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Abstract. We construct self-similar solutions of the Dafermos regularization of a system of conservation laws
near structurally stable Riemann solutions composed of Lax shocks and rarefactions, with all waves
possibly large. The construction requires blowing up a manifold of gain-of-stability turning points
in a geometric singular perturbation problem as well as a new exchange lemma to deal with the
remaining hyperbolic directions.
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1. Introduction. This paper is the last in a series of three; the others are [22] and [23].
An introduction to the series is in [22]. We construct self-similar solutions of the Dafermos
regularization of a system of conservation laws near structurally stable Riemann solutions
composed of Lax shocks and rarefactions, with all waves possibly large. The construction
requires blowing up a manifold of gain-of-stability turning points in a geometric singular per-
turbation problem. In addition, it requires a new exchange lemma to deal with the remaining
hyperbolic directions. The latter is a consequence of the general exchange lemma from [23].

In this introduction, we briefly describe the conservation law background, and we describe
some solutions near gain-of-stability turning points in order to help the reader’s intuition.

A system of conservation laws in one space dimension is a partial differential equation of
the form

(1.1) uT + f(u)X = 0,

with X ∈ R, u ∈ R
n, and f : R

n → R
n a smooth function. For background on this class of

equations, see, for example, [26]. An important initial value problem is the Riemann problem,
which has piecewise constant initial conditions:

(1.2) u(X, 0) =

{
uL for X < 0,
uR for X > 0.
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RAREFACTIONS UNDER DAFERMOS REGULARIZATION 823

One looks for a solution of the Riemann problem in the self-similar form u(x), x = X
T .

Substitution into (1.1) yields the ordinary differential equation (ODE)

(1.3) (A(u) − xI)ux = 0,

with A(u) = Df(u), an n × n matrix. Boundary conditions are u(−∞) = uL, u(∞) = uR.
Solutions are allowed to have constant parts, continuously changing parts (rarefaction waves),
and certain jump discontinuities (shock waves).

The Dafermos regularization of (1.1) is

(1.4) uT + f(u)X = εTuXX .

Solutions that have the self-similar form u(x), x = X
T , satisfy the ODE

(1.5) (A(u) − xI)ux = εuxx,

a “viscous perturbation” of (1.3). Solutions of (1.5) that approach constants at x = ±∞ and
have u′(±∞) = 0 are called Riemann–Dafermos solutions.

The Dafermos regularization was introduced with the expectation that Riemann–Dafermos
solutions, for small ε > 0, would turn out to be smoothed versions of the Riemann solution
with the same boundary values. It is now known under a variety of assumptions that this is
true [2, 29, 19, 16, 25]. The conclusion holds, for example, whenever uL is close to uR [29].
In addition, it holds for arbitrary uL and uR if (1) the Riemann solution consists entirely of
shock waves, (2) each shock wave satisfies the viscous profile criterion (see section 2) for the
viscosity uxx, and (3) the Riemann solution is structurally stable; see [19]. We shall show
that the same conclusion holds for arbitrary uL and uR provided (1′) the Riemann solution
consists entirely of Lax shock waves and rarefaction waves and (2) and (3) hold. If rarefaction
waves are present, this case is not covered by the above results.

Dafermos regularization gives a “holistic” approach to Riemann solutions: rather than
piece together shock waves and rarefaction waves to obtain the Riemann solution, as is usu-
ally done [26], one constructs (a smoothed version of) the Riemann solution by solving the
boundary value problem (1.5), u(−∞) = uL, u(∞) = uR, u′(±∞) = 0, for a small ε > 0. This
approach to solving Riemann problems was implemented numerically in [17], but it is not
fully justified without a better collection of results relating Riemann and Riemann–Dafermos
solutions.

The Dafermos regularization arises naturally in the study of the long-time behavior of
viscous conservation laws. To see this, consider the viscous regularization of (1.1)

(1.6) uT + f(u)X = uXX .

The change of variables

(1.7) x =
X

T
, t = lnT

converts (1.6) into the nonautonomous system

(1.8) ut + (A(u) − xI)ux = e−tuxx.D
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824 STEPHEN SCHECTER AND PETER SZMOLYAN

To study solutions of (1.8) for large t, it is natural to begin by studying the autonomous
system

(1.9) ut + (A(u) − xI)ux = εuxx

with ε > 0 small. Equation (1.9) is just (1.4) written in the variables (1.7). Riemann–
Dafermos solutions are just stationary solutions of (1.9). This point of view on the Dafermos
regularization is developed in [14]. Again, to pursue this approach to the long-time behavior
of viscous conservation laws, a better collection of results relating Riemann and Riemann–
Dafermos solutions is needed.

We remark that if the term uXX in (1.6) is replaced by the more general viscous term
(B(u)uX)X , then one should replace uxx by (B(u)ux)x in (1.8). Hence, to obtain the relevant
Dafermos regularization, one should replace uxx by (B(u)ux)x in (1.9) and (1.5). One should
therefore require shock waves in Riemann solutions to satisfy the viscous profile criterion for
the new viscosity. We do not pursue this generalization in the present paper.

The ODE (1.5) can be written as the nonautonomous system

εux = v,

εvx = (A(u) − xI)v.

Setting x = x0 + εt, and using a dot to denote the derivative with respect to t, we obtain the
autonomous system

u̇ = v,(1.10)
v̇ = (A(u) − xI)v,(1.11)
ẋ = ε,(1.12)

with (u, v, x) ∈ R
n × R

n × R. The boundary conditions become

(1.13) (u, v, x)(−∞) = (uL, 0,−∞), (u, v, x)(∞) = (uR, 0,∞).

