

set of the form {(q, u, v) : |q|+‖u‖0 +‖v‖0 � K }. If m(ξ, 0, u) is identically
0, then there is a constant C such that on this set, ‖m(ξ, q, u(ξ))v(ξ)‖0 �
C |q|‖v‖0.



1014 Anna Ghazaryan et al.

(2) Formula (5.22) defines a mapping from from R × E2 to E that is Lipschitz on
any set of the form {(q, u, v) : |q|+‖u‖+‖v‖ � K }. If m(ξ, 0, u) is identically
0, then there is a constant C such that on this set, ‖m(ξ, q, u(ξ))v(ξ)‖α �
C |q|‖v‖α and ‖m(ξ, q, u(ξ))v(ξ)‖ � C |q|‖v‖.

The straightforward proof is given in Section 5.6.

Corollary 5.7. Let m(ξ, q, v) ∈ C2(R3). Then the formula

(q, v(ξ)) 	→ m(ξ, q, v(ξ))v(ξ)

defines mappings from R × E0 to E0 and from R × E to E . The first is Lipschitz on
any set of the form {(q, v) : |q| + ‖v‖0 � K }; the second is Lipschitz on any set of
the form {(q, v) : |q| + ‖v‖ � K }.

We remark that in both Proposition 5.6 and Corollary 5.7, it is enough to assume
that m ∈ C2(U ) for any set U of the form {(ξ, q, u) : |q| + |u| � K }.
Proposition 5.8. (1) The formula (V (ξ), q) 	→ S(ξ, q)V (ξ) defines a mapping

from E2
0 ×R to E0 that is Lipschitz on any set of the form {(V, q) : ‖V ‖0+|q| �

K }. On such a set there is a constant C such that ‖S(ξ, q)V (ξ)‖0 � C |q|‖V ‖0.
(2) The formula (V (ξ), q) 	→ S(ξ, q)V (ξ) defines a mapping from E2 × R to

E that is Lipschitz on any set of the form {(V, q) : ‖V ‖ + |q| � K }. On
such a set there is a constant C such that ‖S(ξ, q)V (ξ)‖α � C |q|‖V ‖α and
‖S(ξ, q)V (ξ)‖ � C |q|‖V ‖.

Proof. Just apply Proposition 5.6 to each component of S(ξ, q)V (ξ); clearly
S(ξ, 0) = 0. (In this case the function m depends only on ξ and q). 
�
Proposition 5.9. (1) The formula (V, q) 	→ n(H(ξ − q), V ) defines a mapping

from E2
0 ×R to E0 that is Lipschitz and O(‖V ‖0) on any bounded neighborhood

of (0, 0) in E2
0 × R.

(2) The formula for N (V, q) defines a mapping from E2
0 ×R to E2

0 that is Lipschitz
and O(‖V ‖2

0) on any bounded neighborhood of (0, 0) in E2
0 × R.

(3) The formula for G(V, q) defines a mapping from E2
0 ×R to E2

0 that is Lipschitz
and O((‖V ‖0 +|q|)‖V ‖0) on any bounded neighborhood of (0, 0) in E2

0 ×R.

Proof. (1) The Lipschitz property follows from Corollary 5.7. The mapping is
O(‖V ‖0) on the given set because it is Lipschitz and n(H(ξ − q), 0) = 0.

(2) Since N (V, q) = Bn(H(ξ − q), V )v1, (2) follows from (1).
(3) This follows from the formula for G, Proposition 5.8, and (2). 
�

Proposition 5.10. (1) If V ∈ E2 then N (V, q) ∈ E2
α , and on any bounded neigh-

borhood of (0, 0) in E2 ×R there is a constant C > 0 such that ‖N (V, q)‖α �
C‖V ‖0‖V ‖α .

(2) The formula (V, q) 	→ n(H(ξ − q), V ) defines a mapping from E2 × R to
E that is Lipschitz and O(‖V ‖) on any bounded neighborhood of (0, 0) in
E2 × R.

(3) The formula for N (V, q) defines a mapping from E2 ×R to E2 that is Lipschitz
and O(‖V ‖2) on any bounded neighborhood of (0, 0) in E2 × R.
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Proof. (1) ‖N (V, q)‖α = ‖eαξ N (V, q)‖0 = ‖eαξ Bn(H(ξ − q), V )v1‖0 �
C‖n(H(ξ − q), V )‖0‖Beαξ v1‖0 � C‖V ‖0‖V ‖α .

(2) and (3) are proved like Proposition 5.9 (1) and (2). 
�
Proposition 5.11. The formulas (5.17) and (5.18) for G(V, q) and κ(V, q) define
mappings from E2 ×R to E2 and to R respectively. On any bounded neighborhood
of (0, 0) in E2 ×R, the mappings are Lipschitz, and there is a constant C such that:

(1) ‖G(V, q)‖α � C(‖V ‖0 + |q|)‖V ‖α .
(2) ‖G(V, q)‖ � C(‖V ‖0 + |q|)‖V ‖.
(3) |κ(V, q)| � Ce−αq(‖V ‖0 + |q|)‖V ‖α .

