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Eigenvalues of Self-Similar Solutions of the Dafermos
Regularization of a System of Conservation Laws via
Geometric Singular Perturbation Theory
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The Dafermos regularization of a system of n conservation laws in one space
dimension admits smooth self-similar solutions of the form u = u(X/T ). In
particular, there are such solutions near a Riemann solution consisting of
n possibly large Lax shocks. In Lin and Schecter (2004, SIAM. J. Math.
Anal. 35, 884–921), eigenvalues and eigenfunctions of the linearized Dafermos
operator at such a solution were studied using asymptotic expansions. Here
we show that the asymptotic expansions correspond to true eigenvalue–ei-
genfunction pairs. The proofs use geometric singular perturbation theory, in
particular an extension of the Exchange Lemma.
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1. INTRODUCTION

Consider a system of viscous conservation laws in one space dimension,
i.e., a partial differential equation of the form

uT +f (u)X = (B(u)uX)X, (1.1)

where X ∈ R, T ∈ [0,∞), u ∈ R
n, f : R

n → R
n, and B(u) is an n × n matrix

for which all eigenvalues have positive real part. We are interested in
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the behavior, as T → ∞, of solutions of (1.1) that satisfy the constant
boundary conditions

u(−∞, T )=u�, u(+∞, T )=ur, 0�T <∞ (1.2)

and some initial condition u(X,0)=u0(X). Our interest is not in the solu-
tion for any particular initial condition, but in the asymptotic behavior of
solutions as T →∞.

It is believed [1] that as T →∞, solutions of such intitial-boundary-
value problems typically approach Riemann solutions for the system of
conservation laws

uT +f (u)X =0. (1.3)

These are solutions of (1.3) that depend only on x = X
T

, and that satisfy
the boundary conditions

u(−∞)=u�, u(+∞)=ur . (1.4)

In numerical simulations, the convergence is seen when the solution is
viewed in the rescaled spatial variable x = X

T
; the rescaling counteracts the

spreading of the solution as time increases. Discontinuities (shock waves)
in the limiting Riemann solution satisfy the viscous profile criterion for
the viscosity B(u), i.e., they correspond to traveling waves of (1.1). Speak-
ing very roughly, Riemann solutions are believed to play the same role
for (1.1) and (1.2) that equilibria play for ordinary differential equations:
they are the simplest asymptotic states. An important difference, however,
is that Riemann solutions are not solutions of (1.1) but only of the related
Eq. (1.3).

If the Riemann solution is a single shock wave, then it corresponds
to a traveling wave solution of (1.1). Stability of such solutions has been
studied using energy methods ([9, 11, 12, 14, 29, 30, 35]) and careful anal-
ysis of the linearization of (1.1) and (1.2) at the traveling wave ([3, 18,
20, 25–27, 32]). Beginning with [13], the Evans function has been used to
study the spectrum of the linearization ([2, 10, 15, 16, 31, 41]).

Since Riemann solutions other than a single shock wave do not cor-
respond to explicit solutions of (1.1) and (1.2), the study of their stabil-
ity is less advanced. In some situations one can construct an approximate
solutions of (1.1) and (1.2) near the Riemann solution and show that solu-
tions of (1.1) and (1.2) that start near it approach it. See [36] for Riemann
solutions consisting of a single rarefaction, and [24] for Riemann solutions
consisting of weak Lax shock waves. The last paper is the only one we
know of that deals with stability of Riemann solutions containing more
than one wave.
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Since it is in the variables (x, T ) with x = X
T

that the convergence of
solutions of (1.1) and (1.2) to Riemann solutions is observed, Lin and I
proposed in [23] to make the following change of variables in (1.1) and
(1.2):

x = X

T
, t = ln T . (1.5)

(The substitution t = ln T is simply for convenience. Decay that is algebraic
in T becomes exponential in t .) We obtain

ut + (Df (u)−xI)ux = e−t (B(u)ux)x, (1.6)

u(−∞, t)=u�, u(+∞, t)=ur, 0� t <∞. (1.7)

Of course the interval 0� t <∞ corresponds to 1�T <∞, but this is not
important since we are interested in asymptotic behavior. The fact that
(1.6) is nonautonomous implies that solutions can easily approach limits
that are not themselves solutions.

In studying nonautonomous systems such as (1.6), it is natural to
first freeze the time varying coefficient and study the resulting autonomous
system. In this case one sets ε = e−t ; for large t, ε is small. One obtains

ut + (Df (u)−xI)ux = ε(B(u)ux)x (1.8)

with the boundary conditions (1.7). Returning to (X,T ) variables (1.8)
becomes

uT +f (u)X = εT (B(u)uX)X. (1.9)

Equation (1.9) is the Dafermos regularization of the system of conserva-
tion laws (1.3) associated with the viscosity B(u) ([5]; see also [38, 39]),
It is usually regarded as an artificial, nonphysical equation because of the
factor T in the viscous term. As we have seen, however, in the variables
(1.5), the Dafermos regularization is actually a natural simplification of
the physical equations.

Tzavaras [40] first proposed that the Dafermos regularization might
have a role to play in the study of asymptotic stability of solutions of
viscous conservation laws.

Stationary solutions of (1.8) and (1.7) satisfy the ODE

(Df (u)−xI)ux = ε(B(u)ux)x, (1.10)

with boundary conditions (1.4). We shall refer to a solution uε(x) of
(1.10), (1.4) as a Riemann–Dafermos solution of (1.8). It is known in many
cases that near a Riemann solution of (1.3), with shock waves that sat-
isfy the viscous profile criterion for B(u), there is a Riemann–Dafermos
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solution uε(x) of (1.8) ([28, 33, 34, 37, 40]). It is reasonable to expect that
information about the stability of uε(x) as a solution of (1.8) will be help-
ful in the study of the stability of the corresponding Riemann solution as
an asymptotic state of (1.1).

In [23], Lin and I began the study of the linearized stability of
Riemann–Dafermos solutions of (1.8). We considered only the case in
which B(u)≡I , the underlying Riemann solution consists of exactly n Lax
shock waves, and the Riemann solution satisfies various nondegeneracy
conditions. The shock waves are allowed to be large. It is shown in [23]
that in an appropriate Banach space of exponentially decaying functions,

(1) the initial value problem for (1.8), (1.7) is well-posed in a neigh-
borhood of a Riemann–Dafermos solution uε(x); and

(2) the linearization of (1.8) at uε(x) has its essential spectrum in
Re λ�− δ <0.

In addition, eigenvalues and eigenfunctions of the linearization are con-
structed as asymptotic expansions. The constructed eigenvalues have expan-
sions of the form λ=∑∞

j=−1 εjλj .

(1) Fast eigenvalues, with λ−1 �= 0, occur when λ−1 is a nonzero
eigenvalue for the linearization of the PDE (1.1) at one of the
viscous shock profiles. As described above, these eigenvalues have
been much studied using Evans function methods.

(2) Slow eigenvalues have λ−1 =0. It turns out that λ0 =−1 is always
among the slow eigenvalues. Its multiplicity is n. To lowest order,
a basis for the eigenspace is given by the derivatives of the indi-
vidual traveling waves in the n singular layers. These eigenfunc-
tions correspond to shifts of the traveling waves.

(3) Other slow eigenvalues have λ−1 equal to an eigenvalue of a
first-order hyperbolic system that arises in the study of inviscid
stability of the underlying Riemann solution. The relationship of
these eigenvalues to inviscid stability has recently been clarified
by Lewicka [21].

The paper [23] did not resolve the question of whether these eigen-
value–eigenfunction expansions correspond to true eigenvalue–eigenfunc-
tion pairs; indeed, in the case of slow eigenvalues other than −1, it did not
address the question of whether the expansions can be continued beyond
the low order that was calculated. In this paper, we show that for both fast
eigenvalues and slow eigenvalues other than −1, if the conditions required
to start the expansions hold, and if appropriate nondegeneracy conditions
are satisfied, then there are true eigenvalue–eigenfunction pairs nearby. In
addition, we show that if the conditions required to start the expansions
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do not hold at λ−1 (resp. λ0), then uε(x) has no fast eigenvalue near λ−1
ε

(resp. no slow eigenvalue near λ0).
The nondegeneracy conditions used in this paper force the eigenvalues

to be simple. We do not address multiple eigenvalues.
Our proofs use geometric singular perturbation theory rather than

asymptotic expansions. The proofs are based on Szmolyan’s construc-
tion of Riemann–Dafermos solutions using geometric singular perturba-
tion theory [37]. Following Szmolyan, we write (1.10) as an ODE system;
we then add additional variables to represent eigenvalues and linearized
state variables. We look for solutions of an extended system that represent
triples (Riemann–Dafermos solution, eigenvalue, and eigenfunction).

The related paper [22] gives a more analytic treatment of slow
eigenvalues and eigenfunctions. There it is shown how to continue the
slow eigenvalue–eigenfunction expansions to arbitrary order, and an ana-
lytic proof of existence of slow eigenvalues and eigenfunctions is given.
While the geometric singular perturbation approach yields more geomet-
ric insight, the analytic approach promises to be more useful in the study
of asymptotic behavior of solutions of (1.1).

For background on normally hyperbolic invariant manifolds, geomet-
ric singular perturbation theory, and the Exchange Lemma, all of which
are heavily used in this paper, see [4, 17, 19]. Section 4 of this paper can
also be used as an introduction to the Exchange Lemma.

The remainder of the paper is organized as follows. In Section 2, we
recall the assumptions on the underlying Riemann solution that were used
in [23] and review the construction of Riemann–Dafermos solutions. In
Section 3, we prove the results about fast eigenvalues. In Section 4, we
prove an extension of the Exchange Lemma that is needed to treat slow
eigenvalues, and in Section 5, we prove the results about slow eigenvalues.

The heart of the paper is Sections 4 and 5. The treatment of
fast eigenvalues uses only fairly standard geometric singular perturbation
theory.

2. RIEMANN–DAFERMOS SOLUTIONS

In the remainder of the paper, we consider (1.8) with B(u)≡ I :

ut + (Df (u)−xI)ux = εuxx (2.1)

with f sufficiently differentiable for the proofs.
Let −∞ = x̄0 < x̄1 < · · · < x̄n+1 = ∞. We consider a structurally sta-

ble Riemann solution u0(x), x = X
T

, of (1.3) that consists of exactly n

Lax shock waves, each of which satisfies the viscous profile criterion for
B(u)≡ I :
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u0(x)= ūi for x̄i <x < x̄i+1, i =0, . . . , n. (2.2)

The jumps in u0(x) at the x̄i may be large.
More precisely, we assume:

(R0) For all u∈R
n,Df (u) has n distinct real eigenvalues.

(R1) If we set u0 = ū0 and un = ūn in the system of equations

(f (u1) − f (u0)−x1(u1 −u0), . . . , f (un)−f (un−1)

− xn(un −un−1))= (0, . . . ,0) (2.3)

then the resulting system of n2 equations in the n2 vari-
ables (x1, u1, x2, u2, . . . , xn−1, un−1, xn) has (x̄1, ū1, x̄2, ū2, . . . ,

x̄n−1, ūn−1, x̄n) as a regular solution.
(R2) For each i = 1, . . . , n,Df (ūi−1) − x̄iI has n − i + 1 positive

eigenvalues and i − 1 negative eigenvalues, and Df (ūi) − x̄iI

has n − i positive eigenvalues and i negative eigenvalues. (In
particular, ūi−1 �= ūi for i =1, . . . , n.)

(R3) For each i =1, . . . , n, the traveling wave ODE for uT +f (u)x =
uxx ,

u̇=f (u)−f (ūi−1)− x̄i (u− ūi−1)

has a solution qi(ξ) in Wu(ūi−1)∩Ws(ūi).
(R4) Wu(ūi−1) and Ws(ūi) meet transversally along qi(ξ). Equiva-

lently, the linear differential equation

(Df (qi(ξ))− x̄iI )Uξ =Uξξ

has, up to scalar multiplication, a unique solution that
approaches zero as ξ →±∞. It is q̇i (ξ).

Stationary solutions uε(x) of (2.1), also called Riemann–Dafermos
solutions, satisfy

(Df (u)−xI)ux = εuxx. (2.4)

For small ε > 0, there is a Riemann–Dafermos solution uε(x) near u0(x)

with uε(−∞)= ū0 and uε(∞)= ūn. Let us review the construction by geo-
metric singular perturbation theory of this solution

Let x = x0 + εξ , let a dot denote derivative with respect to ξ , and
rewrite (2.4) as the system

u̇ = v, (2.5)

v̇ = (Df (u)−xI)v, (2.6)

ẋ = ε. (2.7)
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We first consider the system (2.5)–(2.7) with ε =0:

u̇ = v, (2.8)

v̇ = (Df (u)−xI)v, (2.9)

ẋ = 0. (2.10)

Let ν1(u)< · · ·<νn(u) be the eigenvalues of Df (u), and let r1(u), . . . ,

rn(u) be corresponding eigenvectors. Let ν0(u)=−∞ and νn+1(u)=∞.
For each i =0, . . . , n, let

Si ={(u, v, x) :v =0 and νi(u)<x <νi+1(u)}.

See Figure 1. Each Si is an (n+ 1)-dimensional manifold of equilibria of
(2.8)–(2.10). At (u0,0, x0) in Si , the linearization of (2.8)–(2.10) has the
semisimple eigenvalue 0 with multiplicity n+1, and n nonzero eigenvalues
νk(u) − x, k = 1, . . . , n, of which the last n − i are positive and the first i

are negative.

Remark. Systems (2.5)–(2.7) is a singular perturbation problem
expressed in the fast time ξ ; the slow time is x. However, it is not in the
standard form for such problems. Typically, for ε =0, the dimension of the
set of equilibria in a singular perturbation problem written in the fast time
equals the number of slow variables, which is not the case here. The system
can be put into the standard form by setting v =f (u)− xu+w and using

Figure 1. uvx-space and �.
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the variables (u,w, x):

u̇ = f (u)−xu+w, (2.11)

ẇ = −εu, (2.12)

ẋ = ε. (2.13)

In this form, w and x are the slow variables, and, for ε = 0, the set of
equilibria f (u)−xu+w=0 has dimension n+1 as expected. Nevertheless
we prefer to retain the form (2.5)–(2.7), largely to take advantage of the
invariance of the plane v = 0 for all ε. A secondary reason is to make it
easy to generalize to systems not in conservation form, in which Df (u)

is replaced by A(u) and the form (2.11)–(2.13) is not available. Because
of this choice, in Section 4, we treat the Exchange Lemma for singular
perturbation problems that are not in the standard form.

Let � denote the union of the n + 1 line segments {(ūi ,0, x) :
x̄i �x � x̄i+1} and the n connecting orbits (qi(ξ), q̇i(ξ), x̄i). (We use the con-
ventions that x̄0 �x means −∞<x and x � x̄n means x <∞.) see Figure 1.
For small ε >0, we shall find a Riemann–Dafermos solution near �.