It turns out that a solution of the Riemann problem (1.1)–(1.2) can be regarded as a singular
solution (ε = 0) of the boundary value problem (1.10)–(1.13). Riemann–Dafermos solutions,
on the other hand, correspond to true solutions of (1.10)–(1.13) with ε > 0. Therefore, to
show the existence of Riemann–Dafermos solutions near a given Riemann solution, one can try
to construct true solutions of (1.10)–(1.13), with ε > 0 small, near certain singular solutions.

Note that for every ε, ux-space is invariant under (1.10)–(1.12). On ux-space, the system
reduces to u̇ = 0, ẋ = ε, so for ε = 0, ux-space consists of equilibria. The linearization of
(1.10)–(1.12) at one of these equilibria has the matrix

(1.14)

⎛
⎝0 I 0

0 A(u) − xI 0
0 0 0

⎞
⎠ .

This matrix has an eigenvalue 0 with multiplicity n+ 1 (the eigenspace is ux-space), plus the
eigenvalues of A(u) − xI.D
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RAREFACTIONS UNDER DAFERMOS REGULARIZATION 825

A common assumption in the study of conservation laws is strict hyperbolicity: for all
u in a region of interest, A(u) has n distinct real eigenvalues λ1(u) < · · · < λn(u). Under
this assumption, the eigenvalues of A(u) − xI are λi(u) − x, i = 1, . . . , n. Therefore, for
ε = 0, ux-space loses normal hyperbolicity (see section 2) along the codimension-one surfaces
x = λi(u), i = 1, . . . , n. As one crosses one of these surfaces along a line with u constant and
x increasing, the eigenvalue λi(u) − x changes from positive to negative (gain of stability).

For a small δ > 0, let us consider IuL
= {(u, v, x) : u = uL, v = 0, x < λ1(u) − δ}.

See Figure 1. For each ε, it is invariant and lies in the normally repelling invariant manifold
{(u, v, x) : ‖u‖ < 1

δ , v = 0, x < λ1(u) − δ}. (This manifold extends to x = −∞; however,
a compactification argument shows that it can still be regarded as a normally hyperbolic
invariant manifold. See [21, Appendix A].) Hence it has an unstable manifold W u

ε (IuL
) of

dimension n + 1 (see section 2). Similarly, IuR
= {(u, v, x) : u = uR, v = 0, λn(u) + δ < x}

has a stable manifold W s
ε (IuR

) of dimension n+ 1. For ε > 0, solutions of (1.10)–(1.13) lie in
W u

ε (IuL
)∩W s

ε (IuR
). Notice that two manifolds of dimension n+ 1 in R

2n+1, if they intersect,
will typically intersect in curves. To find solutions of (1.10)–(1.13), one should follow W u

ε (IuL
)

forward by the flow for ε > 0 until it meets W s
ε (IuR

) (if it does).

u

v

x=λ1(u) x=λn(u)

IuL

IuR

Wu(IuL
)

     
ε

Ws(IuR
)

     
ε

x

...

Figure 1. For ε > 0, an intersection of W u
ε (IuL) and W s

ε (IuR) gives a solution of the boundary value
problem. The figure does not show the complications that typically occur in tracing W u

ε (IuL) forward.

If the solution of the Riemann problem (1.1)–(1.2) consists only of shock waves, then for
small ε > 0, the relevant portion of W u

ε (IuL
) does not pass near any of the surfaces v = 0,

x = λi(u), where normal hyperbolicity is lost, so it can be tracked when it passes near v = 0
using the usual exchange lemma [19]. If, however, the Riemann solution includes a rarefaction
wave of the ith family (see section 2), then the relevant portion of W u

ε (IuL
) passes near the

surface v = 0, x = λi(u) [25]. Thus we have the problem of tracking a manifold of solutionsD
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826 STEPHEN SCHECTER AND PETER SZMOLYAN

as it passes near a surface of gain-of-stability turning points. In the present paper we show
how to do this, and we apply the result to finding solutions of the boundary value problem
(1.10)–(1.13).

For ε = 0, at a point (u, v, x) with v = 0 and x = λi(u), the matrix (1.14) has the
eigenvalue 0 with multiplicity n+ 2, and n− 1 real nonzero eigenvalues. If n ≥ 2, the analysis
of the flow near such a point has two parts: the first part is the analysis of the flow on a
collection of normally hyperbolic invariant manifolds Kε of dimension n + 2, each of which
properly contains an open subset of ux-space; the second part is the application of the general
exchange lemma from [23] to deal with the hyperbolic directions. For n = 1, the second step
is not necessary; this was the situation in [25].

To help the reader’s intuition, Figure 2 indicates the type of solution in which we are
interested in the case n = 1, in which case λ1(u) = f ′(u). In the figure, uL < uR, and
λ′1(u) = f ′′(u) > 0 for uL ≤ u ≤ uR. The figure shows a singular solution, which consists of
the lines u = uL, v = 0, x < λ1(uL) and u = uR, v = 0, λ1(uR) < x, together with the curve
uL ≤ u ≤ uR, v = 0, x = λ1(u). For small ε > 0 there is an actual solution (uε(t), vε(t), εt) just
above this one that approaches (uL, 0,−∞) as t→ −∞ and approaches (uR, 0,∞) as t→ ∞.
Such a solution lies in W u

ε (IuL
) ∩W s

ε (IuR
). Other solutions in W u

ε (IuL
) with v > 0 follow

along the curve x = λ1(u) for different lengths before leaving and hence approach different
right states. Such solutions can be proved to exist using the blow-up construction discussed
below. Intuitively, for small ε > 0, if a solution is close to the curve uL ≤ u ≤ uR, v = 0,
x = λ1(u), but slightly above it, x increases slowly (because ẋ = ε) and u increases slowly
(because u̇ = v), so the solution moves along the curve.

x

v

u

uL

uR

x=λ1(u)

Figure 2. A singular solution with n = 1.