Proof. (1) follows from ‖G(V, q)‖α = ‖BS(ξ, q)V + N (V, q)‖α together with
Proposition 5.8 (2) and Proposition 5.10 (1). (2) follows from (1) and Proposition 5.9
(3). For (3), note that

|κ(V, q| = |π(H ′(ξ − q))|−1|π(G(V, q))|.
By Lemma 5.4, |π(H ′(ξ −q))|−1 � 2, and |π(G(V, q))| is bounded by a constant
times the bound on ‖G(V, q)‖α given by (1). 
�

5.5. Proof of nonlinear stability

Since H ′ ∈ E2, we see that if V ∈ E2 ⊂ E2
α , then Pc

αV ∈ E2, and therefore
Ps
αV = V − Pc

αV ∈ E2. Hence we can define Pc and Ps to be operators from
E2 to itself given by restricting Pc

α and Ps
α respectively to E2. We also define π to

be the restriction of πα to E2. For V ∈ E2, ‖V ‖α � ‖V ‖; it follows that π is a
bounded linear functional. Therefore Pc is a bounded operator, so Ps = I − Pc

is also bounded. It is easy to see that Pc and Ps are projections, and the range of
one is the kernel of the other. It follows that R(Ps) is a closed subspace of E2, and
E2 = R(Ps)⊕ R(Pc).

5.5.1. Existence of solutions and a priori bound for ‖V (t)‖ + |q(t)| We shall
study solutions the system (5.20)–(5.21) on E2 × R.

The operator (A, 0) generates a strongly continuous semigroup on E2 × R.
The nonlinearity is locally Lipschitz by Proposition 5.11. Therefore, given initial
data (V 0, q0) ∈ E2 × R, the system (5.20)–(5.21) has a unique mild solution
(V, q)(t, V 0, q0) with (V, q)(0, V 0, q0) = (V 0, q0). The solution is defined for t
in the maximal interval 0 � t < tmax(V 0, q0), where 0 < tmax(V 0, q0) � ∞; see,
for example, [30, Theorem 6.1.4]. The set {(t, V 0, q0) ∈ R+ × E2 × R : 0 � t <
tmax(V 0, q0)} is open in R+×E2×R, and the map (t, V 0, q0) 	→ (V, q)(t, V 0, q0)

from this set to E2 × R is continuous; see, for example, [36, Theorem 46.4].
Moreover, if (V, q) ∈ E2 × R, then we recall from Section 5.3 that the right-

hand side of (5.20) belongs to R(Ps), and Ps commutes with A and etA. We may
therefore consider (5.20)–(5.21) on R(Ps)× R. We conclude:

Proposition 5.12. For each δ > 0, if 0 < ρ < δ, then there exists Tmax, with
0 < Tmax � ∞, such that the following is true: if (V 0, q0) ∈ R(Ps)× R satisfies

‖(V 0, q0)‖E2×R = ‖V 0‖ + |q0| � ρ (5.23)
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and 0 � t < Tmax, then (V, q)(t, V 0, q0) ∈ R(Ps)× R is defined and satisfies

‖V (t, V 0, q0)‖ + |q(t, V 0, q0)| � δ. (5.24)

We remark that if V 0 is in the domain of the operator A, then the mild solution
is, in fact, a classical solution; see, for example, [30, Theorem 6.1.5].

Let Tmax(δ, ρ) denote the supremum of all T such that (5.24) holds for all
0 � t < T whenever (5.23) is satisfied.

5.5.2. Decay of ‖V (t)‖α Let δ1 < 1 be chosen as in Lemma 5.4. Let K > 0 and
ν > 0 be the numbers given by Corollary 5.3, with ν satisfying (5.9).

Proposition 5.13. There exist δ2 in (0, δ1) and C > 0 such that for every δ ∈ (0, δ2)

and every ρ with 0 < ρ < δ, the following is true. Let (V 0, q0) ∈ R(Ps)×R satisfy
(5.23), so that (V, q)(t, V 0, q0) satisfies (5.24) for 0 � t < Tmax(δ, ρ). Then:

‖V (t)‖α� K e−νt/2‖V 0‖α and |q(t)− q0|�C‖V 0‖α for 0� t < Tmax(δ, ρ).

(5.25)

Moreover, if Tmax(δ, ρ) = ∞, then there is q∗ ∈ R such that

|q(t)− q∗| � Ce−νt/2‖V 0‖α for all t � 0. (5.26)

The proof is given in Subsection 5.7. It uses the a priori bound (5.24), Theo-
rem 5.3 about the linear operator Aα , and Gronwall’s inequality.

5.5.3. Bounds for ‖V (t)‖0

Proposition 5.14. There exist δ3 in (0, δ2) and C > 0 such that for every δ ∈ (0, δ3)

and every ρ with 0 < ρ < δ, the following is true. Let (V 0, q0) ∈ R(Ps)× R sat-
isfy (5.23). Then (V, q)(t, V 0, q0) satisfies (5.24) for 0 � t < Tmax(δ, ρ), and the
following estimates hold for 0 � t < Tmax(δ, ρ)):

‖v1(t)‖0 � C(‖V 0‖ + |q0|), (5.27)

‖v2(t)‖0 � C(‖V 0‖ + |q0|)e−νt/2. (5.28)

This proposition establishes the required boundedness in the uniform norm. The
proof is given in Subsection 5.8. It uses the a priori bound (5.24) and Proposition 5.13
to make estimates.

5.5.4. Nonlinear stability

Lemma 5.15. Define a mapping F from R(Ps)× R to the affine space E2 + H by

F(V, q) = U = V + H(ξ − q) = V + (H(ξ − q)− H(ξ))+ H(ξ).