We denote the unstable and stable manifolds of (u0,0, x0) for (2.8)–
(2.10) by Wu

0 (u0,0, x0) and Ws
0 (u0,0, x0); each is contained in the subspace

x = x0 of uvx-space, and they have dimensions n − i and i, respectively.
The subscript 0 stands for ε = 0. For any submanifold N of Si,Wu

0 (N)

(resp. Ws
0 (N)) denotes the union of the unstable (resp. stable) manifolds

of points of N .
For i =0, . . . , n, let Oi be a small neighborhood of ūi in R

n and for
i =1, . . . , n, let I i be a small neighborhood of x̄i in R.

For i =0, . . . , n, we inductively define i-dimensional submanifolds Mi

of Oi as follows:

(1) M0 ={ū0}.
(2) ui ∈ Oi is in Mi provided there exist ui−1 ∈ Mi−1 and xi ∈ I i

such that the triple (ui−1, xi, ui) satisfies the Rankine–Hugoniot
condition

f (ui)−f (ui−1)−xi(ui −ui−1)=0. (2.14)

In fact, a consequence of (R1) is that for i = 1, . . . , n, the mapping from
Mi−1 × I i to R

n defined by solving (2.14) for ui is a diffeomorphism onto
an i-dimensional manifold Mi (see Figure 2).

It follows that there is a smooth inverse mapping from Mi to
Mi−1 × I i, ui → (ui−1(ui), xi(ui)). Let P i = {(ui,0, xi(ui)) : ui ∈ Mi}, an
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Figure 2. M0, P 1,M1, and N1. The dimensions are, respectively, 0, 1, 1, and 2, regardless of
the value of n. In the case n = 1, which is shown accurately in the figure, Wu(ū0,0, x̄1) has
dimension 1 and Ws(S1) is open, so they meet transversally. This is described in Proposition
2.1.

i-dimensional submanifold of Si . Also, note that by (R4), for (ui−1, xi)∈
Mi−1 × I i , the traveling wave equation

u̇=f (u)−f (ui−1)−xi(u−ui−1) (2.15)

has a connecting orbit u(ξ) from ui−1 to ui ∈Mi near qi(ξ); moreover, the
(n − i + 1)-dimensional unstable manifold of ui−1 and the i-dimensional
stable manifold of ui meet transversally along this orbit.

Similarly, for i = 0, . . . , n, we define (n− i)-dimensional submanifolds
M̂i of Oi by backwards induction as follows:

(1) M̂n ={ūn}.
(2) ui ∈ Oi is in M̂i provided there exist xi+1 ∈ I i+1 and ui+1 ∈

M̂i+1 such that the triple (ui, xi+1, ui+1) satisfies the Rankine–
Hugoniot condition

f (ui)−f (ui+1)−xi+1(ui −ui+1)=0.

Each ui ∈M̂i is associated with a unique point (xi+1(ui), ui+1(ui))∈I i+1 ×
M̂i+1. Let P̂ i ={(ui,0, xi+1(ui)) : ui ∈ M̂i}, an (n− i)-dimensional subman-
ifold of Si . Note that for (xi+1, ui+1) ∈ I i+1 × M̂i+1, the traveling wave
equation

u̇=f (u)−f (ui+1)−xi+1(u−ui+1) (2.16)

has a connecting orbit u(ξ) from ui ∈ M̂i to ui+1 that is near qi+1(ξ);
moreover, the (n − i)-dimensional unstable manifold of ui and the
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(i +1)-dimensional stable manifold of ui+1 meet transversally along this
orbit.

Proposition 2.1. For i = 1, . . . , n, let (ui−1,0, xi) ∈ Mi−1 × {0} × I i ⊂
Si−1. Then Wu

0 (ui−1,0, xi) and Ws
0 (Si) meet transversally along the curve

(u(ξ), u̇(ξ), xi), where u(ξ) is a solution of (2.15) from ui−1 to the
corresponding point ui ∈Mi .

For i = 0, . . . , n − 1, let (ui+1,0, xi+1) ∈ M̂i+1 × {0} × I i+1 ⊂ Si+1.
Then Wu

0 (Si) and Ws
0 (ui+1,0, xi+1) meet transversally along the curve

(u(ξ), u̇(ξ), xi+1), where u(ξ) is a solution of (2.16) to ui+1 from the cor-
responding point ui ∈ M̂i (see Figure 2).

Proof. We prove only the first part. Let

H ={(u, v, x) :v =f (u)−f (ui−1)−x(u−ui−1) and x =xi}.
H is an n-dimensional manifold that is invariant under (2.8)–(2.10), con-
tains (ui−1,0, xi), and meets Si transversally at (ui,0, xi). In fact, H meets
Ws

0 (Si) transversally in Ws
0 (ui,0, xi). Using u as the coordinate on H ,

we see that the system (2.8)–(2.10) reduces on H to (2.15). By (R4),
Wu

0 (ui−1,0, xi) and Ws
0 (ui,0, xi) meet transversally within H , The result

follows.

We remark that in the system (2.11)–(2.13), H has the equation w =
constant.

Note that dim Wu
0 (ui−1,0, xi) = n − i + 1,dim Ws

0 (Si) = n + 1 + i,
and the sum of these numbers is 2n + 2, which is one more than the
dimension of uvx-space. Thus a transverse intersection of these two man-
ifolds is a curve. Similarly, dim Wu

0 (Si) = n + 1 + n − i = 2n + 1 − i and
dim Ws

0 (ui+1,0, xi+1)= i +1.
Let Ni ={(u,0, x)∈Si : u∈Mi} and N̂ i ={(u,0, x)∈Si : u∈ M̂i}. Note

that dim Ni = i +1,dim Wu(Ni)=n+1 independent of i,dim N̂ i =n− i +1,
and dim Ws(N̂ i)=n+1 independent of i (see Figure 2).

Proposition 2.2. For i = 1, . . . , n,Wu
0 (Ni−1) meets Ws

0 (Si) transver-
sally along an i-parameter family of connecting orbits from Mi−1 ×{0}× I i

to Si . For each point (ui−1,0, xi)∈Mi−1 ×{0}× I i there is a unique ui such
that one orbit of the family connects (ui−1,0, xi) to (ui,0, xi). The set of
such ui is Mi , and the set of such (ui,0, xi) is P i . If (ui,0, xi) ∈ P i and
(ũ, ṽ, xi) ∈ Wu

0 (Ni−1) ∩ Ws
0 (ui,0, xi), then the tangent spaces to Wu

0 (Ni−1)

and Ws
0 (ui,0, xi) at (ũ, ṽ, xi) have one-dimensional intersection.

For i = 0, . . . , n − 1,Wu
0 (Si) meets Ws

0 (N̂ i+1) transversally along an
(n − i)-parameter family of connecting orbits from Si to M̂i+1 × {0} ×
I i+1. For each point (ui+1,0, xi+1) ∈ M̂i+1 × {0} × I i+1 there is a unique
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ui such that one orbit of the family connects (ui,0, xi+1) to (ui+1,0, xi+1).
The set of such ui is M̂i , and the set of such (ui,0, xi+1) is P̂ i . If
(ui,0, xi+1)∈ P̂ i and (ũ, ṽ, xi+1)∈Wu

0 (ui,0, xi+1)∩Ws
0 (N̂ i+1), then the tan-

gent spaces to Wu
0 (ui,0, xi+1) and Ws

0 (N̂ i+1) at (ũ, ṽ, xi+1) have one-dimen-
sional intersection.

See Figure 2. This proposition is an immediate consequence of the
previous one, except for the last sentence of each paragraph, which is a
consequence of (R4).

For δ >0, let

S0
δ =

{

(u,0, x) :‖u‖� 1
δ

and x � ν1(u)− δ

}

,

Si
δ =

{

(u,0, x) :‖u‖� 1
δ

and νi(u)+ δ �x � νi+1(u)− δ

}

, i =1, . . . , n−1,

Sn
δ =

{

(u,0, x) :‖u‖� 1
δ

and νn(u)+ δ �x

}

.

Proposition 2.3. For any δ>0, all Si
δ, i =0, . . . , n, are normally hyper-

bolic invariant manifolds of equilibria.

Proof. At any (u,0, x)∈Si
δ, there are n− i positive eigenvalues and i

negative eigenvalues. For S1
δ , . . . , Sn−1

δ , which are compact, the conclusion
follows immediately. S0

δ and Sn
δ are not compact, but the conclusion fol-

lows from an easy compactification argument (see Appendix A).

For small ε >0, each Si
δ remains a normally hyperbolic, locally invari-

ant manifold [8]. It no longer consists of equilibria, since the systems
(2.5)–(2.7) on the invariant manifold v =0 is

u̇ = 0, (2.17)

ẋ = ε. (2.18)

The orbits are the lines u = constant. Suppose M is a submanifold of
u-space, and let N ={(u,0, x)∈Si

δ : u∈M}. Then for each ε,N is invariant
under the flow of (2.17) and (2.18). From normal hyperbolicity it follows
that for ε >0 sufficiently small, N has unstable and stable manifolds Wu

ε (N)

and Ws
ε (N) that are close to Wu

0 (N) and Ws
0 (N), respectively.

A Riemann–Dafermos solution with left state ū0 and right state ūn

corresponds to an intersection of Wu
ε (N0) and Ws

ε (N̂n).
Rewriting (2.17) and (2.18) in the slow time gives

u′ = 0, (2.19)

x′ = 1. (2.20)
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Proposition 2.4. The vector field defined by (2.19) and (2.20) is
nowhere tangent to any P i or P̂ i .

The following result of Szmolyan [37, unpublished] says that for small
ε > 0, there is a Riemann–Dafermos solution near �, with the same left
and right states.

Theorem 2.1. If f is sufficiently differentiable, then for small ε >

0,Wu
ε (N0) and Ws

ε (N̂n) meet transversally along a single orbit uε(x) near �.

Proof. The Exchange Lemma implies that for small ε > 0,Wu
ε (N0)

is C1-close to Wu
0 (N1) near (ū1,0, x̄2). See Figure 3; the hypotheses of

the Exchange Lemma are verified by Proposition 2.2 with i = 1 and
Proposition 2.4 for P 1.

(Of course, N0 and S1 are not normally hyperbolic invariant mani-
folds, so before using the Exchange Lemma they should be replaced by
N0

δ = N0 ∩ S0
δ and S1

δ , respectively, for some sufficiently small δ > 0. The
latter are normally hyperbolic invariant manifolds by Proposition 2.3. We
shall ignore this sort of detail. Also, strictly speaking, we are using the
Exchange Lemma for systems not in the standard slow–fast form, as
presented in Section 4.)

For consistency with the treatment of eigenvalues in Sections 3 and 5,
the remainder of the proof is somewhat more complicated than necessary.

Let � be a number between 1 and n. It is enough to show that
Wu

ε (N0) and Ws
ε (N̂n) meet transversally near (q�(0), q̇�(0), x̄�).

Proceeding inductively, we see that Wu
ε (N0) is C1-close to Wu

0 (N�−1)

near (ū�−1,0, x̄�). Using Proposition 2.2. Wu
ε (N0) meets Ws

0 (S�) in an
�-parameter family of connecting orbits to

Figure 3. For small ε > 0,Wu
ε (N0) is C1-close to Wu

0 (N1) near (ū1,0, x̄2). Compare
Figure 2.
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P � = {(u�,0, x�)∈O� ×{0}× I � :

f (u1)−f (ū0)−x1(u1 − ū0)=0, . . . , f (u�)−f (u�−1)

−x�(u� −u�−1)=0

for some (x1, u1, . . . , x�−1, u�−1)∈ I 1 ×O1 ×· · ·× I �−1 ×O�−1}.

Similarly,

P̂ � = {(u�,0, x�+1)∈O� ×{0}× I �+1 :

f (u�+1)−f (u�)−x�+1(u�+1 −u�)

= 0, . . . , f (ūn)−f (un−1)−xn(ūn −un−1)=0

for some (u�+1, x�+2, . . . , un−1, xn)∈O�+1 × I �+2 ×· · ·×On−1 × In},

and, for small ε >0,Ws
ε (N̂n) is C1-close to Ws

0 (N̂�) near (ū�,0, x̄�).
From (R1), P �, of dimension �, and N̂�, of dimension n−�+1, meet

transversally within S� in the point (ū�,0, x̄�). It follows from Proposi-
tion 2.2 with i = � that Wu

0 (N�−1) and Ws
0 (N̂�) meet transversally along

the connecting orbit (q�(ξ), q̇�(ξ), x̄�). Hence, Wu
ε (N0) and Ws

ε (Nn) meet
transversally in a curve that passes near (q�(0), q̇�(0), x̄�).

Remark. The Exchange Lemma has been used �−1 times in follow-
ing Wu

ε (N0) and n− � times in following Ws
ε (N̂n). Let L= max(�− 1, n−

�). Thus, using the Exchange Lemma as stated in Section 4, f must be
at least C6L+1. A similar remark applies to the theorems in Sections 3
and 5.

3. FAST EIGENVALUES

Eigenvalues λ and corresponding eigenfunctions U(x) of the linear-
ized Dafermos operator at uε(x) satisfy

λU + (Df (u)−xI)Ux +D2f (u)uxU = εUxx with u=uε(x) and

U(±∞)=0. (3.1)

The Eqs. (2.4) and (3.1) may be combined into a first-order auton-
omous system. Letting x = x0 + εξ , using a dot to denote derivative with
respect to ξ , and letting ρ = ελ, we convert this system to
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u̇ = v, (3.2)

v̇ = (Df (u)−xI)v, (3.3)

ẋ = ε, (3.4)

ρ̇ = 0, (3.5)

U̇ = V, (3.6)

V̇ = ρU + (Df (u)−xI)V +D2f (u)vU. (3.7)

(We have added ρ as a state variable.) The system (3.2)–(3.7) is a linear
skew-product flow on the trivial vector bundle uvxρ-space ×UV -space. We
should take take ρ ∈C and (U,V )∈C×C.

We consider the systems (3.2)–(3.7) with ε =0:

u̇ = v, (3.8)

v̇ = (Df (u)−xI)v, (3.9)

ẋ = 0, (3.10)

ρ̇ = 0, (3.11)

U̇ = V, (3.12)

V̇ = ρU + (Df (u)−xI)V +D2f (u)vU. (3.13)

For each i =0, . . . , n, let

S i ={(u, v, x, ρ,U,V ) : (u, v, x)∈Si and U =V =0}.
Each S i is a manifold of equilibria of (3.8)–(3.13).

The linear system (3.12) and (3.13), with v=0 and (u, x, ρ) fixed, has
2n eigenvalues

µ
j
±(u, v, ρ)= 1

2

(
νj (u)−x ± ((νj (u)−x)2 +4ρ)

1
2

)
, j =1, . . . , n.