We begin the paper by constructing self-similar solutions of the Dafermos regularization
in section 2. The construction uses the exchange lemma we shall prove. In section 3 we state
the exchange lemma to be proved and outline the proof. In section 4 we derive the differential
equations on a normally hyperbolic invariant manifold. In section 5 we analyze the reduced
flow via the blow-up construction, and in section 6 we use the blow-up construction to track
solutions in the normally hyperbolic invariant manifold as they pass the manifold of turning
points. In section 7 we use our analysis of the flow on the normally hyperbolic invariant
manifold to prove an exchange lemma for dealing with the remaining hyperbolic directions.D
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RAREFACTIONS UNDER DAFERMOS REGULARIZATION 827

2. Construction of Riemann–Dafermos solutions.

2.1. Conservation laws. Consider the system of conservation laws (1.1) and its viscous
regularization (1.6). Let A(u) = Df(u). We assume strict hyperbolicity on R

n. We denote the
eigenvalues of A(u) by λ1(u) < λ2(u) < · · · < λn(u), and we denote corresponding eigenvectors
by r̃i(u), i = 1, . . . , n.

For notational convenience we let λ0(u) = −∞ and λn+1(u) = ∞.
We assume that (1.1) is genuinely nonlinear, i.e., Dλi(u)r̃i(u) 	= 0 for all i = 1, . . . , n and

for all u ∈ R
n. Then we can choose ri(u) so that

Dλi(u)ri(u) = 1.

2.2. Rarefactions. A rarefaction wave is a solution of (1.1) of the form u(x), x = X
T ∈

[a, b], with a < b and u′(x) 	= 0 for all x ∈ [a, b]. Then u(x) is a solution of the ODE

(A(u) − xI)ux = 0

with ux 	= 0. Notice that each x must be an eigenvalue of A(u(x)). In particular, a rarefaction
of the ith family has x = λi(u(x)). Given u−, denote the solution of the initial value problem

ux = ri(u), u(λi(u−)) = u−,

by ψi(u−, x). Then a rarefaction of the ith family with left state u− is just ψi(u−, x), λi(u−) ≤
x ≤ b, with λi(u−) < b.

2.3. Traveling waves. A traveling wave with speed s is a solution of (1.6) of the form
u(t), t = X − sT , −∞ < t <∞. Hence u(t) is a solution of the ODE

(2.1) (A(u) − sI)ut = utt.

We shall always require constant boundary conditions:

u(−∞) = u−, u(∞) = u+, u′(±∞) = 0.

Integrating (2.1) from −∞ to t and using the boundary conditions at −∞, we obtain

(2.2) ut = f(u) − f(u−) − s(u− u−).

The system (2.2) has an equilibrium at u−, and it has an equilibrium at u+ provided the
Rankine–Hougoniot condition is satisfied:

(2.3) f(u+) − f(u−) − s(u+ − u−) = 0.

Thus there is a traveling wave solution of (1.6) with left state u−, speed s, and right state u+

if and only if (2.3) is satisfied and (2.2) has a heteroclinic solution u(t) from u− to u+.D
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828 STEPHEN SCHECTER AND PETER SZMOLYAN

2.4. Shock waves. Let x = X
T , let s ∈ R, and consider the function

(2.4) u(x) =

{
u− if x < s,

u+ if x > s.

We shall call (2.4) a shock wave with speed s, and admit it as a solution of (1.1), if the viscous
system (1.6) has a traveling wave solution u(t) with the same left state, speed, and right state.
The traveling wave u(t) is a viscous profile for the shock wave (2.4), for the viscosity uxx. We
associate with each shock wave a fixed viscous profile.

For each i = 1, . . . , n, the shock wave (2.4) is a Lax i-shock if λi−1(u−) < s < λi(u−)
and λi(u+) < s < λi+1(u+). It is regular if, for the system (2.2), W u(u−) meets W s(u+)
transversally along the viscous profile u(t). Notice that u− and u+ are hyperbolic equilibria
of (2.2), W u(u−) has dimension n− i+ 1, and W s(u+) has dimension i. Hence a transversal
intersection has dimension one.

2.5. Classical Riemann solutions. An n-wave classical Riemann solution of (1.1) is a
function u∗(x), x = X

T , with the following property. Let s∗0 = −∞ and a∗n+1 = ∞. Then
there is a sequence of numbers a∗1 ≤ s∗1 < a∗2 ≤ s∗2 < · · · < a∗n ≤ s∗n and a sequence of points
u∗0, u

∗
1, . . . , u

∗
n such that the following hold:

(1) For i = 0, . . . , n, if s∗i < x < a∗i+1, then u(x) = u∗i .
(2) If a∗i < s∗i , then u∗|[a∗i , s∗i ] is a rarefaction of the ith family. Moreover, u∗(a∗i ) = u∗i−1

and u(s∗i ) = u∗i .
(3) If a∗i = s∗i , the triple (u∗i−1, s

∗
i , u

∗
i ) is a Lax i-shock.

Thus u∗(x) has a jump discontinuity whenever a∗i = s∗i . We will take u∗(x) to be undefined
at such points. If a∗i = s∗i , we denote the corresponding viscous profile by qi(t). If u∗0 = uL

and u∗n = uR, then u∗(x) is a solution of the Riemann problem (1.1)–(1.2).

2.6. Structural stability. Given an n-wave classical Riemann solution u∗(x), define func-
tions Gi : R

n × R × R
n → R

n, i = 1, . . . , n, as follows:
(1) If a∗i < s∗i , Gi(u−, s, u+) = u+ − ψi(u−, s).
(2) If a∗i = s∗i , Gi(u−, s, u+) = f(u+) − f(u−) − s(u+ − u−).