Then DF(0, 0) is an isomorphism, so F maps a neighborhood V of (0, 0) in
R(Ps)× R diffeomorphically onto a neighborhood U of H in E2 + H.
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Proof. The mapping q → H(ξ − q)− H(ξ) is C1 as a map from R to E2, so F is
C1. R(Ps) is a codimension-one subspace of E2, and ∂F

∂q (0, 0) = −H ′(ξ) is not in
it. Therefore DF(0, 0) is an isomorphism. The rest of the result is a consequence
of the Inverse Function Theorem. 
�

Assume that V is chosen small enough soF and F−1 are Lipschitz. Let Q denote
the Lipschitz constant of F−1. Choose δV > 0 such that (1) if ‖V ‖ + |q| � δV
then (V, q) ∈ V , and (2) ρU = Q−1δV is such that the closed ball of radius ρU
about H in E2 + H is contained in U . We have:

Lemma 5.16. Let U ∈ E2 + H with ‖U − H‖ � ρU . Then:

(1) (V, q) = F−1(U ) ∈ R(Ps)× R is defined, so U = V + H(ξ − q).
(2) ‖V ‖ + |q| � Q‖U − H‖ � QρU = δV .

Given U 0 ∈ E2 + H , let U (t) = U (t,U 0) be the solution of (5.4) in E2 + H
with U (0) = U 0. If ‖U 0 − H‖ � ρU , we can use Lemma 5.16 to write

U 0 =V 0+H(ξ − q0) with (V 0, q0) ∈ R(Ps)×R and ‖V 0‖+|q0|�δV .
(5.29)

If ‖U (t)− H‖ � ρU , we can use Lemma 5.16 to write

U (t) = V (t)+ H(ξ − q(t)) with (V (t), q(t)) ∈ R(Ps)× R and ‖V (t)‖
+|q(t | � δV . (5.30)

The following theorem gathers all of our nonlinear stability results.

Theorem 5.17. There is a constant C > 0 such that for each δ ∈ (0,min(δ3, δV )),
there exists ρ with 0 < ρ � ρU such that the following is true. Let U 0 ∈ E2 + H
with ‖U 0 − H‖ < ρ, and let (V 0, q0) be given by (5.29). Let U (t) be the solution
of (5.4) in E2 + H with U (0) = U 0. Then:

(1) U (t) is defined for all t � 0.
(2) For all t � 0, U (t) ∈ U , so we can define (V (t), q(t)) by (5.30).
(3) ‖V (t)‖ + |q(t)| < δ.
(4) ‖V (t)‖α � K e−νt/2‖V 0‖α .
(5) There exists q∗ such that |q(t)− q∗| � Ce−νt/2‖V 0‖α .
(6) ‖v1(t)‖0 � C(‖V 0‖ + |q0|).
(7) ‖v2(t)‖0 � C(‖V 0‖ + |q0|)e−νt/2.

Note that (4) and (5) imply easily that for a larger constant C̃ , ‖U (t)− H(ξ −
q∗)‖α � C̃e−νt/2‖Ṽ 0‖α .

Proof. Let δ ∈ (0,min(δ3, δV )). Let 0 < ρ1 < δ. Let ρ2 = ρ1
max(1,C) , where C is

the larger of the constants appearing in Propositions 5.13 and 5.14. Let ρ3 = ρ2
Q .

Let ρ = min(ρ3, ρU ).
Let U 0 ∈ E2 + H with ‖U 0 − H‖ � ρ. By Lemma 5.16, there exist (V 0, q0) ∈

R(Ps) × R with U 0 = V 0 + H(ξ − q0) and ‖V0‖ + |q0| � Qρ � ρ2 � ρ1.
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By Proposition 5.12, (V, q)(t, V 0, q0) is defined for 0 � t < Tmax(δ, ρ2); by
Propositions 5.12, 5.13, and 5.14, it satisfies (5.24), (5.25), (5.27), and (5.28).

We claim that Tmax(δ, ρ2) = ∞. If Tmax(δ, ρ1) = ∞, then this is clearly true, so
suppose that Tmax(δ, ρ1) is finite. Let (V 0, q0) ∈ R(Ps)×R with ‖V0‖+|q0| � ρ2.
For any T in (0, Tmax(δ, ρ2)), the inequalities (5.25), (5.27), and (5.28) yield

‖V (T, V 0, q0)‖ + |q(T, V 0, q0)| � C(‖V 0‖ + |q0|) � Cρ2 � ρ1. (5.31)

Consider the solution with initial data (V 1, q1) = (V, q)(T, V 0, q0). Since ‖V 1‖+
|q1| � ρ1, Proposition 5.12 applies to this solution. Therefore, for all
t ∈ [0, Tmax(δ, ρ1)), we have

‖V (t + T, V 0, q0)‖+|q(t + T, V 0, q0)|=‖V (t, V 1, q1)‖+|q(t, V 1, q1)|�δ.
(5.32)

This shows that the a priori bound (5.24) for the solution with any initial data
satisfying ‖V 0‖ + |q0| � ρ2 holds for all t ∈ [0, T + Tmax(δ, ρ1)). Therefore
Tmax(δ, ρ2) � T +Tmax(δ, ρ1) and, thus, Tmax(δ, ρ2) � Tmax(δ, ρ2)+Tmax(δ, ρ1).
Hence Tmax(δ, ρ2) = ∞.