For (u,0, x) in one of the sets Si , let r(u, x) = minj |νj (u) − x|, and let
G(u, x) = {ρ = σ + iω ∈ C : σ > − ω2

r(u,x)2 }. For ρ ∈ G(u, x), each µ
j
+(u, x, ρ)

has positive real part and each µ
j
−(u, x, ρ) has negative real part. Thus,

at (u,0, x, ρ,0,0) in S i with ρ ∈ G(u, x), the linearization of (3.8)–(3.13)
has the semisimple eigenvalue 0 with multiplicity n+2;n nonzero “spatial”
eigenvalues νk(u) − x, k = 1, . . . , n, of which n − i are positive and i are
negative; and 2n “linear” eigenvalues µk±(u, x, ρ), k = 1, . . . , n, of which n

have positive real part and n have negative real part.
Let G=∩n

i=1G(ūi−1, x̄i )∩∩n
i=1G(ūi, x̄i ), which includes the real inter-

val (0,∞). The theorems of this section apply to any ρ̄ ∈G. For simplicity,
however, we will only consider ρ̄ ∈ (0,∞). Therefore, in defining the state
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space, we shall take ρ ∈R and (U,V )∈R
n ×R

n. Note that for (u,0, x) in
any Si and any ρ > 0, all µ

j
+(u, x, ρ) are positive and all µ

j
−(u, x, ρ) are

negative.
Let (ũ, ṽ, x0)∈Wu

0 (u0,0, x0), and let (u, v)(ξ) be the solution of (3.8)
and (3.9) with (u, v)(0)= (ũ, ṽ). Then limξ→−∞(u, v)(ξ)= (u0,0). The lin-
ear system (3.12) and (3.13) with (u, v) = (u, v)(ξ), x = x0, and ρ = ρ0 >

0 has n linearly independent solutions that approach 0 exponentially as
ξ →−∞. Let Eu

0 (ũ, ṽ, x0, ρ0) denote their span. Then for the system (3.8)–
(3.13),

Wu
0 (u0,0, x0, ρ0,0,0)={(u, v, x0, ρ0,U,V ) :

(u, v, x0)∈Wu
0 (u0,0, x0) and (U,V )∈Eu

0 (u, v, x0, ρ0)}.
Similarly, let (ũ, ṽ, x0)∈Ws

0 (u0,0, x0), and let (u, v)(ξ) be the solution
of (3.8) and (3.9) with (u, v)(0) = (ũ, ṽ). Then limξ→∞(u, v)(ξ) = (u0,0).
The linear system (3.12) and (3.13) with (u, v)= (u, v)(ξ), x =x0, and ρ =
ρ0 > 0 has n linearly independent solutions that approach 0 exponentially
as ξ → ∞. Let Es

0(ũ, ṽ, x0, ρ0) denote their span. Then for the system
(3.8)–(3.13),

Ws
0 (u0,0, x0, ρ0,0,0)={(u, v, x0, ρ0,U,V ) :

(u, v, x0)∈Ws
0 (u0,0, x0) and (U,V )∈Es

0(u, v, x0, ρ0)}.
Recall that each qi(ξ), with ξ =X − x̄iT , is a traveling wave solution

of uT +f (u)x =uxx , so an Evans function [7] for qi(ξ) for the PDE (1.1)
can be defined. For a number ρ̄ >0, consider the following assumptions:

(F1) There is a number �,1� ��n, such that ρ̄ is a simple zero of
the Evans function for q�(ξ).

(F2) For i �=�, ρ̄ is not a zero of the Evans function for qi(ξ).

In geometric language, the second assumption just says that for i �=
�,Eu

0 (qi(0), q̇i(0), x̄i , ρ̄) and Es
0(q

i(0)), q̇i(0), x̄i , ρ̄) are transverse, so their
intersection is the origin. The first assumption says that Eu

0 (q�(0), q̇�(0),

x̄�, ρ̄) and Es
0(q

�(0), q̇�i(0), x̄�, ρ̄) have one-dimensional intersection, and
this intersection breaks in a nondegenerate manner as ρ varies. The Evans
function is described in more detail in the proof of Proposition 3.3.

Let J be an interval around ρ̄ in R.

Proposition 3.1. Suppose ρ̄ satisfies assumption (F2).
For i =1, . . . , �−1, let (ui−1,0, xi, ρ0,0,0)∈S i−1 with ui−1 ∈Mi−1, xi

∈ I i , and ρ0 ∈ J . Then Wu
0 (ui−1,0, xi, ρ0,0,0) and Ws

0 (S i ) meet transver-
sally along the curve (u(ξ), u̇(ξ), xi, ρ0,0,0), where u(ξ) is a solution of
(2.15) from ui−1 to the corresponding point ui ∈Mi .
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For i = �, . . . , n − 1, let(ui+l ,0, xi+1, ρ0,0,0) ∈ S i+1 with ui+1 ∈ M̂i+1,

xi+1 ∈ I i+1, and ρ0 ∈ J . Then Wu
0 (S i ) and Ws

0 (ui+1,0, xi+1, ρ0,0,0) meet
transversally along the curve (u(ξ), u̇(ξ), xi+1, ρ0,0,0) where u(ξ) is a solu-
tion of (2.16) to ui+l from the corresponding point ui ∈Mi .

Note that dim Wu
0 (ui−1,0, xi, ρ0,0,0) = 2n − (i − 1), dim Ws

0 (S i ) =
2n+ i +2, and the sum of these numbers is 4n+3, which is one more than
the dimension of uvxUV ρ-space. Similarly, dim Wu

0 (S i )= 3n− i + 2 and
dim Ws

0 (ui+l ,0, xi+1, ρ0,0,0)=n+ i +1.
Let

Qi = {(u,0, x, ρ,0,0)∈S i : (u,0, x)∈P i} and

Ri = {(u,0, x, ρ,0,0)∈S i :u∈Mi},
Q̂i = {(u,0, x, ρ,0,0)∈S i : (u,0, x)∈ P̂ i} and

R̂i = {(u,0, x, ρ,0,0)∈S i :u∈ M̂i}.

Note that dim Qi = i + 1, dim Ri = i + 2, dim Wu
0 (Ri ) = 2n + 2 indepen-

dent of i, dim Q̂i =n− i +1, dim R̂i =n− i +2, and dim Ws
0 (R̂i )=2n+2

independent of i.
Note that for ε > 0, an intersection of Wu

ε (R0) and Ws
ε (R̂n) for

which (U,V ) �= (0,0) gives simultaneously a Riemann–Dafermos solution
(uε(ξ), vε(ξ), εξ) as in Section 2, an eigenvalue λ(ε) = ρ(ε)

ε
and a corre-

sponding eigenfunction (U∈(ξ),Vε(ξ)).

Proposition 3.2. Suppose ρ̄ satisfies assumption (F2).
For i = 1, . . . , � − 1,Wu

0 (Ri−1) meets Ws
0 (S i ) transversally along an

(i + 1)-dimensional family of connecting orbits. In particular, for each point
(ui−1,0, xi, ρ0,0,0) ∈ Ri−1 with xi ∈ I i , there is a unique ui such that one
orbit (u(ξ), u̇(ξ), xi, ρ0,0,0) of the family connects it to (ui,0, xi, ρ0,0,0).
The set of such ui is Mi , and the set of such (ui,0, xi, ρ0,0,0) is Qi . If
(ui,0, xi, ρ0,0,0) ∈ Qi and (ũ, ṽ, xi, ρ0,0,0) ∈ Wu

0 (Ri−1) ∩ Ws
0 (ui,0, xi, ρ0,

0,0), then the tangent spaces to Wu
0 (Ri−1) and Ws

0 (ui,0, xi, ρ0,0,0) at (ũ,

ṽ, xi, ρ0,0,0) have one-dimensional intersection.
For i = �, . . . , n − 1,Wu

0 (S i ) meets Ws
0 (R̂i+1) transversally along an

n − i + 1-dimensional family of connecting orbits. In particular, for each
point (ui+1,0, xi+l , ρ0,0,0) ∈ R̂i+1 with xi+1 ∈ I i+1, there is a unique
ui such that one orbit (u(ξ), u̇(ξ), xi+1, ρ0,0,0) of the family connects
(ui,0, xi+1, ρ0,0,0) to it. The set of such ui is Mi , and the set of such
(ui,0, xi, ρ0,0,0) is Q̂i . If (ui,0, xi, ρ0,0,0) ∈ Q̂i and (ũ, ṽ, xi, ρ0,0,0) ∈
Wu

0 (ui,0, xi, ρ
0,0,0) ∩ WS

0 (Ri+1), then the tangent spaces to Wu
0 (ui,0, xi,

ρ0,0,0) and Ws
0 (Ri+1) at (ũ, ṽ, xi, ρ0,0,0) have one-dimensional intersection.
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Suppose ρ̄ satisfies assumption (F1). Let (U1, V1) span Eu
0 (q�(0),

q̇�i(0), x̄�, ρ̄ ∩Es
0(q

�(0), x̄�, ρ̄) and let (U1(ξ),V1(ξ)) be the solution of the
linear systems (3.12) and (3.13) with (u, v, x, ρ) = (q�(ξ), q̇�(ξ), x̄�ρ̄) and
(U(0),V (0))= (U1, V1).

Proposition 3.3. Suppose ρ̄ satisfies assumption (F1). Then Wu
0 (R�−1)

and Ws
0 (R̂�), both of which have dimension 2n + 2 in (4n + 2)-dimensional

uvxρUV -space, meet transversally along

(q�(ξ), q̇�(ξ), x̄�, ρ̄,U1(ξ),V1(ξ)). (3.14)

Their intersection includes the two-dimensional manifold (q�(ξ), q̇�(ξ), x̄�, ρ̄,

aU1(ξ), aV1(ξ)), and includes no other points near (q�(0), q̇�(0), x̄�, ρ̄,U1(0),

V1(0)).

Proof. The intersection clearly includes the given manifold. Assum-
ing transversality, the intersection is two-dimensional and therefore can-
not include other points near (q�(0), q̇�(0), x̄�, ρ̄, aU1(0), aV1(0)). Thus we
only need to show that the intersection is transverse, i.e., that the tangent
spaces to Wu

0 (R�−1) and Ws
0 (R̂�) at (q�(0), q̇�(0), x̄�, ρ̄,U1(0),V1(0)) span

R
4n+2.

Choose (U2, V2), . . . , (Un,Vn) such that

(1) {(U1, V1), (U2, V2), . . . , (Un,Vn)} is a basis for Eu
0 (q�(0)), q̇�(0),

x̄�, ρ̄);
(2) {(U1, V1), (Un+1, Vn+1), . . . , (U2n−1, V2n−1)} is a basis for Es

0
(q�(0), q̇�(0), x̄�, ρ̄).

On UV -space we use the coordinate system

(U,V )=a(U1, V1)+
n∑

k=2

bk(Uk,Vk)+
2n−1∑

k=n+1

ck(Uk,Vk)+ z(Un,Vn).

Let p̃ = (q�(0), q̇�(0), x̄�, ρ̄,U1, V1).
A neighborhood of p̃ in Wu

0 (R�−1) can be parameterized as follows.
Wu

0 (N�−1) is locally parameterized by a map φ : R
n+1 → uvx-space with

φ(0)= (q�(0), q̇�(0), x̄�) and Dφ injective. Wu
0 (R�−1) is locally parameter-

ized by a map

(α, ρ, a, b)∈R
n+1 ×R×R

n−1 ×R→uvxρabcz− space,

(α, ρ, a, b)→ (φ(α), ρ, a, b,C(α,ρ, a, b),Z(α,ρ, a, b)),

with C(α,ρ, a, b) = C0(α, ρ)a + C1(α, ρ)b,Z(α,ρ, a, b) = Z0(α, ρ)a + Z1
(α, ρ)b, and Ci(0, ρ̄) and Zi(0, ρ̄) all equal to 0. Note that (α, ρ, a, b) =
(0, ρ̄,1,0) corresponds to p̃.
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Similarly, a neighborhood of p̃ in Ws
0 (R̂�) can be parameterized as

follows. Ws
0 (N̂�) is locally parameterized by a map φ̂ : R

n+1 → uvx-space
with φ̂ = (q�(0), q̇�(0), x̄�) and Dφ̂ injective. Ws

0 (R̂�) is locally parameter-
ized by a map

(β, ρ, a, c)∈R
(n+1)+1+(n−1)+1 →uvxρabcz-space,

(β, ρ, a, c)→ (φ̂(β, ρ, a, B̂(β, ρ, a, c), c, Ẑ(β, ρ, a, c))

with B̂(β, ρ, a, c)=B̂0(β, ρ)a+B̂1(β, ρ)c, Ẑ(β, ρ, a, c)=Ẑ0(β, ρ)a,+Ẑ1(β, ρ)c,

and B̂i(0, ρ̄) and Ẑi(0, ρ̄) all equal to 0. Note that (β, ρ, a, c)= (0, ρ̄,1,0)

corresponds to p̃.
The tangent spaces to Wu

0 (R�−1) and Ws
0 (R̂�) at p̃ are spanned,

respectively, by the column vectors in the matrices
⎛

⎜
⎜
⎜
⎜
⎜
⎝

Dφ(0) 0 0 0
0 1 0 0
0 0 1 0
0 0 0 I

DαC(0, ρ̄,1,0) DρC(0, ρ̄,1,0) 0 0
DαZ(0, ρ̄,1,0) DρZ(0, ρ̄,1,0) 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Dφ̂(0) 0 0 0
0 1 0 0
0 0 1 0

DβB̂(0, ρ̄,1,0) DρB̂(0, ρ̄,1,0) 0 0
0 0 0 I

DρẐ(0, ρ̄,1,0) DρẐ(0, ρ̄,1,0) 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The span of all these column vectors equals the span of the column
vectors in the matrix
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Dφ(0) 0 Dφ̂(0) 0 0 0 0
0 1 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I

DαZ(0, ρ̄,1,0) DρZ(0, ρ̄,1,0) DβẐ(0, ρ̄,1,0) DρẐ(0, ρ̄,1,0) 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(3.15)

Now the n+ 1 column vectors in Dφ(0) and the n+ 1 column vectors in
Dφ̂(0) together span (2n+ 1)-dimensional uvx-space by [33], so the span
of the 2n+2 column vectors in the matrix
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(
Dφ(0) Dφ̂(0)

DαZ(0, ρ̄,1,0) DβẐ(0, ρ̄,1,0)

)

(3.16)

has dimension at least 2n+1. In fact the dimension is exactly 2n+1.
The reason is that the known intersection (3.14) of Wu

0 (R�−1) and
Ws

0 (R̂�) implies the existence of functions (α(ξ), b(ξ)) and (β(ξ), c(ξ)),
with (α(0), b(0))= (0,0), (β(0), c(0))= (0,0), and α′(0) and β ′(0) nonzero,
such that

(φ(α(ξ)), ρ̂,1, b(ξ),C(α(ξ), ρ̄,1, b(ξ)),Z(α(ξ), ρ̄,1, b(ξ)))

= (φ̂(β(ξ)), ρ̄,1, B̂(β(ξ), ρ̄,1, c(ξ)), c(ξ), Ẑ(β(ξ), ρ̄,1, c(ξ))).

Therefore,
(

Dφ(0)α′(0)

DαZ(0, ρ̄,1,0)α′(0)

)

=
(

Dφ̂(0)β ′(0)

DβẐ(0, ρ̄,1,0)β ′(0)

)

.