Define G : R
n2+2n → R

n2
by

G(u0, s1, u1, s2, u2, . . . , un−1, sn, un) = (G1(u0, s1, u1), G2(u1, s2, u2), . . . , Gn(un−1, sn, un)).

Let u∗ = (u∗0, s∗1, u∗1, s∗2, u∗2, . . . , u∗n−1, s
∗
n, u

∗
n). (We hope this reuse of the symbol u∗ will not be

confusing.) ThenG(u∗) = 0. If all shock waves are regular, then nearby solutions of G = 0 also
define n-wave classical Riemann solutions with the same sequence of rarefaction and shock
waves. The Riemann solution u∗(x) is said to be structurally stable if all shock waves are
regular and the restriction of DG(u∗) to the n2-dimensional space of vectors with ū0 = ūn = 0
is invertible. In this case, for each (u0, un) near (u∗0, u

∗
n), there is an n-wave classical Riemann

solution with left state u0, right state un, and the same sequence of rarefaction and shock
waves.

For i = 0, . . . , n, let Oi be a small neighborhood of u∗i in R
n, and for i = 1, . . . , n, let Ii

be a small neighborhood of s∗i in R.D
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RAREFACTIONS UNDER DAFERMOS REGULARIZATION 829

For i = 1, . . . , n, define Wi : Oi−1 × Ii → R
n as follows: Wi(ui−1, xi) is the solution ui

near u∗i of the equation Gi(ui−1, xi, ui) = 0. There is a unique such solution by the implicit
function theorem.

For i = 0, . . . , n, we inductively define subsets Ri of Oi as follows:
(1) R0 = {u∗0}.
(2) For i = 1, . . . , n, ui ∈ Oi is in Ri provided there exist ui−1 ∈ Ri−1 and xi ∈ Ii such

that Wi(ui−1, xi) = ui.
Proposition 2.1. Let u∗(x) be an n-wave classical Riemann solution that is structurally

stable. Then the following hold:
(1) For i = 0, . . . , n, Ri is a manifold of dimension i, and u∗i ∈ Ri.
(2) For i = 1, . . . , n, Wi maps an open subset of Ri−1 × Ii diffeomorphically onto Ri.
Proposition 2.1 is an easy consequence of our assumption on DG(u∗).
Suppose the ith wave of the structurally stable Riemann solution u∗(x) is a shock wave.

Then for (ui−1, xi) ∈ Ri−1 × Ii, the traveling wave equation

u̇ = f(u) − f(ui−1) − xi(u− ui−1)

has a connecting orbit u(t) from ui−1 to ui = Wi(ui−1, xi) near qi(t); moreover, the (n− i+1)-
dimensional unstable manifold of ui−1 and the i-dimensional stable manifold of ui meet trans-
versally along this orbit.

2.7. Dafermos regularization. We consider the Dafermos regularization of (1.1) with
viscosity uXX , namely, (1.4). We recall that a Riemann–Dafermos solution is a solution of
(1.4) of the form u(x), x = X

T , with u(±∞) constant and u′(±∞) = 0. As shown in the
introduction, Riemann–Dafermos solutions correspond to solutions of the autonomous system
(1.10)–(1.12) that satisfy analogous boundary conditions.

2.8. Dafermos ODE with ε = 0. We consider (1.10)–(1.12) with ε = 0:

u̇ = v,(2.5)
v̇ = (A(u) − xI)v,(2.6)
ẋ = 0.(2.7)

We note that the (n+ 1)-dimensional space v = 0 consists of equilibria, and the functions
x and f(u)− xu− v are first integrals. They have the following significance. Fix a number s.
If we restrict (2.5)–(2.6) to the 2n-dimensional invariant set x = s, we obtain the second-order
traveling wave equation (2.1), converted to a first-order system by setting v = ut. Now choose
u− and let w = f(u−) − su−. Then {(u, v, x) : x = s and w = f(u) − su − v} is invariant
and has dimension n. Parameterizing it by u, the system (2.5)–(2.7) reduces to the integrated
traveling wave equation (2.2).

In particular, (2.2) has a heteroclinic solution u(t) from u− to u+ if and only if the system
(2.5)–(2.7) has a heteroclinic solution (u(t), u̇(t), s) from (u−, 0, s) to (u+, 0, s).

At an equilibrium (u, 0, x) of (2.5)–(2.7), the matrix (1.14) of the linearization has the
eigenvalues λi(u) − x, i = 1, . . . , n, and 0 repeated n + 1 times. Then ux-space, the set of
equilibria for (2.5)–(2.7), decomposes as follows.D
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830 STEPHEN SCHECTER AND PETER SZMOLYAN

• For i = 0, . . . , n, let

Ei = {(u, v, x) : v = 0 and λi(u) < x < λi+1(u)}.

Each Ei is an (n+ 1)-dimensional manifold of equilibria of (2.5)–(2.7). At (u, 0, x) in
Ei, the linearization of (2.5)–(2.7) has i negative eigenvalues λk(u) − x, k = 1, . . . , i;
n− i positive eigenvalues λk(u)− x, k = i+ 1, . . . , n; and the semisimple eigenvalue 0
with multiplicity n+ 1.

• For i = 1, . . . , n, let

Fi = {(u, v, x) : v = 0 and x = λi(u)}.

Each Fi is an n-dimensional manifold of equilibria of (2.5)–(2.7). At (u, 0, x) in Ei, the
linearization of (2.5)–(2.7) has i − 1 negative eigenvalues, n − i positive eigenvalues,
and the semisimple eigenvalue 0 with multiplicity n+ 2.

2.9. Singular solution. Suppose the Riemann problem (1.1)–(1.2) has the structurally
stable n-wave classical Riemann solution u∗(x), with u∗0 = uL and u∗n = uR. We define the
following curves in uvx-space:

• For i = 0, . . . , n, let

Ji = {(u, v, x) : u = u∗i , v = 0, s∗i < x < a∗i+1}.