(1) follows from Tmax(δ, ρ2) = ∞. For all t � 0, ‖V (t)‖ + |q(t)| � δ < δV ,
so (V (t), q(t) ∈ V , so U (t) = V (t)+ H(ξ − q(t)) is in U ; thus (2) and (3) hold.
(4) is just (5.25); (5) is (5.26); (6) and (7) are (5.27) and (5.28). 
�

5.6. Proof of Proposition 5.6

We will consider only the case E0 = H1(R); the case E0 = BUC(R) is easier.
First we show that the mappings go into the correct spaces. We have

‖m(ξ, q, u)v‖L2 � ‖m‖C0‖v‖L2 (5.33)

and

‖(mv)ξ‖L2 � ‖mξ v‖L2 + ‖muuξ v‖L2 + ‖mvξ‖L2

� ‖m‖C1‖v‖L2 + ‖m‖C1‖uξ‖L2‖v‖L2 + ‖m‖C0‖vξ‖L2 . (5.34)

Therefore if (q, u, v) ∈ R × H1(R)2 then m(ξ, q, u)v ∈ H1(R). Next, we have

‖eαξm(q, u, v)v‖L2 � ‖m‖C0‖eαξ v‖L2 (5.35)

and

‖eαξ (mv)ξ‖L2 � ‖eαξmξ v‖L2 + ‖eαξmuuξ v‖L2 + ‖eαξmvξ‖L2

� ‖m‖C1‖eαξ v‖L2 + ‖m‖C1‖uξ‖L2‖eαξ v‖L2

+‖m‖C0‖eαξ vξ‖L2 . (5.36)

Therefore if (q, u, v) ∈ R × H1(R)2α then m(ξ, q, u)v ∈ H1(R)α .
Now we show the Lipschitz properties.
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First we consider variations in q. We have

m(ξ, q + q̄, u(ξ))v(ξ)− m(ξ, q, u(ξ))v(ξ) =
∫ 1

0
mq(ξ, q + t q̄, u(ξ)) dt q̄v(ξ).

Therefore

‖m(ξ, q + q̄, u)v − m(ξ, q, u)v‖L2 � ‖m‖C1‖v‖L2 |q̄|

and

‖eαξ (m(ξ, q + q̄, u)v − m(ξ, q, u)v)‖L2 � ‖m‖C1‖eαξ v‖L2 |q̄|.

Also,

(m(ξ, q + q̄, u(ξ))v(ξ)− m(ξ, q, u(ξ))v(ξ))ξ

=
∫ 1

0
mqξ (ξ, q + t q̄, u(ξ)) dt q̄v(ξ)

+
∫ 1

0
mqu(ξ, q + t q̄, u(ξ)) dt q̄uξ v(ξ)+

∫ 1

0
mq(ξ, q + t q̄, u(ξ)) dt q̄vξ .

Therefore

‖(m(ξ, q + q̄, u(ξ))v(ξ)− m(ξ, q, u(ξ))v(ξ))ξ‖L2

� (‖m‖C2‖v‖L2 + ‖m‖C2‖uξ‖L2‖v‖L2 + ‖m‖C1‖vξ‖L2)|q̄|

and

‖eαξ (m(ξ, q + q̄, u(ξ))v(ξ)− m(ξ, q, u(ξ))v(ξ))ξ‖L2

� (‖m‖C2‖eαξ v‖L2 + ‖m‖C2‖uξ‖L2‖eαξ v‖L2 + ‖m‖C1‖eαξ vξ‖L2)|q̄|.

Next we consider variations in u. We have

m(ξ, q, u(ξ)+ ū(ξ))v(ξ)− m(ξ, q, u(ξ))v(ξ) =
∫ 1

0
mu(ξ, q, u(ξ)

+t ū(ξ)) dt ū(ξ)v(ξ).

Therefore

‖m(ξ, q, u + ū)v − m(ξ, q, u)v‖L2 � ‖m‖C1‖ū‖L2‖v‖L2

and

‖eαξ (m(ξ, q, u + ū)v − m(ξ, q, u)v)‖L2 � ‖m‖C1‖ū‖L2‖eαξ v‖L2 .
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Also,

(m(ξ, q, u(ξ)+ ū(ξ))v(ξ)− m(ξ, q, u(ξ))v(ξ))ξ

=
∫ 1

0
muξ (ξ, q, u(ξ)+ t ū(ξ)) dt ū(ξ)v(ξ)

+
∫ 1

0
muu(ξ, q, u(ξ)+ t ū(ξ))(uξ + t ūξ ) dt ū(ξ)v(ξ)

+
∫ 1

0
mu(ξ, q, u(ξ)+ t ū(ξ)) dt ūξ v(ξ)

+
∫ 1

0
mu(ξ, q, u(ξ)+ t ū(ξ)) dt ū(ξ)vξ.

Therefore

‖(m(ξ, q, u(ξ)+ ū(ξ))v(ξ)− m(ξ, q, u(ξ))v(ξ))ξ‖L2

� ‖m‖C2‖ū‖L2‖v‖L2 + ‖m‖C2‖uξ‖L2C‖ū‖H1‖v‖H1

+1

2
‖m‖C2‖ūξ‖L2 C‖ū‖H1‖v‖H1 + ‖m‖C1‖ūξ‖L2‖v‖L2

+‖m‖C1‖ū‖L2‖vξ‖L2

and

‖eαξ (m(ξ, q, u(ξ)+ ū(ξ))v(ξ)− m(ξ, q, u(ξ))v(ξ))ξ‖L2

� ‖m‖C2‖ū‖L2‖eαξ v‖L2 + ‖m‖C2‖uξ‖L2C‖ū‖H1‖eαξ v‖H1

+1

2
‖m‖C2‖ūξ‖L2 C‖ū‖H1‖eαξ v‖H1 + ‖m‖C1‖ūξ‖L2‖eαξ v‖L2

+‖m‖C1‖ū‖L2‖eαξ vξ‖L2 .