It follows easily that the span of the columns of (3.16) has dimension
2n+1, not 2n+2. An easy consequence is that the columns of (3.15) span
R

4n+2 if and only if the matrix
(

1 1
DρZ(0, ρ̄,1,0) DρẐ(0, ρ̄,1,0)

)

is invertible, which occurs if and only if

DρZ(0, ρ̄,1,0)−DρẐ(0, ρ̄,1,0) �=0. (3.17)

The latter is equivalent to the assumption that ρ̄ is a simple 0 for the
Evans function of q�. This may be seen as follows: Eu

0 (q�(0), q̇�(0), x̄�, ρ̄)

and Es
0(q

�(0), q̇�(0), x̄�, ρ̄) are spanned, respectively, by the column vectors
in the matrices

⎛

⎜
⎝

1 0
0 I

C0(0, ρ) C1(0, ρ)

Z0(0, ρ) Z1(0, ρ)

⎞

⎟
⎠ and

⎛

⎜
⎜
⎝

1 0
B̂0(0, ρ) B̂1(0, ρ)

0 I

Ẑ0(0, ρ) Ẑ1(0, ρ)

⎞

⎟
⎟
⎠

Therefore, by definition, the Evans function is

E(ρ)=det

⎛

⎜
⎜
⎝

1 0 1 0
0 I B̂0(0,ρ) B̂1(0,ρ)

C0(0,ρ) C1(0,ρ) 0 I

Z0(0,ρ) Z1(0,ρ) Ẑ0(0,ρ) Ẑ1(0,ρ)

⎞

⎟
⎟
⎠

=det

⎛

⎝
I B̂0(0,ρ) B̂1(0,ρ)

C1(0,ρ) 0 I

Z1(0,ρ) Ẑ0(0,ρ) Ẑ1(0,ρ)

⎞

⎠+(−1)ndet

⎛

⎝
0 I B̂1(0,ρ)

C0(0,ρ) C1(0,ρ) I

Z0(0,ρ) Z1(0,ρ) Ẑ0(0,ρ)

⎞

⎠.
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Since all the functions are 0 at ρ = ρ̄,E(ρ̄)=0 and

E′(ρ̄)=det

⎛

⎝
I DρB̂0(0, ρ̄) 0
0 0 I

0 DρẐ0(0, ρ̄) 0

⎞

⎠+ (−1)ndet

⎛

⎝
0 I 0

DρC0(0, ρ̄) 0 I

DρZ0(0, ρ̄) 0 0

⎞

⎠

= (−1)n(DρZ0(0, ρ̄)−DρẐ0(0, ρ̄)).

Thus E′(ρ̄) �=0 if and only if (3.17) holds.

Let �̃ denote the union of the n + 1 line segments {(ūi ,0, x, ρ̄,0,0) :
x̄i�x�x̄i+1}; the n−1 connecting orbits (qi(ξ), q̇i(ξ), x̄i , ρ̄,0,0), i �=�; and
the connecting orbit (q�(ξ), q̇�(ξ), x̄�, ρ̄,U1(ξ),V1(ξ)).

Analogous to the situation in Section 2, the Ri and S i , which remain
invariant for ε > 0, are not normally hyperbolic invariant manifolds, but
subsets Ri

δ and S i
δ are. We shall ignore this detail and simply speak of

Wu
ε (Ri ), etc.

The following theorem says that if ρ̄ satisfies assumptions (F1) and
(F2), then for small ε >0, there is an eigenvalue near ρ̄

ε
with eigenfunction

near �̃. In particular, consistent with the asymptotic expansion of [23], the
eigenfunction is approximately 0 except near x̄�.

Theorem 3.1. Suppose f is sufficiently differentiable and ρ̄ satisfies
assumptions (F1) and (F2). Then for small ε > 0,Wu

ε (R0) and Ws
ε (R̂n),

both of which have dimension 2n+2 in (4n+2)-dimensional uvxρUV -space,
meet transversally near �̃. Their intersection includes a two-dimensional
manifold (uε(ξ), u̇ε(ξ), εξ, ρ(ε), aUε(ξ), aVε(ξ)), with uε(ξ) the Riemann–
Dafermos solution and ρ(ε)= ρ̄ +O(ε).

Remark. The theorem holds for any ρ̄ ∈ G that satisfies (F1) and
(F2), except that the intersection has one real dimension (ξ) plus one com-
plex dimension (a).

Proof. Following Wu
ε (R0) by the Exchange Lemma, whose hypothe-

ses are verified by Proposition 3.2 and an analogue of Proposition 2.4, we
see that Wu

ε (R0) is eventually C1-close to Wu
ε (R�−1). Following Ws

ε (R̂n)

backwards by the Exchange Lemma, we see that Ws
ε (R̂n) is eventually C1-

close to Ws
0 (R̂�). By Proposition 3.3, Wu

ε (R0) and Ws
ε (R̂n) meet trans-

versally near (q�(0), q̇�(0), x̄�, ρ̄,U1(0),V1(0)). The intersection therefore
contains points with nonzero (U,V )-component. Since the manifolds both
have dimension 2n + 2, the intersection has dimension 2, and must have
the given form.

Remark. Since the intersection of Wu
0 (R�−1) and Ws

0 (ū�,0, x�,0,0, ρ̄)

is two-dimensional (it is the manifold described in Proposition 3.3), we
cannot use the Exchange Lemma at this stage.
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Theorem 3.2. Suppose that f is sufficiently differentiable and for all
i = 1, . . . , n, ρ̄ ∈G is not a zero of the Evans function for qi(ξ). Then there
are numbers δ0 >0 and ε0 >0 such that for |ρ − ρ̄|<δ0 and 0<ε <ε0, λ= ρ

ε
is not an eigenvalue of the linearized Dafermos operator at the Riemann–
Dafermos solution uε .

Proof. We give the proof for ρ̄ > 0. In this case, Wu
0 (R�−1) and

Ws
0 (R̂�) meet transversally along the two-dimensional manifold (q�(ξ), q̇�(ξ),

x̄�, ρ,0,0) at (q�(0), q̇�(0), x̄�, ρ̄,0,0). It follows that for small ε >0,Wu
ε (R0)

and Ws
ε (R̂n) meet transversally near (q�(0), q̇�(0), x̄�, ρ̄,0,0) along their

known two-dimensional intersection (uε(ξ), u̇ε(ξ), εξ, ρ,0,0). The result is
just a restatement of this fact.

4. EXCHANGE LEMMA

The treatment of slow eigenvalues will require an extension of the
Exchange Lemma to a certain degenerate situation involving a skew-prod-
uct flow on a vector bundle. In this section, we state and prove this exten-
sion. Our proof includes a proof of the usual Exchange Lemma, with the
context changed a little to accommodate singular perturbation problems
that are not in the standard slow-fast form. It is based on the methods of
[4] and [6].

On the trivial vector bundle R
p+1 × R

p, with coordinates (θ,�),
consider a differential equation

θ̇ =f (θ, ε), (4.1)

�̇=A(θ, ε)� (4.2)

with f and A(θ, ε)� Cr+6, r�1. Note that (4.2) is linear in �, and that
A(θ, ε)� is Cr+6 if and only if A is Cr+6.

We assume that (4.1) satisfies the usual hypotheses of the Exchange
Lemma at a point (θ0,0), modified slightly since (4.1) is not in the stan-
dard slow-fast form. In particular, we assume that there are integers
k�0, ��1,m�1, and n�1 such that k +�+m+n=p and

(E1) θ̇ = f (θ,0) has a (k + � + 1)-dimensional normally hyperbolic
manifold of equilibria S0.

(E2) For each θ0 ∈ S0,Dθf (θ0,0) has m eigenvalues with negative
real part and n eigenvalues with positive real part.

(Actually, the Exchange Lemma permits �=0, but the extension discussed
in this section requires ��1.)

For the differential equation θ̇ = f (θ,0), each point of S0 has a sta-
ble manifold Ws

0 (θ0) of dimension m and an unstable manifold Wu
0 (θ0) of
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dimension n. The union of the stable manifolds of points of S0 is Ws
0 (S0),

which has dimension k +�+1+m; the union of the unstable manifolds of
points of S0 is Wu

0 (S0), which has dimension k +�+1+n (see Figure 4).
By normal hyperbolicity, for small ε>0 there is a normally hyperbolic,

locally invariant manifold Sε near S0 with stable and unstable manifolds
Ws

ε (Sε) and Wu
ε (Sε), respectively.

For small ε�0, let Hε be a Cr+6 submanifold of θ -space of dimen-
sion k + n. We assume that the sets Hε × {ε} fit together to form a Cr+6

submanifold of θε-space.
We assume (see Figure 4):

(E3) H0 is transverse to Ws
0 (S0) at a point p in Ws

0 (θ0)\{θ0}, and
TpH0 ∩TpWs

0 (θ0)={0}.
Then for small ε�0, the intersection of Hε and Ws

ε (Sε) is a manifold of
dimension k that projects along the invariant foliation of Ws

ε (Sε) to a
k-dimensional submanifold Pε of Sε .

The sets Sε × {ε} fit together to form a Cr+6 submanifold S of θε-
space. S can be parameterized by (w, ε) with w∈R

k+�+1 and (w, ε)= (0,0)

corresponding to (θ, ε)= (θ0,0). Since S0 consists of equilibria, the differ-
ential equation θ̇ =f (θ, ε) restricted to S has the form

ẇ = εg(w, ε).

We assume

(E4) g(0,0) is not tangent to the submanifold of w-space that corre-
sponds to P0.

Assumptions (E1)–(E4) are the usual hypotheses for the Exchange Lemma.

Figure 4. Assumptions (E1)–(E3) with k = �= 0 and m=n= 1. H0 is one-dimensional. It is
transverse to the two-dimensional set Ws

0 (S0), and meets the one-dimensional set Ws
0 (θ0) in

the point p. Under the flow, H0 becomes the two-dimensional set H ∗
0 .
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Next we discuss (4.2). We assume:
(E5) For each θ0 ∈ S0,A(θ0,0) has the semisimple eigenvalue 0 with

multipicity k + �,m eigenvalues with negative real part, and n

eigenvalues with positive real part.

The numbers k, �,m, and n could be different from those used previously,
but they are the same in the application to slow eigenvalues, so we assume
them the same.

For each θ0 ∈ S0, let Ec
0(θ0),E

s
0(θ0), and Eu

0 (θ0) denote the center,
stable, and unstable subspaces of A(θ0,0). Note that the restriction of
A(θ0,0) to Ec

0(θ0) is 0 (see Figure 5 (a)).
Let S0 ={(θ0,�0) :θ0 ∈S0 and �0 ∈Ec

0(θ0)}, a Cr+6 vector bundle over
S0. For the differential equation

θ̇ =f (θ,0), �̇=A(θ,0)�, (4.3)

S0 is a manifold of normally hyperbolic equilibria. Its stable manifold

Figure 5. (a) The orbit of θ̇ =f (θ,0) through a point p in H0 ∩Ws
0 (S0), the corresponding

point θ0 ∈S0, and the portion of the linear flow �̇=A(θ,0)� that lies above this set. In the
picture, the intersection of L0(p) and Ecs

0 (p) is one-dimensional and coincides with the one-
dimensional space Es

0(p). (b) The perturbed flow. The orbit of a point pε in Hε ∩Ws
ε (Sε) is

shown at the right. Lε(pε)∩Ecs
ε (pε) no longer coincides with Es

ε (pε), so the linear flow �̇=
A(θ, ε)� takes it toward a one-dimensional space. To lowest order the direction of this space
is �c(θ0). This one-dimensional space will be transported to the right by the linear flow. This
process is described by Theorem 4.1.



76 Schecter

Ws
0 (S0) is a vector bundle over Ws

0 (S0) with fiber dimension k+�+m. We
denote the fibers Ecs

0 (θ), θ ∈Ws
0 (S0).

To describe the foliation of Ws
0 (S0) by stable manifolds of points

(θ0,�0) in S0, we first note that there are m-dimensional subspaces
Es

0(θ) ⊂ Ecs
0 (θ) such that for each θ0 ∈ S0, the stable manifold of (θ0,0)

for the system (4.3) is Ws
0 (θ0,0) = {(θ,�) : θ ∈ Ws

0 (θ0) and � ∈ Es
0(θ)} (see

Figure 5(a)).
Choose a complementary subspace C(θ) to Es

0(θ) in Ecs
0 (θ) such

that C(θ) depends smoothly on θ ∈ Ws
0 (S0) and, for θ0 ∈ S0,C(θ0) =

Ec
0(θ0);C(θ) has dimension k + � (see Figure 5(a)). There is a projection

� from Ws
0 (S0) to S0 defined by �(θ,�)= (θ0,�0), where θ ∈Ws

0 (θ0) and
(θ,�) ∈ Ws

0 (θ0,�0). For fixed θ ∈ Ws
0 (θ0),�|{θ} × C(θ) is an isomorph-

ism onto {θ0} × Ec
0(θ0). Let �(θ,�0) denote the point of C(θ) such that

�(θ,�(θ,�0))= (θ0,�0);�(θ, ·) is an isomorphism from Ec
0(θ0) to C(θ).

Then the stable manifold of (θ0,�0) for the system (4.3) is Ws
0 (θ0,�0)=

{(θ,�) : θ ∈Ws
0 (θ0) and �∈�(θ,�0)+Es

0(θ)}.
The unstable manifold Wu

0 (S0) has a similar description.
By normal hyperbolicity, for small ε > 0 there is a normally hyper-

bolic, locally invariant Cr+6 vector bundle Sε near S0, whose stable and
unstable manifolds Ws

ε (Sε) and Wu
ε (Sε) are vector bundles over Ws

ε (Sε)

and Wu
ε (Sε), respectively. We denote the fibers of Ws

ε (Sε) by Ecs
ε (θ), θ ∈

Ws
ε (Sε).

Note that Sε × {0} is invariant; its stable manifold is a Cr+6 vector
bundle over Ws

ε (Sε) with fibers Es
ε(θ)⊂Ecs

ε (θ).
For small ε�0, let Hε be a Cr+6 vector bundle over Hε ,

Hε = (θ,�) : θ ∈Hε and �∈Lε(θ),

where Lε(θ) is a subspace of �-space of dimension k + 1 +n. We assume
that the sets Hε × {ε} fit together to form a Cr+6 vector bundle in θ�ε-
space.

We assume

(E6) L0(p) is transverse to Ecs
0 (p).

(E7) For all θ ∈H0 ∩Ws(S0),L0(θ) intersects Es
0(θ) in a space of dimen-

sion one.

See Figure 5(a). Assumption (E7) is highly nongeneric, but it occurs in
the treatment of slow eigenvalues in Section 5. It is this degeneracy that
requires an extension of the Exchange Lemma.