• For i = 1, . . . , n,
– if a∗i < s∗i , let Γi = {(u, v, x) : u = u∗(x), v = 0, a∗i ≤ x ≤ s∗i }, and
– if a∗i = s∗i , let Γi = {(u, v, x) : u = qi(t), v = q̇i(t), x = s∗i }∪{(u∗i−1, 0, s

∗
i ), (u

∗
i , 0, s

∗
i )}.

Note that for each i, Ji ⊂ Ei, and for each i for which a∗i < s∗i , Γi ⊂ Fi.
The singular solution of the boundary value problem (1.10)–(1.13) is then J0 ∪ Γ1 ∪ J1 ∪

· · ·∪Jn−1∪Γn∪Jn. It corresponds to the Riemann solution, together with the viscous profiles
of the shock waves.

2.10. Normally hyperbolic invariant manifolds. Let α̇ = g(α, γ) be a smooth differential
equation with α ∈ R

k+l+m and γ a vector of parameters. Suppose α̇ = g(α, 0) has an m-
dimensional manifold of equilibria Σ ⊂ R

k+l+m, and at each point of Σ the linearization has
k eigenvalues with negative real part and l eigenvalues with positive real part. Then near any
open subset of Σ×{0} whose closure is a compact subset of Σ×{0}, there is a smooth change
of coordinates (ξ, ζ, θ, γ) → α, (ξ, ζ, θ) ∈ R

k × R
l × R

m, that converts the system into

(2.8) ξ̇ = h1(ξ, ζ, θ, γ), ζ̇ = h2(ξ, ζ, θ, γ), θ̇ = h3(ξ, ζ, θ, γ),

with

h1(0, ζ, θ, γ) = 0, h2(ξ, 0, θ, γ) = 0, h3(0, ζ, θ, γ) = h3(ξ, 0, θ, γ) = ĥ(θ, γ), ĥ(θ, 0) = 0;

moreover, the real parts of eigenvalues of Dξh1(0, 0, θ, γ) are bounded above by a negative
number, and the real parts of eigenvalues of Dζh2(0, 0, θ, γ) are bounded below by a positive
number. In the new (Fenichel) coordinates, θ-space is locally invariant for each γ and consistsD
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of equilibria for γ = 0; ξθ-space and ζθ-space are locally invariant for each γ; and, for each
γ, the sets ζ = 0, θ = θ0 are mapped to one another by the flow on ξθ-space, as are the
sets ξ = 0, θ = θ0 by the flow on ζθ-space. See Figure 3. For each γ, θ-space is called a
normally hyperbolic invariant manifold (although it is only locally invariant); ξθ-space is its
stable manifold; ζθ-space is its unstable manifold; the set ζ = 0, θ = θ0 is the stable fiber of
the point (0, 0, θ0); and the set ξ = 0, θ = θ0 is the unstable fiber of the point (0, 0, θ0). For
γ = 0 the stable and unstable fibers of points are simply the stable and unstable manifolds of
the individual equilibria. The same terms are used for the corresponding sets in α-space.

ξ

ζ

θ

γ=0 ξ

ζ

θ

γ≠0

Figure 3. Fenichel coordinates for a normally hyperbolic invariant manifold.

The stable manifold of a normally hyperbolic invariant manifold projects along stable
fibers to the normally hyperbolic invariant manifold itself; in ξζθ-coordinates, this is just
the mapping (ξ, 0, θ) → (0, 0, θ). Similarly, the unstable manifold of a normally hyperbolic
invariant manifold projects along unstable fibers to the normally hyperbolic invariant manifold
itself.

If g is Cs, s ≥ 1, there is a Cs change of coordinates (ξ, ζ, θ, γ) → α that accomplishes
h1(0, ζ, θ, γ) = 0 and h2(ξ, 0, θ, γ) = 0. If s ≥ 2, there is a Cs−1 change of coordinates that
also accomplishes the required conditions on h3 [6]. After this coordinate change, (h1, h2, h3)
in (2.8) is Cs−2.

Note that for any γ, any invariant subset of θ-space has its own stable and unstable
manifolds: the union of the stable and unstable fibers, respectively, of its points. This fact
was used in the introduction to define W s

ε (IuR
) and W u

ε (IuL
).

2.11. Riemann–Dafermos solution. Let δ > 0 be small. The following are normally
hyperbolic invariant manifolds of equilibria for (1.10)–(1.12) with ε = 0: Eδ

0 = {(u, v, x) :
‖u‖ < 1

δ , v = 0, −∞ < x < λ1(u) − δ}; for i = 1, . . . , n − 1, Eδ
i = {(u, v, x) : ‖u‖ < 1

δ , v = 0,
λi(u) + δ < x < λi+1(u) − δ}; and Eδ

n = {(u, v, x) : ‖u‖ < 1
δ , v = 0, λn(u) < x <∞}. Eδ

0 and
Eδ

n extend to x = −∞ and x = ∞, respectively, but it is shown in [21, Appendix A] that they
can still be regarded as normally hyperbolic invariant manifolds. The sets Eδ

0 , . . . , E
δ
n remain

normally hyperbolic invariant manifolds of (1.10)–(1.12) for ε 	= 0. Abusing notation a little,
we denote the stable and unstable manifolds of Eδ

i by W s
ε (Ei) and W u

ε (Ei).
We continue to consider the Riemann solution u∗(x) of the previous subsection. LetD
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832 STEPHEN SCHECTER AND PETER SZMOLYAN