Finally, we consider variations in v. We have

m(ξ, q, u(ξ))(v(ξ)+ v̄(ξ))− m(ξ, q, u(ξ))v(ξ) = m(ξ, q, u(ξ))v̄(ξ).

Estimates are left to the reader.
Using the separate Lipschitz estimates for variations in q, u, and v, one can

easily show that the mappings are Lipschitz on the given sets.
To prove the estimates when m(ξ, 0, u) = 0, we note that this assumption

implies that ‖m‖C0 � C |q| and ‖m‖C1 � C |q| on the given sets, then use (5.33)–
(5.36).

5.7. Proof of Proposition 5.13

Since V (t) is a mild solution of (5.20) in E2, it satisfies the integral equation

V (t)=etAV 0 +
∫ t

0
e(t−s)A (

G(V, q(s))+κ(V, q(s))H ′(ξ − q(s))
)

ds.

(5.37)
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Since V 0 ∈ E2 by assumption, and G(V, q(s))+ κ(V, q(s))H ′(ξ − q(s)) is in E2,
Proposition 5.2 implies that etAV 0 = etAαV 0 and

e(t−s)A (
G(V, q(s))+ κ(V, q(s))H ′(ξ − q(s))

)
= e(t−s)Aα

(
G(V, q(s))+ κ(V, q(s))H ′(ξ − q(s))

)
.

Therefore (5.37) holds with A replaced by Aα . In addition, V 0 ∈ R(Ps
α), and we

recall from Section 5.3 that G(V, q(s)) + κ(V, q(s))H ′(ξ − q(s)) is in R(Ps
α).

Therefore (5.37) holds with A replaced by AαPs
α .

By Theorem 5.3 and Proposition 5.11 (1) and (3),

‖V (t)‖α � K e−νt‖V 0‖α
+

∫ t

0
K e−ν(t−s)C(‖V (s)‖0+|q(s)|)(1+‖H ′(·−q(s))‖α)‖V (s)‖α ds.

Using the a priori bound (5.24), one finds a constant C1 so that

‖V (t)‖α � K e−νt‖V 0‖α + C1δ

∫ t

0
e−ν(t−s)‖V (s)‖α ds. (5.38)

Choosing δ2 < min(δ1,
ν

2C1
) and using Gronwall’s inequality for the function

u(t) = eνt‖V (t)‖α (see, for example, [21, Section 1.2.1]), we arrive at the first
estimate in (5.25).

From Proposition 5.11 (3), the a priori bound (5.24) and the first estimate in
(5.25), we have

|q̇(t)| = |κ(V (t), q(t))| � C2(|q(t)| + ‖V (t)‖0)‖V (t)‖α
� C2 K δe−νt/2‖V 0‖α = Ce−νt/2‖V 0‖α, (5.39)

where C = C2 K δ. Using (5.39) and

q(t) = q(s)+
∫ t

0
q̇(τ ) dτ, 0 � t < Tmax(δ, ρ), (5.40)

we obtain the second estimate in (5.25):

|q(t)− q0| �
∫ t

0
|q̇(τ )| dτ � C‖V 0‖α

∫ t

0
e−ντ/2 dτ � 2C

ν
‖V 0‖α. (5.41)

Finally, if Tmax(δ, ρ) = ∞ then (5.39) implies that in (5.40), limt→∞ q(t) = q∗
exists. From (5.40) and (5.39) we have

|q∗ − q(t)| �
∫ ∞

t
|q̇(τ )| dτ � 2C

ν
e−νt/2‖V 0‖α.
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5.8. Proof of Proposition 5.14

Using A = L + B R(ξ), (5.10), (5.17), and (5.16), we rewrite (5.20) as:

∂t V = LV + B R(ξ − q)V + N (V, q)+ κ(V, q)H ′(ξ − q). (5.42)

Let

g1(ξ, q) = h2(ξ − q)ρ′(h1(ξ − q)), (5.43)

g2(ξ, q) = e−β − ρ(h1(ξ − q)), (5.44)

g3(ξ, v1, q) = h2(ξ − q)ρ2(h1(ξ − q), v1)v1, (5.45)

f1(ξ, v1, q) = ρ1(h1(ξ − q), v1)v1, (5.46)

a(ξ, v1, q) = −βe−β − β f1(ξ, v1, q), (5.47)

G1(ξ, V, q) = g1(ξ, q)v1 + ρ(h1(ξ − q))v2 + f1(ξ, v1, q)v2 (5.48)

+g3(ξ, v1, q)v1 + κ(V, q)h′
1(ξ − q), (5.49)

G2(ξ, V, q) = −βg1(ξ, q)v1 + βg2(ξ, q)v2 − βg3(ξ, v1, q)v1

+κ(V, q)h′
2(ξ − q). (5.50)

We then rewrite (5.42) as

∂tv1 = (∂ξξ + c∂ξ )v1 + G1(ξ, V, q), (5.51)

∂tv2 = (c∂ξ + a(ξ, v1, q))v2 + G2(ξ, V, q). (5.52)

Let δ2 and C be given by Proposition 5.13. Let δ ∈ (0, δ2), let 0 < ρ < δ, let
(V 0, q0) ∈ R(Ps) × R satisfy (5.23). We consider the following nonautonomous
linear system related to (5.51)–(5.52):

∂t v̂1 = (∂ξξ + c∂ξ )v̂1 + G1(ξ, V (t), q(t)), (5.53)

∂t v̂2 = (c∂ξ + a(ξ, q(t), v1(t)))v̂2 + G2(ξ, V (t), q(t)), (5.54)

where (V, q)(t) = (V, q)(t, V 0, q0). Since (V, q)(t) is a fixed solution of (5.20)–
(5.21) in E2 × R, we can regard (5.53)–(5.54) as a nonautonomous linear system
on E2. The solution with the value V 0 at t = 0 is of course V (t, V 0, q0).