The vector bundle over H0 ∩Ws
0 (S0) whose fibers are L0(θ)∩Ecs

0 (θ),
with fiber dimension k +1, projects by � to a vector subbundle P0 of S0;
the base is P0, and the fibers F0(θ0) have dimension k because of (E7).
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Our final assumption is that the intersection of Lε(θ) and Es
ε(θ)

breaks in a nondegenerate manner as ε varies. In order to state this
assumption more precisely, let (θ(ε),�(ε)), ε�0, be a smooth curve such
that

for ε�0, (θ(ε),�(ε)) lies in Hε ∩Ws
ε (Sε), (4.4)

θ(0)=p and �(0)∈Es(p)\{0}. (4.5)

Each point (θ(ε),�(ε)) lies in the stable fiber of a point of a point
(θ0(ε),�0(ε)) in Sε . We assume

(E8) There exists a curve (θ(ε),�(ε)) satisfying (4.4) and (4.5) for
which �′

0(0) /∈F0(p0).

If we extend (θ(ε),�(ε)) to a smooth family of curves in Hε ∩ Ws
ε (Sε),

with θ(0) a parametrization of H0, and �(0) ∈ Es
0(θ(0)), then the above

construction yields a smooth vector field �c(θ0) on P0, with �c(θ0) /∈
F0(θ0) (see Figure 5(b)).

For θ0 ∈P0, let G0(θ0)=F0(θ0)⊕ span �c(θ0), of dimension k+1. We
shall see that G0(θ0) is a subspace of Ecs

0 (θ0). Let R0 be the vector bundle
over P0 whose fibers are G0(θ0).

The sets Sε ×{ε} fit together to form a Cr+6 vector bundle S in θ�ε-
space. S can be parameterized by (w,W, ε) with w ∈ R

k+�+1,W ∈ R
k+�,

and (w, ε) = (0,0) corresponding to (θ, ε) = (θ0,0). Since S0 consists of
equilibria, the differential equation (4.1) and (4.2) restricted to S has the
form

ẇ = εg(w, ε), Ẇ = εB(w, ε)W.

Let w0 �=0 be a point on the positive semiorbit of ẇ=g(w,0) through
0, and let q0 �= θ0 be the corresponding point in θ -space. For small ε > 0,
under the flow of (4.1) and (4.2), Hε becomes a manifold H ∗

ε of dimen-
sion k +n+1 that passes near q0 (see Figure 6). Also, Hε becomes a vec-
tor bundle H∗

ε over H ∗
ε .

Under the flow of

w′ =g(w,0)

the manifold corresponding to P0 becomes a submanifold of w-space of
dimension k + 1. Let P ∗

0 be the corresponding submanifold of S0, which
passes through q0.

Under the flow of

w′ =g(w,0), W ′ =B(w,0)W
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Figure 6. The perturbed flow θ̇ = f (θ, ε). The coordinates are consistent with Lemma 4.2,
but the extra center manifold dimensions corresponding to u and v cannot be shown. Near
q0, the pictured H ∗

ε is very close to xz-space. In general it is close to xuz-space.

the vector bundle corresponding to R0 becomes a vector bundle in wW -
space. Let R∗

0 be the corresponding vector subbundle of S0.R∗
0 is a vector

bundle over P ∗
0 with fiber dimension k +1.

Let O be a small neighborhood of q0 in θ -space.

Theorem 4.1. As ε → 0,H ∗
ε ∩ O approaches Wu(P ∗

0 ) ∩ O in the Cr

topology, and H∗
ε ∩ (O × R

P ) approaches Wu(R∗
0) ∩ (O × R

P ) in the Cr

topology. The sets (H ∗
ε ∩ O) × {ε} and (Wu(P ∗

0 ) ∩ O) × {0} fit together to
form a Cr submanifold of θε-space, and the sets (H∗

ε ∩ (O ×R
P ))×{ε} and

(Wu(R∗
0)∩ (O ×R

p))×{0} fit together to form a Cr vector bundle in θ�ε-
space

The first conclusion is just the usual Exchange Lemma. It only
requires assumptions (E1)–(E4).

To prove the theorem, we first construct a convenient coordinate sys-
tem. Let �0 ⊂S0 be the curve that corresponds to the portion of the orbit
of w′ =g(w,0) from 0 to w0. �0 is a curve with endpoints p0 and q0.

Lemma 4.2. Near �0 there are coordinates θ = (x, u, v, y, z) ∈ R ×
R

k × R
� × R

m × R
n such that the point p0 corresponds to the origin; the

point q0 corresponds to (x̄,0,0,0,0) with x̄ >0; and the differential equation
(4.1) takes the form
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ẋ = ε +y�Az, (4.6)

u̇=y�Bz, (4.7)

v̇ =y�Cz, (4.8)

ẏ =Dy, (4.9)

ż=Ez, (4.10)

where A is an m×n matrix, B is a k-tuple of m×n matrices, C is an �-tuple
of m×n matrices, D is m×m, and E is n×n. The entries of these matri-
ces are functions of (x, u, v, y, z, ε). The eigenvalues of D have negative real
part, and those of E have positive real part.

Moreover, there are coordinates � = (U,V,Y,Z) ∈ R
k × R

� × R
m × R

n

such that the differential equation (4.2) takes the form

U̇ =y�Fz�, (4.11)

V̇ =y�Gz�, (4.12)

Ẏ =HY +y�I�, (4.13)

Ż =JZ + z�K�, (4.14)

where F is a k ×p array of m×n matrices, G is an �×p array of m×n

matrices, H is m×m,I is an m-tuple of m×p matrices, J is n×n, and K

is an n-tuple of n×p matrices. The entries of these matrices are functions
of (x, u, v, y, z, ε). The eigenvalues of H have negative real part, and those
of J have positive real part.

The coordinates can be chosen so that Hε (or one of its forward iterates
under the flow) is parameterized by (u, z,U, a,Z), a ∈R, as follows:

x =L(u, z, ε)z, (4.15)

v =M(u, z, ε)z, (4.16)

y =y(u, ε)+N(u, z, ε)z, (4.17)

V =a(εP (u, ε)+ zQ(u, z, ε))+ zR(u, z, ε)(U,Z), (4.18)

Y =a(Y (u, ε)+ zS(u, z, ε))+ zT (u, z, ε)(U,Z) (4.19)

with P(0,0) �=0. Equations (4.15) and (4.16) give a parametrization of Hε

by (u, z).
The coordinate change can be chosen to be a Cr+2 vector bundle map,

so the skew-product system (4.6)–(4.14) is Cr+2, and the vector bundles Hε

are now Cr+2.

In the new coordinates, for each ε�0, Sε is xuv-space, Ws
ε (Sε) is

xuvy-space, and Wu
ε (Sε) is xuvz-space. On both xuvy-space and xuvz-

space, (ẋ, u̇, v̇) depends only on (x, u, v), the coordinates on Sε . The sta-
ble foliation of xuvy-space is by planes (x, u, v)= constant; similarly, the
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unstable foliation of xuvz-space is by planes (x, u, v) = constant. P0 is
u-space; in fact, we have arranged that for each ε�0,Hε ∩Ws

ε (Sε) projects
along the stable foliation of xuvy-space to u-space. P ∗

0 is xu-space.
In addition, for each ε �0,Sε is xuvUV -space, Ws

ε (Sε) is xuvyUV Y -
space, and Wu

ε (Sε) is xuvzUV Z-space. We have arranged that on both
these spaces, U̇ = V̇ = 0. The stable foliation of xuvyUV Y -space is
by planes (x, u, v,U,V ) = constant; similarly, the unstable foliation of
xuvzUV Z-space is by planes (x, u, v,U,V ) = constant. P0 is uU -space
and P∗

0 is xuU -space. In fact, we have arranged that for each ε �0, the
image of the projection of Hε ∩Ws

ε (Sε) to xuvUV -space along the stable
foliation of xuvyUV Y -space includes uU -space. For ε =0, it is exactly uU -
space; for ε > 0, to lowest order, the image has one more dimension: U

space is augmented by the span of P(u,0) in V -space.

Proof. Using [6], we first choose Cr+4 skew-product Fenichel coor-
dinates (θ,�)= (w, y, z,W,Y,Z) such that

ẇ = εh(w, ε)+y�Az, (4.20)

ẏ = Dy, (4.21)

ż = Ez, (4.22)

Ẇ = εF (w, ε)W +y�Gz�, (4.23)

Ẏ = HY +y�I�, (4.24)

Ż = JZ + z�K� (4.25)

with h(0,0) �=0 by (E4). The skew-product system is now Cr+4. By a fur-
ther change of coordinates w= (x, w̃) that depends on (w, ε) only, we can
convert (4.20) to

ẋ = ε +y�A1z, (4.26)
˙̃w =y�Ãz. (4.27)

Equation (4.23) now reads Ẇ = εF (x, w̃, ε)W + y�Gz�. Dividing Ẇ =
εF (x, w̃, ε)W by (4.26), we obtain Wx = F(x, w̃, ε)W . By a change of
coordinates in W that depends only on (x, w̃,W, ε), we can convert this
differential equation to Wx =0. Then (4.23) becomes

Ẇ =y�Gz�.

The skew-product system is now Cr+3.
Next we make a change of coordinates w̃ = (u, v) that depends only

on (x, w̃, ε) such that for all small ε,Pε is u-space. We can arrange
this change of coordinates so that the curve θ(ε) of (E8) becomes
(x, u, v, y, z)(ε)= (0,0,0, y(ε),0). In the new coordinates, (4.1) is given by
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(4.6)–(4.10), and the parameterization of Hε is given by (4.15) and (4.16).
The skew-product system is still Cr+3, and the parameterization of Hε is
also Cr+3.

For each 0 ∈ Hε,Lε(0) ∩ Ecs
ε (θ) is spanned by k + 1 vectors that

depend Cr+3 on (θ, ε), with the first k not in Es
ε(θ) for all ε�0, and the

last vector, for ε = 0, in Es
ε(θ). The span of the first k of these vectors

defines a vector bundle over Hε of fiber dimension k that projects by � to
a vector bundle Pε over Pε , of fiber dimension k, with P0 as previously
defined. By a change of coordinates in W that depends only on (u,W),
we arrange that the vector bundle Pε corresponds to uU -space. The skew-
product system is still Cr+3.

In these coordinates, Hε is given by (4.15)–(4.19). P(0,0) �=0 by (E8).

Since P(u,0) �= 0, by a change of coordinates V = (V1, Ṽ ), (V1, Ṽ ) ∈
R×R

�−1, that depends only on (u,V, ε), we can replace (4.18) by

V1 =α(ε + zQ1(u, z, ε))+ zR1(u, z, ε)(U,Z), (4.28)

Ṽ =azQ̃(u, z, ε)+ zR̃(u, z, ε)(U,Z). (4.29)

Since P(u, ε) is only Cr+2, the differential equation is now Cr+2.
To prove Theorem 4.1, we must study, in xuvyzUV1Ṽ Z-coordinates

the convergence, as ε →0, of H ∗
ε ∩O to xuz-space, and of H∗

ε ∩ (O ×R
p)

to xuzUV1Z-space.
Let τ > 0. The solution of (4.6)–(4.14) on the interval 0�t�τ with

boundary conditions

x(τ) = x1,

u(0) = u0,

v(0) = v0,

y(0) = y0,

z(τ ) = z1,

U(τ) = U1,

V1(τ ) = V 1
1 ,

Ṽ (0) = Ṽ 0,

Y (0) = Y 0,

Z(τ) = Z1

is

(x, u, v, y, z,U,V1, Ṽ , Y,Z)(t, τ, x1, u0, v0, y0, z1,U1, V 1
1 , Ṽ 0, Y 0,Z1, ε).
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(Of course, (x, u, v, y, z) depends only on (t, τ, x1, u0, v0, y0, z1, ε).) From
[4] and [6], this function is Cr , and there exist ρ with 0<ρ < x̄

3 , λ<0<µ,
and K > 0 such that for −ρ�x1�x̄ + ρ and max(‖u0‖,‖v0‖,‖y0‖,‖z1‖,‖
U1‖,‖V 1

1 ‖,‖Ṽ 0‖,‖Y 0‖,‖Z1‖)�ρ, and for any multi-index i with |i|�r,

‖Di(x − (x1 + ε(t − τ)))‖ � Keλt+µ(t−τ), (4.30)

‖Di(u−u0)‖ � Keλt+µ(t−τ), (4.31)

‖Di(v −v0)‖ � Keλt+µ(t−τ), (4.32)

‖Diy‖ � Keλt , (4.33)

‖Diz‖ � Keµ(t−τ), (4.34)

‖Di(U −U1)‖ � Keλt+µ(t−τ), (4.35)

‖Di(V1 −V 1
1 )‖ � Keλt+µ(t−τ), (4.36)

‖Di(Ṽ − Ṽ 0)‖ � Keλt+µ(t−τ), (4.37)

‖DiY‖ � Keλt , (4.38)

‖DiZ‖ � Keµ(t−τ). (4.39)

Moreover, we can write

(U,V1, Ṽ , Y,Z)(t, τ, x1, u0, v0, y0, z1,U1, V 1
1 , Ṽ 0, Y 0,Z1, ε)

=L(t,τ,x1,u0,v0,y0,z1,ε)(U
1, V1, Ṽ

0, Y 0,Z1),

where L = (L1, . . . ,L5) is linear for fixed (t, τ, x1, u0, v0, y0, z1). Let us
define

I1(U
1, V 1

1 , Ṽ 0, Y 0,Z1) = U1, (4.40)

I2(U
1, V 1

1 , Ṽ 0, Y 0,Z1) = V 1
1 , (4.41)

I3(U
1, V 1

1 , Ṽ 0, Y 0,Z1) = Ṽ 0. (4.42)

For any multi-index i with |i|�r, we have

‖Di(L1 −I1)‖ � Keλt+µ(t−τ), (4.43)

‖Di(L2 −I2)‖ � Keλt+µ(t−τ), (4.44)

‖Di(L3 −I3)‖ � Keλt+µ(t−τ), (4.45)

‖DiL4‖ � Keλt , (4.46)

‖DiL5‖ � Keµ(t−τ), (4.47)
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Let

A = {(x1, u1, v1, y1, z1) : max(|x1 − x̄|,‖u1‖,‖v1‖,‖y1‖,‖z1‖)�ρ},
B = {(x1, u0, z1, ε) : max(|x1 − x̄|,‖u0‖,‖z1‖)�ρ and 0<ε <ε0},
C = {(x1, u1, z1, ε) : max(|x1 − x̄|,‖u1‖,‖z1‖)�ρ and 0<ε <ε0},
D = {(x0, v0, ȳ0) : max(|x0|,‖v0‖,2‖ȳ0‖)�ρ}.

Then q0 = (x̄,0,0,0,0)∈A. We may assume that U ⊂A and, after replac-
ing Hε by one of its forward iterates under the flow, that ‖y(u, ε)‖�ρ

2 ,
where y(u, ε) is given by (4.17).