N0 = {(u, v, x) : u ∈ R0, v = 0, −∞ < x < λ1(u) − δ}. For i = 1, . . . , n − 1, let Ni =
{(u, v, x) : u ∈ Ri, v = 0, s∗i + 2δ < x < λi+1(u) − δ}. Let Nn = {(u, v, x) : u ∈ Rn, v = 0,
s∗n + 2δ < x <∞}. Each Ni is contained in Eδ

i .
By Proposition 2.1, each Ni is a manifold of dimension i+ 1. Note that each Ni is locally

invariant under (1.10)–(1.12) for any ε. By the previous subsection, stable and unstable
manifolds of each Ni can be defined. W u

ε (Ni) has dimension (i+ 1) + (n− i) = n+ 1.
Proposition 2.2. For i = 1, . . . , n:
(1) W u

0 (u∗i−1, 0, s
∗
i ) meets W s

0 (Ei) transversally along the curve (u, v, x) = (qi(t), q̇i(t), s∗i ).
(2) W u

0 (Ni−1) meets W s
0 (Ei) transversally near the curve (u, v, x) = (qi(t), q̇i(t), s∗i ).

(3) Near the curve (u, v, x) = (qi(t), q̇i(t), s∗i ), the projection of W u
0 (Ni−1) ∩W s

0 (Ei) to
Ei, along stable fibers of W s

0 (Ei), is the i-dimensional manifold {(u, v, x) : u ∈ Ri, v = 0,
x = si(u)}, where si(u) is just the value of x for which there exists ui−1 ∈ Ri−1 with
Wi(ui−1, x) = u.

Proof. (1) follows from the fact that the ith shock wave is regular. Note thatW u
0 (u∗i−1, 0, s

∗
i )

has dimension n− i+1 and W s
0 (Ei) has dimension n+1+ i, so the intersection has dimension

(n − i + 1) + (n + 1 + i) − (2n + 1) = 1: it is the given curve. (2) and (3) are consequences
of (1); see also the last paragraph of subsection 2.6. See [19] for details.

Theorem 2.4, stated below, is the main result of this paper. The following proposition
takes us most of the way there. Our work on rarefaction waves, which comprises the remainder
of this paper, is used in its proof.

Recall the sets IuL
and IuR

defined in the introduction. They are subsets of J0 and Jn,
respectively.

For each i = 0, . . . , n, let Δi be a δ-neighborhood of Ni in W u
0 (Ni), which has dimension

n+ 1. Near Ni write uvx-space as the product of Δi and an n-dimensional complement Λi.
Proposition 2.3. Let f be Cs with s sufficiently large. For δ > 0 sufficiently small, if ε0 > 0

is sufficiently small, then for each i = 0, . . . , n, there is a smooth function w̃i : Δi×[0, ε0) → Λi

such that the following hold:
(1) w̃i = 0 when ε = 0.
(2) For 0 < ε < ε0, the set of (u, v, x) in the graph of w̃i(·, ε) is an open subset of W u

ε (IuL
).

See Figure 4. Recall from the introduction that W u
ε (IuL

) is an (n + 1)-dimensional man-
ifold. Thus the proposition says that for 0 < ε < ε0 and for each i = 0, . . . , n, an open
subset of W u

ε (IuL
) is close to another (n + 1)-dimensional manifold, namely, Δi. Note that

W u
ε (Nn) = Nn, so for i = n we are simply saying that an open subset of W u

ε (IuL
) is close

to Nn.
Proof. The proof is by induction on i. The statement is clearly true for i = 0, because

for 0 ≤ ε < ε0, W u
ε (N0) ⊂ W u

ε (IuL
), and a δ-neighborhood of N0 in W u

ε (N0) is close to a
δ-neighborhood of N0 in W u

0 (N0). Since (1.10)–(1.12) is Cs−1 when f is Cs, from subsec-
tion 2.10, the mapping w̃0 can be taken to be Cs−1.

Suppose the statement is true for i = k − 1, with 1 ≤ k ≤ n.
If the kth wave in the Riemann solution is a shock wave, then W u

0 (Nk−1) meets W s
0 (Ek)

transversally by Proposition 2.2, and the statement follows from the Jones–Tin exchange
lemma (Theorem 2.3 of [23]). In the Jones–Tin exchange lemma, we can take each Mε,
0 ≤ ε < ε0, to be the graph of w̃k−1(·, ε) with x fixed. Assumption (JT3) of the Jones–TinD
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uL

uR

v

u x=λ1(u)

x

R1 N1=Δ
uL

uR

v

u x=λ1(u)

x

R1 N1=Δ

Λ Λ

a*1 s*1

ε=0 ε>0

Figure 4. Graphs of w̃1 for ε = 0 and ε > 0, with n = 1. Since n = 1, W u
ε (N1) = N1, which is two-

dimensional. A complementary space Λ is one-dimensional. For ε = 0, w̃1 = 0, so the graph of w̃1 is simply
N1 = Δ itself. For ε > 0, the graph of w̃1 is an open subset of W u

ε (IuL), which is grey.

exchange lemma follows from Proposition 2.2 (1). The Jones–Tin exchange lemma guarantees
that w̃k is at most three degrees of differentiability weaker than w̃k−1.

If the kth wave in the Riemann solution is a rarefaction wave, the result follows from
Theorem 3.1, to be proved in this paper. In that theorem we again take each Mε as in the
previous paragraph; U∗ is an open subset of Ek−1. In assumption (R5) of section 3, M0

meets the stable fiber of (u∗, 0, x∗) at (u∗, 0, x∗) itself. In fact, since w̃k−1 = 0 when ε = 0,
M0 ⊂ W u

0 (Nk−1). Theorem 3.1 guarantees that w̃k is at most 11 degrees of differentiability
weaker than w̃k−1.

If the Riemann solution has m shock waves and n−m rarefactions, then all w̃i are at least
C1 provided s ≥ 3m+ 11(n −m) + 2 = 11n − 8m+ 2.