We claim:

• If we regard (5.53)–(5.54) as a nonautonomous linear equation on E2
0 with the

initial condition V̂ (0) = V 0, the solution, which we denote V̂ (t, V 0), is again
V (t, V 0, q0).

To see this, we first note that the nonhomogeneous linear system

∂t v̂1 = (∂ξξ + c∂ξ )v̂1 + h1(t, ξ), (5.55)

∂t v̂2 = (c∂ξ − (βe−β + b2(t, ξ)))v̂2 + h2(t, ξ), (5.56)

may be solved in E2
0 on 0 � t � T provided (h1, b2, h2) is a continuous function

from [0, T ] to E3
0 and the initial condition V̂ 0 ∈ E2

0 . We have:

The solution of (5.55)–(5.56) in E2
0 on 0 � t � T depends continuously on

(V̂ (0), h1, b2, h2). (5.57)
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Let V 0k be a sequence of C2 functions that converges to V 0 in E as k → ∞. The
solution of (5.20)–(5.21) in E2 × R on 0 � t � T with initial condition (V 0k, q0)

is (V, q)(t, V 0k, q0). Then (V, q)(t, V 0k, q0) → (V, q)(t, V 0, q0) in E2, so

(V, q)(t, V 0k, q0) → (V, q)(t, V 0, q0) in E2
0 . (5.58)

Now consider (5.55)–(5.56) on E2
0 with

h1(t, ξ) = G1(ξ, (V, q)(t, V 0k, q0)), (5.59)

b2(t, ξ) = β f1(ξ, (V, q)(t, V 0k, q0)), (5.60)

h2(t, ξ) = G2(ξ, (V, q)(t, V 0k, q0)), (5.61)

V̂ (0) = V 0k . (5.62)

The solution V̂ (t, V 0k) is, of course, the classical solution V (t, V 0k, q0).
From (5.58),

(G1, f1,G2)(ξ, (V, q)(t, V 0k, q0)) → (G1, f1,G2)(ξ, (V, q)(t, V 0, q0)) in E2
0 .

(5.63)

To see this, use Corollary 5.7 on each summand in the definitions of these functions.
By (5.63) and (5.57), with the formulas (5.59)–(5.62), V (t, V 0k, q0) =

V̂ (t, V 0k) → V̂ (t, V 0) in E2
0 . From (5.58) we conclude that V̂ (t, V 0) =

V (t, V 0, q0), which completes the proof of the claim.
We easily see:

gi (ξ, q)e−αξ ∈ E0, i = 1, 2, 3, ‖g3(ξ, q)e−αξ‖ � C‖v1‖0,

f1(ξ, v1(ξ), q) ∈ E0, ‖ f1(ξ, v1(ξ), q)‖0 �‖ρ1(h1(ξ − q))‖C0‖v1‖0.

(5.64)

(The fact that f1(ξ, v1(ξ), q) ∈ E0 follows from Corollary 5.7.) Let W (ξ) =
eαξV (ξ). Using (5.64), Proposition 5.11 (5), the a priori bound (5.24), and the
exponential decay of ‖W (t)‖0 = ‖V (t)‖α in (5.25), we have the estimates:

‖G1(ξ, V (t), q(t))‖0 � C(‖g1e−αξ‖0‖W (t)‖0 + ‖ρ(h1(ξ − q))‖C0‖v2(t)‖0

+‖ f1‖0‖v2(t)‖0

+|g3e−αξ‖0‖W (t)‖0+e−αq(t)(‖V (t)‖0 + |q(t)|)‖W (t)‖0)

� C(‖W (t)‖0 + (1 + δ)‖v2(t)‖0 + eαδδ‖W (t)‖0)

� C(‖v2(t)‖0 + e−νt/2‖W 0‖0); (5.65)

‖G2(ξ, V (t), q(t))‖0 � C(‖g1e−αξ‖0‖W (t)‖0 + ‖g2e−αξ‖0‖W (t)‖0

+‖v1(t)‖0‖W (t)‖0 + e−αq(t)(‖V (t)‖0 + |q(t)|)‖W (t)‖0)

� C(1 + δ + eαδδ)‖W (t)‖0 � Ce−νt/2‖W 0‖0. (5.66)

We shall first use the fact that (5.54), regarded as a nonautonomous linear equa-
tion on E0, has the solution v̂2(t) = v2(t) to show (5.28). The solution of the linear
equation

∂t v̂2 = (c∂ξ + a(t, ξ))v̂2 (5.67)
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on E0 or E is

v̂2(t, ξ) = �(t, s)v2(s, ξ) = exp

(∫ t

s
a(τ, ξ + c(t − τ)) dτ

)
v̂2(s, ξ + c(t − s));

the propagator �(t, s) of (5.67) is defined by this equation. Therefore the mild
solution of (5.54), which because of the claim we denote v2(t) or v2(t, ξ), satisfies
the equation

v2(t, ξ) = �(t, 0)v2(0, ξ)+
∫ t

0
�(t, τ )G2(ξ, V (τ, ξ), q(τ )) dτ

= exp

(∫ t

0
a(τ, ξ + c(t − τ)) dτ

)
v2(0, ξ + ct)