Write y0 = y(u0, ε) + ȳ0 and Y 0 = aY (u0, ε) + Ȳ 0, where Y (u0, ε) is
given by (4.19). For ε > 0 we wish to solve the following system of equa-
tions in the variables (x0, x1, u0, v0, ȳ0, z1,U1, V 1

1 , Ṽ 0, a, Ȳ 0,Z1, ε) :

x0 = L(u0, z(0), ε)z(0), (4.48)

v0 = M(u0, z(0), ε)z(0), (4.49)

ȳ0 = N(u0, z(0), ε)z(0), (4.50)

Ṽ 0 = az(0)Q̃(u0, z(0), ε)+ z(0)R̃(u0, z(0), ε), (U(0),Z(0)), (4.51)

a = 1
ε
(V1(0)−az(0)Q(u0, z(0), ε)−z(0)R1(u

0, z(0), ε)(U(0),Z(0)),

(4.52)

Ȳ 0 = az(0)S(u0, z(0), ε)+ z(0)T (u0, z(0), ε)(U(0),Z(0))), (4.53)

where τ = 1
ε
(x1 −x0), z(0) means z(0, τ, x1, u0, v0, y(u0, ε)+ ȳ0, z1, ε),

U(0)=L1(0,τ,x1,u0,v0,y(u0,ε)+ȳ0,z1,ε)(U
1, V 1

1 , Ṽ 0, aY (u0, ε)+ Ȳ 0,Z1),

etc. Each solution yields a point (x0, u0, v0, y0, z(0),U(0),V1(0), Ṽ 0, aY

(u(0), ε)+ Ȳ 0,Z(0)) in Hε and a point (x1, u(τ ), v(τ ), y(τ ), z1,U1, V 1
1 , Ṽ (τ ),

Y (τ ),Z1) in H∗
ε ; the latter is the point reached by the former after time

τ = 1
ε
(x1 − x0). To prove the theorem we must describe the second set of

points in the form

(v(τ ), y(τ ), Ṽ (τ ), Y (τ ))= function of (x1, u(τ ), z1,U1, V 1
1 ,Z1, ε).

To solve (4.48)–(4.50), we reorder the first six variables and define
F(x0, v0, ȳ0, x1, u0, z1, ε) to be the right-hand side of (4.48)–(4.50). For
ε >0,F is Cr . Let 0<ν <min(−λ,µ).

Lemma 4.3. For ε0 >0 sufficiently small, F maps D×B into D and is
a contraction of D for fixed (x1, u0, z1, ε)∈B. There is a constant M inde-
pendent of ε such that all partial derivatives of F are bounded by Me− νρ

ε on
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D ×B. Let the fixed point be

(x0, v0, ȳ0)=G(x1, u0, z1, ε). (4.54)

Then G is Cr on B. The components of G, along with their partial deriva-
tives through order r, are bounded by Me− νρ

ε on B.

Proof. Note that τ = 1
ε
(x1 −x0)�ρ

ε
., By (4.34),

‖F1(x
0, v0, ȳ0, x1, u0, z1, ε)‖�Ke−µτ�Ke−νρ/ε. (4.55)

The same estimate applies to F2 and F3. Therefore, for ε sufficiently small,
F(·, ·, ·, x1, u0, z1, ε) maps D into itself. The same estimates apply to the
partial derivatives with respect to all variables except x0, x1, u0, and ε. To
estimate the partial derivative of Fi with respect x0, note that for small
ε >0,

||∂z(0)

∂x0
||= 1

ε
||∂z(0)

∂τ
||�K

ε
e−µτ�Me−νρ/ε.

The partial derivatives with respect to x1 and ε include a similar term. To
estimate the partial derivative with respect u0, note that ∂z(0)

∂u0 includes the

term ∂z(0)

∂y0
∂y
∂u

. To estimate it, note that in replacing Hε by a forward iterate
for which |y(u, ε)|�ρ

2 , partial derivatives of yi with respect to uj shrink by
a factor of Lρω, where ω is at worst approximately the ratio of the least
to most negative eigenvalues of E(0). Then

||∂z(0)

∂y0

∂y

∂u
||�Ke−µτLρω�Me−νρ/ε.

The estimates for the components of G follow from the estimates for the
components of F . The estimates for the partial derivatives of G follow
from differentiation with respect to (x1, u0, z1) of the formula

(x0, v0, ȳ0)=F(x0, v0, ȳ0, x1, u0, z1, ε).

To describe the solution set of (4.48)–(4.50) in the desired way, we
first define

u1(x1, u0, z1, ε)=u(τ, τ, x1, u0, v0, y(u0, ε)+ ȳ0, z1, ε),

where (x0, v0, ȳ0) is given by (4.54) and τ = 1
ε
(x1 − x0). Now u1 −u0 and

its partial derivatives with respect to all variables are exponentially small,
so we can solve the equation u1 =u1(x1, u0, z1, ε) for u0. We obtain

u0 =u0(x1, u1, z1, ε), (4.56)
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where u0 −u1 and its partial derivatives through order r are bounded by
Me−νρ/ε on C.

Define K:C →vy-space by

(v1, y1)=K(x1, u1, z1, ε)= (v, y)(τ, τ, x1, u0, v0, y(u0, ε)+ ȳ0, z1, ε),

(4.57)

where u0 is given by (4.56), (x0, v0, ȳ0) is given by (4.54), and τ = 1
ε
(x1 −

x0). K is Cr .

Lemma 4.4. K and its partial derivatives through order r are bounded
by Me−νρ/ε on C.

Proof. Note that ||v1||�||v0|| + Keλτ�Me−νρ/ε . A similar (easier)
estimate holds for y1. The estimates on the partial derivatives follow from
differentiation of (4.57) with respect to (x1, u1, z1, ε).

To solve (4.51)–(4.53) we note that the right-hand side of (4.51)–(4.53)
defines a Cr family of linear mappings

M(x0,x1,u0,v0,ȳ0,z1,ε)(U
1, V 1

1 , Ṽ 0, a, Ȳ 0,Z1).

We easily check that M(x0,x1,u0,v0,ȳ0,z1,ε) has the matrix

⎛

⎝
0 0 0 0 0 0
0 1

ε
0 0 0 0

0 0 0 0 0 0

⎞

⎠

plus a remainder whose terms, along with their partial derivatives through
order r, are of order e− νρ

ε . Therefore,

Lemma 4.5. The solution of (4.51)–(4.53) is

(Ṽ 0, a, Ȳ 0)=N(x0,x1,u1,v0,ȳ0,z1,ε)(U
1, V 1

1 ,Z1), (4.58)

where N(x0,x1,u1,v0,ȳ0,z1,ε) is a Cr family of linear mappings with the matrix

⎛

⎝
0 0 0
0 1

ε
0

0 0 0

⎞

⎠

plus a remainder whose terms, along with their partial derivatives through
order r, are of order e−νρ/ε .
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To describe the solution sets of (4.51)–(4.53) in the desired way, let
(x0, v0, ȳ0)=G(x1, u1, z1, ε) and let τ = 1

ε
(x1 −x0). Let (v1, y1) be given by

(4.57), and let (Ṽ 0, a, Ȳ 0) be given by (4.58).
Define

(Ṽ 1, Y 1 = P(x1,u1,z1,ε)(U
1, V 1

1 ,Z1)= (Ṽ , Y )(τ, τ, x1, u1, v0, y(u0, ε)

+ȳ0, z1,U1, V 1
1 , Ṽ 0, aY (u0, ε)+ Ȳ 0,Z1, ε)

= L34
(τ,τ,x1,u1,u0,y(u0,ε)+ȳ0,z1,ε)

(U1, V 1
1 , Ṽ 0, aY (u0, ε)+ Ȳ 0,Z1).

Lemma 4.6. The entries of P , along with their partial derivatives
through order r, are bounded by Me−νρ/ε on C.

Proof. We have P =L34Q with

L34 =
(

0 0 I 0 0 0
0 0 0 0 0 0

)

and Q=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

I 0 0
0 I 0
0 0 0
0 1

ε
0

0 0 0
0 0 I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The rows of L34 represent (Ṽ 1, Y 1); the columns of L34 and the rows of Q
represent (U1, V 1

1 , Ṽ 0, a, Ȳ 0,Z1); the columns of Q represent (U1, V 1
1 ,Z1).

The third through fifth rows of Q are the matrix N . These rows of Q,
and the matrix L34, are given modulo terms that, along with their partial
derivatives through order r, are bounded by Me−νρ/ε on C. The lemma
follows.

Lemmas 4.4 and 4.6 prove the result.

5. SLOW EIGENVALUES

In order to study the system (3.2)–(3.5) for ρ near 0, we let ρ = ελ,
i.e., we undo the rescaling of λ used in Section 3 to study fast eigenvalues.
We obtain:

u̇ = v, (5.1)

v̇ = (Df (u)−xI)v, (5.2)

ẋ = ε, (5.3)

λ̇ = 0, (5.4)

U̇ = V, (5.5)

V̇ = ελU + (Df (u)−xI)V +D2f (u)vU. (5.6)
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The system (5.1)–(5.6) is a skew-product flow on the trivial vector bundle
uvxλ-space ×UV -space.

Setting ε =0, we obtain

u̇ = v, (5.7)

v̇ = (Df (u)−xI)v, (5.8)

ẋ = 0, (5.9)

λ̇ = 0, (5.10)

U̇ = V, (5.11)

V̇ = (Df (u)−xI)V +D2f (u)vU. (5.12)

Notice that (5.7)–(5.12) is independent of λ. Also, suppose (u(ξ), u̇(ξ), x0)

is a solution of (5.7)–(5.9). The linearization of (5.7) and (5.8) along this
solution is

U̇ =V, (5.13)

V̇ = (Df (u(ξ))−x0I )V +D2f (u(ξ))u̇(ξ)U, (5.14)

which is just (5.11) and (5.12) with (u, v, x)= (u(ξ), u̇(ξ), x0).
In this section, we could consider any λ ∈ C. For simplicity, however,

we will only consider λ∈R. Hence we take (U,V )∈R
n ×R

n as in Section 3.
For each i =0, . . . , n, let

T i ={(u, v, x, λ) : (u, v, x)∈Si}={(u, v, x, λ) :v =0 and νi(u)<x <νi+1(u)}.
Each T i is a normally hyperbolic (2n + 2)-dimensional manifold of equi-
libria of (5.7)–(5.12). At each point (u0,0, x0, λ0) of T i , the linearization
of (5.7)–(5.12) has the semisimple eigenvalue 0 with multiplicity n+2, and
n nonzero eigenvalues νk(u) − x, k = 1, . . . , n, of which the last n − i are
positive and the first i are negative.

Recall Wu
0 (u0,0, x0)⊂uvx-space defined in Section 2. Then in uvxλ-

space, Wu
0 (u0,0, x0, λ0) = Wu

0 (u0,0, x0) × {λ0} is an (n − i)-dimensional
manifold that is contained in the subspace (x, λ)= (x0, λ0). The union of
these manifolds is Wu

0 (T i), which has dimension 2n+2− i. There are anal-
ogous descriptions of Ws

0 (u0,0, x0, λ0) and Ws
0 (T i).

Given (u0,0, x0, λ0)∈T i , consider the constant-coefficient linear differ-
ential equation (5.11) and (5.12) with (u, v, x)= (u0,0, x0). It has the semi-
simple eigenvalue 0 with multiplicity n, and n nonzero eigenvalues νk(u)−
x, k=1, . . . , n, of which the first n− i are positive and the last i are negative.
Its center subspace is {(U,V ) :V =0}, which consists of equilibria.

For each i =0, . . . , n, let

T i
0 ={(u, v, x, λ,U,V ) : (u, v, x, λ)∈T i and V =0}.
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Each T i
0 is a vector bundle over T i that is a normally hyperbolic (2n+2)-

dimensional manifold of equilibria of (5.7)–(5.10).
Wu

0 (T i
0 ) is a vector bundle over Wu

0 (T i) with fiber dimension 2n − i.
We denote the fibers, which are subspaces of UV -space, by Ecu(ũ, ṽ, x0, λ0),
(ũ, ṽ, x0, λ0)∈Wu

0 (T i). They are independent of λ0.
More precisely, let (u0,0, x0, λ0)∈ T i , let (ũ, ṽ, x0, λ0)∈Wu

0 (u0,0, x0),
and let (u(ξ), v(ξ)) be the solutions of (5.7) and (5.8) with (u(0), v(0))=
(ũ, ṽ). Then there is an (n − i)-dimensional subspace Eu(ũ, ṽ, x0, λ0) ⊂
Ecu(ũ, ṽ, x0, λ0) such that if (U0, V0) ∈ Eu(ũ, ṽ, x0, λ0) and (U(ξ),V (ξ))

is the solution of (5.13) and (5.14) with (u, v, x) = (u(ξ), v(ξ), x0) and
(U(0),V (0)) = (U0, V0), then (U(ξ),V (ξ)) approaches 0 exponentially as
ξ →−∞. The spaces Eu(ũ, ṽ, x0, λ0) are independent of λ0.

For each (ũ, ṽ, x0, λ0) ∈ Wu
0 (T i) choose a complementary subspace

Cu(ũ, ṽ, x0, λ0) to Eu(ũ, ṽ, x0, λ0) in Ecu(ũ, ṽ, x0, λ0), independent of λ0,
such that Cu depends smoothly on (ũ, ṽ, x0) and Cu(u0,0, x0, λ0) is
U -space.

There is a projection �u from Wu
0 (T i

0 ) to T i
0 defined by �u(ũ,

ṽ, x, λ,U,V )=(u0,0, x0, λ0,U0,0) where (ũ, ṽ, x, λ,U,V )∈Wu
0 (u0,0, x0, λ0,

U0,0) (so in particular x = x0, λ = λ0, and (ũ, ṽ, x0) ∈ Wu
0 (u0,0, x0)). For

fixed (ũ, ṽ, x0, λ0) ∈ Wu
0 (u0,0, x0, λ0),�u|{(ũ, ṽ, x0, λ0)} × Cu(ũ, ṽ, x0, λ0) is

an isomorphism onto {(u0,0, x0, λ0)}×U -space. If we regard this isomor-
phism as a map from Cu(ũ, ṽ, x0, λ0) to U -space, then it has an inverse,
which we denote Bu

(ũ,ṽ,x0,λ0)
; it is independent of λ0. Then

Wu
0 (u0,0, x0, λ0,U0,0) = {(u, v, x0, λ0,U,V ) :

(u, v, x0, λ0) ∈ Wu
0 (u0,0, x0, λ0) and (U,V )∈Bu

(u,v,x0,λ0)
U0

+Eu(u, v, x0, λ0)}.
There is an analogous description of Ws

0 (T i
0 ).

Proposition 5.1. Let (ui−1,0, xi) ∈ Mi−1 × I i , and let (u(ξ), u̇(ξ), xi)

be the connection from (ui−1,0, xi) to some (ui,0, xi) ∈ Mi × I i . Then for
each fixed ξ and λ0,

(1) Eu(u(ξ), v(ξ), xi, λ0) and Ecs(u(ξ), v(ξ), xi, λ0) are transverse.
Their intersection is spanned by (u̇(ξ), ü(ξ)).