Theorem 2.4. Let u∗(x) be a classical Riemann solution of (1.1), with u(−∞) = uL and
u(∞) = uR, that has m shock waves and n −m rarefactions and is structurally stable in the
sense of subsection 2.6. Assume f is Cs with s ≥ 11n− 8m+ 2. Then for small ε > 0, there
is, for the same uL and uR, a Riemann–Dafermos solution near the singular solution defined
in subsection 2.9.

Proof. By Proposition 2.3 and its proof, for small ε > 0, an open subset of W u
ε (IuL

) is C1-
close to Nn, which includes {(u, v, x) : u = u∗n, v = 0, s∗n + 2δ < x < 1

δ}. Therefore, W u
ε (IuL

)
meets W s

ε (IuR
) transversally. The intersection corresponds to the Riemann–Dafermos solu-

tion.

2.12. Extensions. With the aid of [19] one can show that Theorem 2.4 holds, with a
different formula for s, for any structurally stable Riemann solution consisting entirely of
constant states, classical rarefaction waves, and shock waves (including undercompressive
shock waves) with hyperbolic end states.

The theorem also presumably holds for structurally stable Riemann solutions that include
composite waves, but we have not gone through this in detail. One scalar case is discussed
in [25].

We also have not checked whether the viscosity uxx that is used throughout this paper
can be replaced by the more general viscosity (B(u)ux)x, as is the case for structurally stableD
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834 STEPHEN SCHECTER AND PETER SZMOLYAN

Riemann solutions consisting entirely of constant states and shock waves [19].

3. Exchange lemma. To discuss the passage of a manifold of solutions of (1.10)–(1.12)
near a manifold of turning points, we shall slightly generalize the situation previously described
and pay closer attention to the degree of differentiability.

We consider the system (1.10)–(1.12) with (u, v, x) ∈ R
n × R

n × R and A(u) an n × n
matrix that is a Cr+11 function of u, r ≥ 1. We do not require that A(u) = Df(u) for some
function f .

Let n = k + l + 1. Let U be an open subset of u-space with the following properties:
(R1) For all u ∈ U , A(u) has a simple real eigenvalue λ(u).
(R2) There are numbers λ̃ < 0 < μ̃ such that for all u ∈ U , A(u) has k eigenvalues with

real part less than λ(u) + λ̃ and l eigenvalues with real part greater than λ(u) + μ̃.
We shall consider (1.10)–(1.12) only on {(u, v, x) : u ∈ U}.

Let E = {(u, v, x) : u ∈ U and v = 0}, which is invariant for each ε. For ε = 0, E is
an (n + 1)-dimensional manifold of equilibria. (R1)–(R2) imply that E fails to be normally
hyperbolic along the n-dimensional surface {(u, v, x) : u ∈ U, v = 0, and x = λ(u)}. More
precisely, as one crosses this surface along a line with u constant and x increasing, an eigenvalue
λ(u) − x changes from positive to negative (gain of stability). On the surface, there are k
eigenvalues with real part in (−∞, λ̃) and l eigenvalues with real part in (μ̃,∞).

Let r̃(u) be an eigenvector of A(u) for the eigenvalue λ(u). Assume the following:
(R3) For all u ∈ U , Dλ(u)r̃(u) 	= 0.

Then for each u ∈ U we can choose an eigenvector r(u) for the eigenvalue λ(u) such that
(R3′) Dλ(u)r(u) = 1.

Let φ(t, u) be the flow of u̇ = r(u). Since A(u) is Cr+11, so are λ(u), r(u), and φ(t, u).
Let u∗ ∈ U . Choose t∗ > 0 such that φ(t, u∗) ∈ U for 0 ≤ t ≤ t∗. Let u∗ = φ(t∗, u∗). By

(R3′), λ(u∗) = λ(u∗) + t∗.
Choose a number β0 > 0 such that

(3.1) λ̃+ μ̃+ rβ0 < 0 < μ̃− max(7, 2r + 2)β0.

(We may have to first adjust the numbers λ̃ and μ̃ used in (R2) to make this possible.)
Choose numbers x∗ and x∗ such that λ(u∗)−β0 < x∗ < λ(u∗) and λ(u∗) < x∗ < λ(u∗)+β0.

See Figure 5.
For a small δ > 0, let

U∗ = {(u, v, x) : |u− u∗| < δ, v = 0, |x− x∗| < δ},
U∗ = {(u, v, x) : |u− u∗| < δ, v = 0, |x− x∗| < δ}.

For the system (1.10)–(1.12) with ε = 0, U∗ and U∗ are normally hyperbolic manifolds of
equilibria of dimension n + 1. For U∗, the stable and unstable manifolds of each point have
dimensions k and l + 1, respectively; for U∗, the stable and unstable manifolds of each point
have dimensions k+ 1 and l, respectively. In fact, for the system (1.10)–(1.12) with any fixed
ε, U∗ and U∗ are normally hyperbolic invariant manifolds. The stable and unstable fibers of
points have the dimensions just given.

For each u0 ∈ U∗ let Iu0 = {(u, 0, x) ∈ U∗ : u = u0}.D
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x

v

u
*

λ(u
*

)

x=λ(u)

x*

r(u
*

)

λ(u*)

u*
U

*

t*

U*
u

β0 β0

x
*

Figure 5. Notation of this section. For small ε > 0, there is a solution near the thick line from (u, v, x) =
(u∗, 0, x∗) to (u, v, x) = (u∗, 0, x∗). In the case p = 1, Q0 is the point (u, v, x) = (u∗, 0, x∗); R0 is the point u∗
in u-space; and R∗

0 is an interval around u∗ in u-space. If in addition n = 1, Q∗
0 and U∗ coincide.