+
∫ t

0
exp

(∫ t

τ

a(s, ξ + c(t − s)) ds

)
× G2(ξ + c(t − τ), V (τ, ξ + c(t − τ)), q(τ )) dτ. (5.68)

From the a priori bound (5.24) and (5.64), there is a constant C1 independent
of δ such that for all ξ ∈ R we have:

| f1(ξ, v1(ξ), q)| � ‖ f1(·, v1(·), q)‖C0 � ‖ f1(·, v1(·), q)‖0 � C1‖v1‖0

� C1δ. (5.69)

Using this constant C1, we fix δ3 ∈ (0, δ2) so small that

δ3 <
1

2C1
e−β. (5.70)

According to (5.47), for δ ∈ (0, δ3) we then arrive at the estimate

a(t, ξ) � −βe−β + β‖ f1(·, v1(t, ·), q(t))‖C0 � −β
2

e−β. (5.71)

Using (5.71) and (5.66), we obtain the following estimate in (5.68):

‖v2(t)‖0 �e−t (β/2)e−β‖v2(0)‖0 + C
∫ t

0
e−(t−τ)(β/2)e−β

e−ντ/2 dτ ‖W 0‖0.

(5.72)

Since ν < βe−β by (5.9), the required inequality (5.28) follows.
Finally, we use the fact that (5.53), regarded as a nonautonomous linear equation

on E0, has the solution v̂1(t) = v1(t) or v1(t, ξ) to show (5.27). Let L̂ = ∂ξξ + c∂ξ .

Then et L̂ can be written explicitly using the heat kernel; from this expression we

see that the norm of the operator et L̂ on E0 is uniformly bounded for t � 0. The
mild solution of (5.53), which because of the claim we denote v1(t, ξ), satisfies the
integral equation

v1(t, ξ) = et L̂v1(0, ξ)+
∫ t

0
e(t−τ)L̂ G1(ξ, V (τ, ξ), q(τ )) dτ.
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Applying (5.65), the exponential decay of W as in (5.25), and the inequality (5.28)
just proved, we infer (5.27):

‖v1(t)‖0 � C‖v1(0)‖0 + C
∫ t

0

(
‖v2(τ )‖0 + e−ντ/2‖W 0‖0

)
dτ

� C(‖V 0‖ + |q0|)(1 +
∫ t

0
e−ντ/2 dτ).

6. Extensions

We have studied (1.1)–(1.3) with one of the boundary conditions being u1(∞) =
0. Thus we have taken u1 = 0 to be both the ignition temperature (the value above
which ρ > 0) and the background temperature u1(∞). Let us consider various
alternatives to these choices.

(1) It is generally considered that the true ignition temperature is absolute 0. Thus
we should use (1.1)–(1.3) with u1 = 0 representing absolute 0, and the right
boundary condition should be u1(∞) = u∗

1 > 0. This choice presents the
“cold boundary difficulty” [6]: there is no traveling wave solution (because
the boundary is not cold enough). The assumptions we have used represent
the minimal change that allows a traveling wave.

(2) A more drastic change in the model would be to take the ignition tempera-
ture to be higher than the background temperature. Thus if u1 = 0 represents
ignition temperature, one could use (1.1)–(1.3) together with the right bound-
ary condition u1(∞) = u∗

1 < 0. The traveling wave equation gives rise to a
phase portrait qualitatively like that in Fig. 2. However, the desired traveling
wave connects the hyperbolic equilibrium on the positive u1-axis to one of
the semihyperbolic equilibria in u1 < 0. Such a solution of the traveling wave
equation automatically approaches both end states exponentially. Our results
hold for this case.

(3) Another possible change to the model is to allow a linear convection term in
the first equation, so that (1.1) becomes

∂t u1 = ∂xx u1 + a∂x u1 + ω(u1, u2).

Thus heat, in addition to diffusing, is convected, for example by a flow of gas
over the solid that is not otherwise modeled. This situation is important in
oil recovery [11]. The symmetry x 	→ −x is broken, so one should consider
traveling waves with both positive and negative velocities. Results similar to
ours should hold with minor adjustments.

(4) In all these situations the unit reaction rate ρ(u1) can be replaced by any
function in C2(R) that equals 0 for u1 � 0 and is positive for u1 > 0. (For
existence of the front, see [24].) The theorems still hold; however, we don’t
know how computations like that described in Appendix A would turn out.
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Appendix A. Numerical computation of the Evans function

Figure A.1a shows part of the Evans function D(λ) for β = 1. We have allowed
λ to vary on the curve � in the complex plane given by: (1) Re λ = −0.05, 0 �
Im λ � 1, 000, (2) −0.05 � Re λ � 1, 000, Im λ = 1, 000, (3) Re λ = 1, 000,
0 � Im λ � 1, 000. As λ traverses this curve in the clockwise direction, D(λ)
traces out the curve shown in the clockwise direction. Since � has two corners, the
curve shown has two corners. Both occur in the small boxed region; a blow-up of
this region is shown in Fig. A.1b.

Let �̄ = {λ̄ : λ ∈ �}. Then �∪ �̄ is a curve in the complex plane that surrounds
the origin once. D(�∪ �̄) is the curve shown together with its reflection across the
imaginary axis. Since D(�∪ �̄) clearly winds once around 0, the analytic function
D(λ) has just one zero, of order one, in the interior of � ∪ �̄. This is, of course,
λ = 0. Thus we have numerical evidence that the only zero of D(λ) with Re λ � 0
is λ = 0.