(2) Ecu(u(ξ), v(ξ), xi, λ0) and Es(u(ξ), v(ξ), xi, λ0) are transverse.
Their intersection is spanned by (u̇(ξ), ü(ξ)).

Proof. To prove (1), note that dim Eu(u(ξ), v(ξ), xi, λ0) + dim Ecs

(u(ξ), v(ξ), xi, λ0) = n − (i − 1) + (n + i) = 2n + 1. Therefore, the two
spaces are transverse if and only if their intersection has dimension one.
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Let (U(ξ),V (ξ)) belong to the intersection. Then limξ→−∞(U(ξ),V (ξ))=
(0,0), and there is a vector Ui such that limξ→∞(U(ξ),V (ξ)) = (Ui,0).
Now the system (5.13) and (5.14) can be written

V̇ = Ü = d

dξ
((Df (u(ξ))−x0I )U). (5.15)

Integrating from ξ =−∞ to ξ =∞, we obtain

0= (Df (ui)−xiI )Ui − (Df (ui−1)−xiI )0= (Df (ui)−xiI )Ui.

Therefore, Ui =0, so (U(ξ),V (ξ)) belongs to the intersection of Eu(u(ξ),

v(ξ), xi, λ0) and Es(u(ξ), v(ξ), xi, λ0). By assumption (R4), this intersec-
tion is spanned by (u̇(ξ), ü(ξ)).

The proof of (2) is similar.

The normally hyperbolic manifold of equilibria T i
0 perturbs, for small

ε > 0, to a normally hyperbolic, locally invariant manifold T i
ε , a fiber

bundle over T i :

T i
ε ={(u, v, x, λ,U,V ) : (u, v, x, λ)∈T i and V = εA(u, x, λ, ε)U}. (5.16)

We determine A(u, x, λ,0) as follows: From (5.16), we have

V̇ = ε

(
∂A

∂u
u̇U + ∂A

∂x
ẋU +AU̇

)

= ε2
(

∂A

∂x
+A2

)

U. (5.17)

Substituting (5.6) for V̇ in (5.17), then setting v = 0 and V = εAU , and
retaining only terms of order ε, we obtain

λU + (Df (u)−xI)A(u, x, λ,0)U =0.

Therefore,

A(u, x, λ,0)=−λ(Df (u)−xI)−1.

The differential equation (5.1)–(5.6) on the invariant manifold T i
ε ,

with coordinates (u, x,U), is therefore

u̇=0, (5.18)

ẋ = ε, (5.19)

U̇ =V = εA(u, x, λ, ε)U = ε(−λ(Df (u)−xI)−1 +O(ε))U. (5.20)

Dividing (5.20) by (5.19), we obtain

Ux =A(u, x, λ, ε)U = (−λ(Df (u)−xI)−1 +O(ε))U. (5.21)
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To lowest order, (5.21) can be written

λU + (Df (u)−xI)Ux =0. (5.22)

With some abuse of notation, we think of T i
ε as T i ×U -space. Then

to lowest order in ε, the differential equation (5.1)–(5.6) on T i
ε is simply

the nonautonomous system (5.22) with parameters (u, λ). We denote the
solution operator by

U(x)=�(x, y;u,λ)U(y), νi(u)<x, y <νi+1(u).

Let

Qi ={(u,0, x, λ)∈T i : (u,0, x)∈P i} and Ri ={(u,0, x, λ)∈T i :u∈Mi},
Q̂i ={(u,0, x, λ)∈T i : (u,0, x)∈ P̂ i} and R̂i ={(u,0, x, λ)∈T i :u∈ M̂i}.
We inductively define subspaces �i(u,0, x, λ) of U -space on Ri as follows:

(1) On R0,�0(ū0,0, x, λ)={0}.
(2) Assuming �i−1 is defined on Ri−1, let (ui,0, xi, λ) ∈ Qi and

let (ui−1,0, xi, λ) be the corresponding point of Ri−1, so that
f (ui) − f (ui−1) − xi(ui − ui−1) = 0. Then Ui ∈ �i(ui,0, xi, λ) if
and only if there exist Ui−1 ∈�i−1(ui−1,0, xi, λ) and ρi ∈R such
that

(Df (ui)−xiI )Ui − (Df (ui−1)−xiI )Ui−1 −ρi(ui −ui−1)=0.

In other words,

�i(ui,0,xi,λ)=(Df (ui)−xiI)−1{(Df (ui−1)−xiI )�i−1(ui−1,0,xi,λ)

+span (ui −ui−1)}.
(3) For other (ui,0, x, λ)∈Ri ,

�i(ui,0, x, λ)=�(x, xi;ui, λ)�i(ui,0, xi, λ).

Notice that dim �i−1� dim �i� dim �i−1 +1.
For 1�i�n, another description of the spaces �i(u,0, x, λ) is as

follows: Fix i,1�i�n. For i�k�n we inductively defined vector fields
wk,i(u,0, x, λ) on Rk as follows:

(1) Let (ui,0, xi, λ)∈Qi , and let (ui−1,0, xi, λ) be the corresponding
point of Ri−1, so that f (ui)−f (ui−1)−xi(ui −ui−1)=0. Then

wi,i(ui,0, xi, λ)= (Df (ui)−xiI )−1(ui −ui−1).
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(2) If wk,i(uk,0, xk, λ) has been defined on Qk and (uk,0, x, λ)

is another point of Rk, let wk,i(uk,0, x, λ) = �(x, xk;uk, λ)wk,i

(uk,0, xk, λ).
(3) If wk,i(uk,0, x, λ) has been defined on Rk and (uk+1,0, xk+1, λ)

is a point of Qk+1 with corresponding point (uk,0, xk+1, λ)∈Rk,
then

wk+1,i (uk+1,0, xk+1, λ) = (Df (uk+1)−xk+1I )−1(Df (uk)

−xk+1I )wk,i(uk,0, xk+1, λ).

Then for k�1, if (u,0, x, λ) ∈ Rk,�k(u,0, x, λ) = span (wk,1(u,0, x, λ),

. . . ,wk,k(u,0, x, λ)).
For i =0, . . . , n, let

Ri
0 ={(u, v, x, λ,U,V ) : (u, v, x, λ)∈Ri,U ∈�i(u, v, x, λ),V =0}.

Proposition 5.2. For some i,1�i�n, and all 0 < ε < ε0, let Ri−1
ε be

a vector bundle over Ri−1 that is contained in T i−1
ε and is invariant

under (5.1)–(5.6). Assume that the sets Ri−1
ε ×{ε} fit together with the set

Ri−1
0 × {0} defined above to form a Cr+6 submanifold of uvxλUV ε-space,

r�2. For 0�ε < ε0, let Hε be a cross-section of Wu
ε (Ri−1) such that H0

contains a point (qi(ξ), q̇i(ξ), x̄i , λ̄) with λ̄ �= −1, and the sets Hε × {ε}
fit together to form a Cr+6 submanifold of uvxλε-space. Let Hε be the
restriction to Hε of the vector bundle Wu

ε (Ri−1
ε ). Then, with S0 = S i

0, θ0 =
(ūi ,0, x̄i , λ̄), and p = (qi(ξ), q̇i(ξ), x̄i , λ̄, q̇i (ξ), q̈i(ξ)), assumptions (E1)–
(E7) of Section 4 are satisfied. Assumption (E8) is satisfied if and only if
dim�i =dim�i−1 +1.

Proof. (E1)–(E4) were shown in Section 2, and (E5) has been
explained. For (E6), note that the fiber of H0 at (u, v, x, λ) contains
Eu(u, v, x, λ), so this fiber is transverse to Ecs(u, v, x, λ) by Proposi-
tion 5.1 (1). For (E7), note that the fiber of H0 at (u, v, x, λ) is con-
tained in Ecu(u, v, x, λ), so from Proposition 5.1 (2) its intersection
with Es(u, v, x, λ) is at most one-dimensional. It is exactly one-dimen-
sional since this fiber contains Eu(u, v, x, λ), whose intersection with
Es(u, v, x, λ) is one-dimensional (the span of (q̇i(ξ), q̈i(ξ)).

Suppose (qi(ξ), q̇i(ξ), x̄i , λ̄,U0(ξ),V0(ξ)) lies in Wu
0 (Ri−1

0 ) ∩ Ws
0 (T i

0 )

and approaches, as ξ → −∞, (ūi−1,0, x̄i , λ̄,Ui−1
0 ,0) ∈ Ri−1

0 . Then as ξ →
∞, the solution approaches (ūi ,0, x̄i , λ̄,Ui

0,0)∈T i
0 , where, from (5.15),

(Df (ūi)− x̄iI )Ui − (Df (ūi−1)− x̄iI )Ui−1 =0.

The set of such Ui is a subspace of �i(ūi ,0, x̄i , λ̄) with dimension equal
to that of �i−1(ūi−1,0, x̄i , λ̄).
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To check whether (E8) is satisfied, suppose

(ui
ε(ξ), vi

ε(ξ), xi
ε(ξ), λ(ε),Ui

ε(ξ),V i
ε (ξ))

= (qi(ξ), q̇i(ξ), x̄i , λ̄, q̇i (ξ), q̈i(ξ))

+ε(ui
1(ξ), vi

1(ξ), xi
1(ξ), λi

1,U
i
1(ξ),V i

1 (ξ))+O(ε2) (5.23)

lies in Wu
ε (Ri−1

ε )∩Ws
ε (T i

ε ). Then for k = i −1, i. there are solutions

(ũk
ε(ξ),0, x̃k

ε (ξ), λ̃k(ε), Ũ k
ε (ξ), Ṽ k

ε (ξ))

= (ũk
0(ξ),0, x̃k

0 (ξ), λ̃k
0, Ũ

k
0 (ξ), Ṽ k

0 (ξ))

+ε(ũk
1(ξ),0, x̃k

1 (ξ), λ̃k
1, Ũ

k
1 (ξ), Ṽ k

1 (ξ))+O(ε2) (5.24)

in T k
ε that (5.23) approaches exponentially as ξ →−∞ and ξ →∞, respec-

tively. Clearly

λ(ε)= λ̃i−1(ε)= λ̃i (ε)= λ̄+ ελ1 +O(ε2).

Also, since ẋ = ε, we must have

xi
ε(ξ)= x̃i−1

ε (ξ)= x̃i
ε(ξ)=xi(ε)+ εξ = (x̄i + εxi

1 +O(ε2))+ εξ.

Since u̇=0 when v =0, we have

ũk
ε(ξ)= ũk(ε)= ūk + εũk

1 +O(ε2), k = i −1, i.

From invariant manifold theory,

0= lim
ξ→−∞

ui
1(ξ)− ũi−1

1 (ξ)= lim
ξ→−∞

ui
1(ξ)− ũi−1

1 ,

0= lim
ξ→∞

ui
1(ξ)− ũi

1(ξ)= lim
ξ→∞

ui
1(ξ)− ũi

1. (5.25)

For k= i −1, i, Ũ k
ε (ξ) satisfies (5.20) with (u, x, λ)=(ũk

ε(ξ), xi
ε(ξ), λ(ε)).

It follows easily that Ũ k
0 (ξ) is constant. Since

lim
ξ→−∞

(q̇i(ξ)− Ũ i−1
0 (ξ))=0 and lim

ξ→∞
(q̇i(ξ)− Ũ i

0(ξ))=0,

we see that Ũ k
0 (ξ)= 0 for k = i − 1, i. Substituting this into the expansion

of Ũ k
ε (ξ) in (5.24), then substituting the expansion into (5.20), we find that

for k = i − 1, i, Ũ k
1 (ξ) is constant, so there is a vector Ũ k

1 in R
n such that

Ũ k
1 (ξ) = Ũ k

1 . Also, since (ũi−1
ε (ξ),0, xi

ε(ξ), λ(ε), Ũ i−1
ε (ξ), Ṽ i−1

ε (ξ)) ∈ Ri−1
ε ,

and Ũ i−1
0 =0, it follows easily that Ũ i−1

1 ∈�i−1(ūi−1,0, x̄i , λ̄).
If we substitute (5.23) into

Ü = ελU + (Df (u)−xI)V +D2f (u)vU,
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which is equivalent to (5.5) and (5.6), we find that U1(ξ) satisfies

Ui
1ξξ = (λ̄+1)q̇i + ((D2f (qi)ui

1 − (xi
1 + ξ)I )q̇i)ξ + ((Df (qi)−xi

0I )Ui
1)ξ .

(5.26)

Integrating (5.26) from ξ =−∞ to ξ =∞, we obtain

(λ̄+1)(ūi
0 − ūi−1

0 )+ (Df (ūi
0)−xi

0I )Ũ i
1 − (Df (ūi−1

0 )−xi
0I )Ũ i−1

1 =0.

(5.27)

Since λ̄ �=−1, the curve (5.23) shows that (E8) is satisfied provided

Ũ i
1 /∈ (Df (ūi)− x̄iI )−1(Df (ūi−1)− x̄iI )�i−1(ūi−1,0, x̄i , λ̄).

Equivalently,

ūi
0 − ūi−1

0 /∈ (Df (ūi−1)− x̄iI )�i−1(ūi−1,0, x̄i , λ̄).

This is equivalent to the given condition.

Similarly, we define subspaces �̂i(u,0, x, λ) of U -space on Ri by
backwards induction as follows:

(1) On Rn, �̂n(ūn,0, x, λ)={0}.
(2) Assuming �̂i+1 is defined on Ri+1, let (ui,0, xi+1, λ) ∈ Q̂i and

let (ui+1,0, xi+1, λ) be the corresponding point of Ri+1, so that
f (ui)−f (ui+1)−xi+1(ui −ui+1)=0. Then Ui ∈ �̂i(ui,0, xi+1, λ)

if and only if there exist Ui+1 ∈ �̂i+1(ui+1,0, xi+1, λ) and ρi ∈R

such that

(Df (ui)−xi+1I )Ui − (Df (ui+1)−xi+1I )Ui+1 −ρi(ui −ui+1)=0.

In other words,

∑̂i

(ui,0, xi+1, λ)= (Df (ui)−xi+1I )−1{(Df (ui+1)

−xi+1I )�̂i+1(ui+1,0, xi+1, λ)+ span (ui −ui+1)}.
(3) For other (ui,0, x, λ)∈Ri ,

�̂i(ui,0, x, λ)=�(x, xi+1;ui, λ)�̂i(ui,0, xi+1, λ).

Notice that dim �̂i+1� dim �̂i� dim �̂i+1 +1.
A somewhat more precise description of these spaces is as follows:

Fix i,1�i�n. For 0�k�i −1 we define vector fields ŵk,i(u,0, x, λ) on R̂k

by reverse induction as follows
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(1) Let (ui−1,0, xi, λ)∈Q̂i−1, and let (ui,0, xi, λ) be the correspond-
ing point of Ri , so that f (ui−1)−f (ui)−xi(ui−1 −ui)=0. Then

ŵi−1,i (ui−1,0, xi, λ)= (Df (ui−1)−xiI )−1(ui−1 −ui).