Let us describe how the computation was done. To calculate D(λ) exactly,
given β > 0, one first needs a pair (σ, (u1, u2)(ξ)), σ ∈ R, −∞ < ξ < ∞,
(u1, u2) ∈ R × R, such that:

(E1) (u1, u2)(ξ) is a solution of (2.12)–(2.13)
(E2) (u1, u2)(−∞) = ( 1

β
, 0).

(E3) (u1, u2))(∞) = (0, 1).

Next, in the expressions forμ(λ), E(ξ), F , ẑ(λ), and ψ̂(λ) in Section 3, we replace
c by σ , and think of all these expressions as functions of the pair (σ, λ), although
we suppress σ in the notation. Then, given the pair (σ, (u1, u2)(ξ)) just found and
λ ∈ C, one needs z(ξ), 0 � ξ < ∞, z ∈ C

3, and ψ(ξ), −∞ < ξ � 0, ψ ∈ (C3)T ,
such that:

(E4) z(ξ) is a solution of z′ = (E(ξ)+ λF)z.
(E5) limξ→∞ e−μ(λ)ξ z(ξ) = ẑ(λ).

Fig. A.1. Evans function
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(E6) ψ(ξ) is a solution of ψ ′ = −ψ(E(ξ)+ λ̄F).
(E7) limξ→−∞ eμ(λ̄)ξψ(ξ) = ψ̂(λ̄).

The value of the Evans function D at λ is then ψ̄(0)z(0).
We approximate this calculation by one that uses a finite interval T− � ξ � T+,

with T− < 0 < T+. Given β > 0, we first need a pair (σ, (u1, u2)(ξ)), σ ∈ R,
T− � ξ � T+, (u1, u2) ∈ R × R, such that:

(A1) (u1, u2)(ξ) is a solution of (2.12)–(2.13).

(A2) ψ̂(0)((u1, u2)(T−)−
(

1
β
, 0)

)
= 0.

(A3) u2(T+) = 1.

Condition (2) says that (u1, u2)(T−) is in the first-order approximation to the unsta-
ble manifold of (2.12)–(2.13) at ( 1

β
, 0), and condition (3) says that (u1, u2)(T+) is

in the first-order approximation to the stable manifold of (2.12)–(2.13) at (0, 1).
Next, given the pair (σ, (u1, u2)(ξ)) just found and λ ∈ C, we need z(ξ),

0 � ξ � T+, z ∈ C
3, and ψ(ξ), T− � ξ � 0, ψ ∈ (C3)T , such that:

(A4) z(ξ) is a solution of z′ = (E(ξ)+ λF)z.
(A5) z(T+) is a multiple of ẑ(λ).
(A6) ψ(ξ) is a solution of ψ ′ = −ψ(E(ξ)+ λ̄F).
(A7) ψ(T−) is a multiple of ψ̂(λ̄)

Since solutions of (A1)–(A3) are only unique up to a phase shift, and solutions
of (A4)–(A5) and (A6)–(A7) are only unique up to multiplication by a complex
constant, we also need three more conditions:

(A8) (u1, u2)(ξ) satisfies a phase condition.
(A9) z(ξ) satisfies a boundary condition.

(A10) ψ(ξ) satisfies a boundary condition.

Taking into account the parameter σ , there is a three-dimensional space of solu-
tions of (A1); the three conditions (A2), (A3), (A8) pick out one of these solutions,
including the value of σ . For each (σ, λ), the space of solutions of (A4) has three
complex dimensions; conditions (A5) and (A9) constitute three complex conditions,
which pick out a unique solution. A similar argument applies to (A6). Once z(ξ) and
ψ(ξ) are found, the value of the approximate Evans function at λ is again ψ̄(0)z(0).

The phase condition used in (A8) is an integral one suited to the computation of
heteroclinic solutions [12]. In (A9) and (A10), we used (z2

1 + z2
2 + z2

3)(0)− 1 = 0
and (ψ2

1 +ψ2
2 +ψ2

3 )(0)− 1 = 0. These conditions are not guaranteed to produce
moderate values of D(λ), but did so in practice. We note that in order that D(λ)
be analytic, (A9) and (A10) must be analytic in λ, which they are. The change in
boundary conditions results in multiplying the function D(λ) from Section 3 by
an analytic function that is nonzero on the domain in which we are interested; this
change does not alter the winding number about 0.

The AUTO computation has, in addition to the parameters (β, σ, λ), the param-
eters T− and T+. To start the computation we used a graphical ODE solver to find
a value of σ for which there is solution (u1, u2)(ξ) that, when restricted to a short
enough interval T− � ξ � T+, appears to be approximately heteroclinic. Using
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this solution we then compute approximations to z(ξ) and ψ(ξ) for λ = 0 by set-
ting z(ξ) equal to a multiple of (u′

1(ξ), u′
2(ξ), 0) and using Proposition 3.3. AUTO

then uses this starting point to compute a pair (σ, (u1, u2)(ξ)) that “exactly” solves
(2.12)–(2.13) on T− � ξ � T+, and “exact” solutions z(ξ) and ψ(ξ) for λ = 0.
One can then use AUTO’s continuation routines to increase |T−| and T+ and to
vary λ. The computation shown used T− = −103.5 and T+ = 295.
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