(2) If ŵk−1,i (uk−1,0, xk, λ) has been defined on Q̂k−1 and
(uk−1,0, x, λ) is another point of R̂k−1, let ŵk−1,i (uk−1,0, x, λ)=
�(x, xk;uk−1,i , λ)ŵk−1,i (uk−1,0, xk, λ).

(3) If ŵk,i(uk,0, x, λ) has been defined on R̂k and (uk−1,0, xk, λ) is a
point of Q̂k−1, with corresponding point (uk,0, xk, λ)∈ R̂k, then

ŵk−1,i (uk−1,0, xk, λ)= (Df (uk−1)

−xkI )−1(Df (uk)−xkI )ŵk,i(uk,0, xk, λ).

Then for k�n−1, if (u,0, x, λ)∈ R̂k,

�̂k(u,0, x, λ)= span (ŵk,k+1(u,0, x, λ), . . . , ŵk,n(u,0, x, λ)).

For i =1, . . . , n, let

R̂i
0 ={(u, v, x, λ,U,V ) : (u, v, x, λ)∈ R̂i ,U ∈ �̂i(u, v, x, λ),V =0}.

Proposition 5.3. For some i,0�i�n − 1, and all 0 < ε < ε0, let R̂i+1
ε

be a vector bundle over R̂i+1 that is contained in T i+1
ε and is invariant

under (5.22). Assume that the sets R̂i+1
ε × {ε} fit together with the set

R̂i+1
0 × {0} defined above to form a Cr+6 submanifold of uvxλUV ε-space,

r�2. For 0�ε�ε0, let Ĥε be a cross-section of Ws
ε (R̂i+1) such that Ĥ0 con-

tains the point (qi+1(ξ), q̇i+1(ξ), x̄i+1, λ̄) with λ̄ �=−1, and the sets Ĥε ×{ε}
fit together to form a Cr+6 submanifold of uvxλε-space. Let Ĥε be the
restriction to Ĥε of the vector bundle Wu

ε (R̂i+1
ε ). Then, with S0 = S i

0, θ0 =
(ūi ,0, x̄i+1, λ̄), and p= (qi+1(ξ), q̇i+1(ξ), x̄i+1, λ̄, q̇i+1(ξ), q̈i+1(ξ)), assump-
tions (E1)–(E7) of Section 4 are satisfied for the backwards flow. Assumption
(E8) is satisfied if and only if dim �̂i = dim �̂i+1 +1.

Let M(λ) denote the n×n matrix whose columns are wn,i(ūn, x̄n, λ), i =
1, . . . , n, and let E(λ)= detM(λ).

Assume:

(S1) λ̄ is a simple zero of M(λ).

Let �,1���n − 1, denote the last integer such that the � vectors
wn,1(ūn, x̄n, λ), . . . ,wn,�(ūn, x̄n, λ) are linearly independent. Then the vec-
tors wn,�+1(ūn, x̄n, λ), . . . ,wn,n(ūn, x̄n, λ) are also linearly independent.

Theorem 5.4 says that if λ̄ �=−1 satisfies (S1), then there is an eigen-
value nearby.
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Theorem 5.4. Suppose f is sufficiently differentiable and λ̄ �=−1 satis-
fies (S1). Then for small ε >0,Wu

ε (R0
0) and Ws

ε (R̂n
0) meet transversally along

a one-parameter family of orbits (uε(ξ), u̇ε(ξ), εξ, aUε(ξ), aVε(ξ), λ(ε)), with
uε(ξ) the Riemann–Dafermos solution and λ(ε)= λ̄+O(ε).

Proof. We follow Wu
ε (R0

0), ε >0, forward past x = x̄1 using Theorem
4.1, whose hypotheses are verified by Proposition 5.2. We see that near x =
x̄2, the Wu

ε (R0
0), ε > 0, fit together with Wu

0 (R1
0) to form a smooth mani-

fold. The U -part of R1
0 has dimension one greater than the U -part of R1

0;
the process by which this occurs is pictured in Figure 5.

Proceding inductively, we see that near x = x̄�+1, the Wu
ε (R0

0), ε >0, fit
together with Wu

0 (R�
0) to form a smooth manifold.

Similarly, we follow Ws
ε (Rn

0), ε > 0, backward past x = x̄n using
Theorem 4.1, whose hypotheses are verified by Proposition 5.3. We see
that near x = x̄n−1, the Ws

ε (Rn
0), ε >0, fit together with Ws

0 (Rn−1
0 ) to form

a smooth manifold. Proceding inductively, we see that near x = x̄�, the
Ws

ε (Rn
0), ε >0, fit together with Ws

0 (R�
0) to form a smooth manifold.

Let x̄ = 1
2 (x̄� + x̄�+1), and let p = (ū�,0, x̄, Ū ,0) be a point in the

intersection of Wu
0 (R�

0) and Ws
0 (R̂�

0).
A neighborhood of p in Wu

0 (R�
0) is parameterized by a map

(α,β, xL, λL, a)∈R
� ×R

n−� ×R×R×R
n → (u, v, x, λ,U,V )

of the form

u=A(α)+O(β),

v =B(α, xL)β +O(β2),

x =xL,

λ=λL,

U =
�∑

i=1

aiw�,i(A(α), xL, λL)+
n∑

i=�+1

airi(A(α))+O(β),

V =
n∑

i=�

ai(νi(A(α))−xL)ri(A(α))+O(β)

with A(0)= ū�,DA of rank �, and B of rank n−�.
A neighborhood of p in Ws

0 (R̂�
0) is parameterized by a map

(γ, δ, xR, λR, b)∈R
n−� ×R

� ×R×R×R
n → (u, v, x, λ,U,V )
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of the form

u= Â(γ )+O(δ),

v = B̂(γ, xR)δ +O(δ2),

x =xR,

λ=λR,

U =
�∑

i=1

biri(Â(γ ))+
n∑

i=�+1

biŵ�,i(Â(γ ), xR, λR)+O(δ),

V =
�∑

i=1

bi(νi(Â(γ ))−xR)ri(Â(γ ))+O(δ)

with Â(0)= ū�,DÂ of rank n−� and B of rank �.
Define linear maps �(λ): R2n →R

2n by

�(λ)= (Df (ūn)− x̄nI )−1(Df (ūn−1)− x̄nI )�(x̄n, x̄n−1; ūn−1, λ)

· · · (Df (ū�+1)− x̄�+1I )−1(Df (ū�)− x̄�+1I )�(x̄�+1, x̄; ū�, λ).

Then

wn,i(ūn, x̄n, λ)=�(λ)w�,i(ū�, x̄, λ), i =1, . . . , �,

wn,i(ūn, x̄n, λ)=�(λ)ŵ�,i(ū�, x̄, λ), i =�+1, . . . , n.

Therefore, there exist (ā1, . . . , ā�) such that

ŵ�,�+1(ū�, x̄, λ̄)=
�∑

i=1

āiw�,i(ū�, x̄, λ̄) (5.28)

and we may take Ū = ŵ�,�+1(ū�, x̄, λ).
The tangent spaces to Wu

0 (R�
0) and Ws

0 (R̂�
0) at p are spanned, respec-

tively, by the column vectors in the matrices

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A′(0) ∗ 0 0 0 . . . 0 0 . . . 0
0 B(0, x̄) 0 0 0 . . . 0 0 . . . 0
0 0 1 0 0 . . . 0 0 . . . 0
0 0 0 1 0 . . . 0 0 . . . 0

∗ ∗
�∑

i=1
āi ∂

∂xL w�,i
�∑

i=1
āi ∂

∂λL w�,i w�,1 . . . w�,� r�+1 . . . rn

∗ ∗ ∗ 0 0 . . . 0 (ν�+1 − x̄)r�+1 . . . (νn − x̄)rn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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and
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Â′(0) ∗ 0 0 0 . . . 0 0 . . . 0
0 B̂(0, x̄) 0 0 0 . . . 0 0 . . . 0
0 0 1 0 0 . . . 0 0 . . . 0
0 0 0 1 0 . . . 0 0 . . . 0
∗ ∗ ∂

∂xR ŵ�,�+1 ∂

∂λR ŵ�,�+1 r1 . . . r� ŵ�,�+1 . . . ŵ�,n

∗ ∗ ∗ 0 (ν1 − x̄)r1 . . . (ν� − x̄)r� 0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where the w�,i and ŵ�,i are evaluated at (ū�, x̄, λ), the νi and ri are evalu-
ated at ū�, and the starred entries are not important. The span of all these
column vectors is uvxλUV -space if and only if the span of the n+4 vec-
tors in the following matrix, in which the w�,i and ŵ�,i are considered to
be functions of (ū�, x, λ) evaluated at (ū�, x̄, λ̄), is R

n+2, i.e., xλU -space:
⎛

⎜
⎜
⎝

1 1 0 0 0 . . . 0 0 . . . 0
0 0 1 1 0 . . . 0 0 . . . 0

�∑

i=1
āi ∂

∂x
w�,i ∂

∂x
ŵ�,�+1

�∑

i=1
āi ∂

∂λ
w�,i ∂

∂λ
ŵ�,�+1 w�,1 . . . w�,� ŵ�,�+1 . . . ŵ�,n

⎞

⎟
⎟
⎠.

Of course, the column containing ŵ�,�+1 is a linear combination of the �

previous columns. Also, from (5.28) and the fact that the w�,i and ŵ�,i

satisfy the same linear differential equation, we see that the first two col-
umns are equal. Therefore, the following matrix has the same column span
as the previous one:
⎛

⎜
⎜
⎝

1 0 0 0 ... 0 0 ... 0
0 1 0 0 ... 0 0 ... 0

∂
∂x

ŵ�,�+1
�∑

i=1
āi ∂

∂λ
w�,i ∂

∂λ
ŵ�,�+1−

�∑

i=1
āi ∂

∂λ
w�,i w�,1 ... w�,� ŵ�,�+2 ... ŵ�,n

⎞

⎟
⎟
⎠.

This matrix has full rank if and only if the vector ∂
∂λ

ŵ�,�+1 −∑�
i=1 āi ∂

∂λ
w�,i

is independent of the vectors w�,1, . . . ,w�,�, ŵ�,�+2, . . . , ŵ�,n.
We claim that this condition is equivalent to E′(λ̄) �=0. To see this, let

N(λ) denote the n×n matrix
(
w�,1(ū�, x̄, λ) . . .w�,�(ū�, x̄, λ) ŵ�,�+1(ū�, x̄, λ) . . . ŵ�,n(ū�, x̄, λ)

)

and let F(λ) = det N(λ). Then M(λ) = �(λ)N(λ), so E(λ) = det �(λ)F (λ)

and E′(λ̄)=det �(λ̄)F ′(λ). Hence E′(λ̄) is nonzero if and only if F ′(λ̄) is
nonzero.

After some column operations, we see that

F(λ)=det

(

w�,1 . . . w�,� ŵ�,�+1 −
�∑

i=1

āiw�,i ŵ�,�+2 . . . ŵ�,n

)

.
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Since the (�+1)st column is 0 at λ= λ̄,

F ′(λ̄)=det

(

w�,1 . . . w�,� ∂

∂λ
ŵ�,�+1 −

�∑

i=1

āi ∂

∂λ
w�,i ŵ�,�+2 . . . ŵ�,n

)

.

Therefore F ′(λ̄) is nonzero if and only if the desired linear independence
condition holds.

Theorem 5.5. Suppose f is sufficiently differentiable, λ̄ �= −1, and
M(λ̄) �=0. Then there are numbers δ0 >0 and ε0 >0 such that for |λ− λ̄|<δ0
and 0<ε <ε0, λ is not an eigenvalue of the linearized Dafermos operator at
the Riemann–Dafermos solution uε .

Proof. Choose an � between 1 and n. Proceeding as in the proof of
Theorem 5.4, we see that there do not exist (ā1, . . . , ā�) and (b̄�+1, . . . , b̄n)

such that (5.28) holds. In this case, Wu
0 (R�0) and Ws

0 (R̂�
0) meet transver-

sally along the two-dimensional manifold

{(u, v, x, λ,U,V ) :u= ū�, v =0,µ�(ū�)<x <µ�+1(ū�), |λ− λ̄|<2δ0,U =V =0}.
It follows that for small ε > 0,Wu

ε (R0
0) and Ws

ε (R̂n
0) meet transver-

sally near (ū�,0, x̄, λ̄,0,0) along their known two-dimensional intersection
(uε(ξ), u̇ε(ξ), εξ, λ,0,0). The result is just a restatement of this fact.

APPENDIX A. NORMAL HYPERBOLICITY OF S0
δ AND Sn

δ

In Section 2, we defined manifolds S0
δ and Sn

δ , which are not com-
pact. To treat their normal hyperbolicity, we compactify the x-component
of uvx-space by adding points at x =−∞ and x =∞. We denote the com-
pactified R with its usual topology by R̂= [−∞,∞]. We define Ŝ0

δ and Ŝn
δ

in R̂ by the same equations used in Section 2, so that Ŝ0
δ and Ŝn

δ extend
all the way to x =−∞ and x =∞, respectively.

On R̂ we use three coordinates: x,−∞ < x < ∞, on R ⊂ R̂;y,−∞ <

y�0, on [−∞,0) ⊂ R̂; and z,0�z < ∞, on [0,∞] ⊂ R̂. The coordinate
transformation between x and y (respectively, x and z) is x = 1

y
,−∞<y <

0 (resp. x = 1
z
,0 < z < ∞). Of course, y = 0 corresponds to −∞ ∈ R̂, and

z=0 corresponds to ∞∈ R̂.
In uvy-coordinates, the systems (2.5)–(2.7) becomes

u̇ =v, (A.1)

v̇ = (Df (u)− 1
y

I)v, (A.2)

ẋ =−y2ε. (A.3)
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Since (A.2) is undefined at y = 0, corresponding to −∞ ∈ R̂, we multiply
the system by −y, which is positive for −∞<y <0. We obtain

u̇ =−yv, (A.4)

v̇ = (I −yDf (u))v, (A.5)

ẋ =y3ε. (A.6)

The system on R
n × R

n × R̂ that we consider is constructed from
(A.4)–(A.6), the corresponding equation in uvz-coordinates, and (2.5)–
(2.7) using a partition of unity, so that it coincides with (A.4)–(A.6) near
−∞∈ R̂, with the corresponding equation in uvz-coordinates near ∞∈ R̂,
and with (2.5)–(2.7) near 0∈ R̂. It has the same flow as (2.5)–(2.7), up to
reparameterization of time, in R

n ×R
n ×R.

For ε =0, (A.4)–(A.6) reduces to

u̇ =−yv, (A.7)

v̇ = (I −yDf (u))v, (A.8)

ẋ =0, (A.9)

which has the region ‖u‖� 1
δ
, v = 0,−K�y�0 as a compact normally

hyperbolic invariant manifold. It follows easily that Ŝ0
δ is a compact nor-

mally hyperbolic invariant manifold in R
n ×R

n × R̂, and hence persists as
a normally hyperbolic, locally invariant manifold for small ε >0.

A similar argument applies to Sn
δ .
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