For each ε ≥ 0, let Mε be a Cr+11 submanifold of uvx-space of dimension l+p, 1 ≤ p ≤ n.
Assume the following:

(R4) M = {(u, v, x, ε) : (u, v, x) ∈Mε} is itself a Cr+11 manifold.
(R5) M0 is transverse to W s

0 (U∗) at a point in the stable fiber of (u∗, 0, x∗).
(R6) The tangent space to M0 at this point contains no nonzero vectors that are tangent

to the stable manifold of Iu∗ .
Each Mε meets W s

ε (U∗) transversally in a manifold Sε of dimension p − 1. Sε projects
along the stable fibers of points to a submanifold Qε of ux-space of dimension p − 1. The
coordinate system in which the projection is done is Cr+10 (see subsection 2.10), so the family
of manifolds Qε is Cr+10. At each point of Qε, the vector (ū, x̄) = (0, 1) is not tangent to Qε.
Thus each Qε projects to a Cr+10 submanifold Rε of u-space of dimension p− 1. We assume
the following:

(R7) At u∗, r(u∗) is not tangent to R0.
Under the forward flow of (1.10)–(1.12), each Mε becomes a manifold M∗

ε of dimension
l + p+ 1.

For a small δ > 0, let

R∗
0 = ∪|t−t∗|<δφ(t, R0), Q∗

0 = {(u, v, x) : u ∈ R∗
0, v = 0, |x− x∗| < δ}.

R∗
0 and Q∗

0 have dimensions p and p+ 1, respectively.
Near the point (u∗, 0, x∗) write uvx-space as the product of W u

0 (Q∗
0), which has dimension

l + p+ 1, and a complement Λ.
The following is our main result about rarefactions in the Dafermos regularization.
Theorem 3.1. Assume (R1)–(R7). Let Δ be a small open neighborhood of (u∗, 0, x∗) in

W u
0 (Q∗

0). Then for ε0 > 0 sufficiently small there is a Cr function w̃ : Δ × [0, ε0) → Λ such
that the following hold:

(1) w̃ = 0 when ε = 0.
(2) For 0 < ε < ε0, the set of (u, v, x) in the graph of w̃(·, ε) is an open subset of M∗

ε .D
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836 STEPHEN SCHECTER AND PETER SZMOLYAN

Note that Δ and M∗
ε are both manifolds of dimension l + p+ 1.

We shall use the general exchange lemma from [23] to prove Theorem 3.1. In outline, the
proof goes as follows.

For each ε the portion of (n + 1)-dimensional ux-space with u ∈ U and x near λ(u) lies
in a normally hyperbolic invariant manifold Kε of dimension n + 2. Mε ∩W s(Kε) projects
along stable fibers to a p-dimensional submanifold Pε of Kε. We must trace the evolution of
the sets Pε, which under the flow of (1.10)–(1.12) become submanifolds P ∗

ε of Kε of dimension
p+ 1. Let K = {(u, v, x, ε) : (u, v, x) ∈ Kε). In order to study the P ∗

ε , we blow up the surface
v = 0, x = λ(u), ε = 0 within the manifold K. Once we know where the P ∗

ε lie for (u, v, x)
near (u∗, 0, x∗), we can verify the hypotheses of the general exchange lemma.

In section 4 we define convenient coordinates for doing the calculations. We do the blow-
up in section 5, track the manifolds P ∗

ε in section 6, and verify the hypotheses of the general
exchange lemma in section 7. This requires replacing the manifolds Pε by different cross-
sections of P ∗

ε .
The differentiability loss in Theorem 3.1 is due to several coordinate changes and blow-

ups, the use of the Jones–Tin exchange lemma to track the manifolds P ∗
ε , and the use of the

general exchange lemma at the end of the proof.

4. New coordinates. Let χ(w2, . . . , wn, ε) be a Cr+10 function that parameterizes an ε-
dependent cross-section to the flow of u̇ = r(u) near u∗, such that χ(0, . . . , 0) = u∗ and
χ(w2, . . . , wp, 0, . . . , 0, ε) is a parameterization of Qε. Let

u(w, ε) = u(w1, . . . , wn, ε) = φ(w1, χ(w2, . . . , wn, ε)), v = Dwu(w, ε)z, x = λ(u(w, ε)) + σ.

Writing (1.10)–(1.12) in the new variables (w, z, σ), we obtain the system

ẇ = z,(4.1)
ż = (B(w, ε) − σI)z + C(w, ε)(z, z),(4.2)
σ̇ = ε− E(w, ε)z,(4.3)

with

B(w, ε) = (Dwu(w, ε))−1(A(u(w, ε)) − λ(u(w, ε))I)Dwu(w, ε),

C(w, ε) = (Dwu(w, ε))−1D2
wu(w, ε),

E(w, ε) = Dw(λ ◦ u)(w, ε).
The functions B(w, ε) and E(w, ε) are Cr+9. Since ż = (Dwu(w, ε))−1v̇ is also Cr+9, the
function C(w, ε)(z, z) is the difference of Cr+9 functions and is therefore Cr+9 as well. We
choose an open set W in w-space such that for w ∈ W and small ε, u(w, ε) ∈ U . Recalling
the choice of t∗ in section 3, we see that we may assume that W contains {w : 0 ≤ w1 ≤ t∗

and w2 = · · · = wn = 0}. We shall consider (4.1)–(4.3) on {(w, z, σ, ε) : w ∈ W, |σ| < β0, and
ε small}. Let σ∗ = λ(u∗) − x∗ and σ∗ = x∗ − λ(u∗). We have

−β0 < −σ∗ < 0 < σ∗ < β0.

Let e1 = (1, 0, . . . , 0) ∈ R
n. Notice that for w ∈W and ε small, the following hold:D

ow
nl

oa
de

d 
02

/2
6/

13
 to

 1
52

.1
.2

52
.1

06
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RAREFACTIONS UNDER DAFERMOS REGULARIZATION 837

(R1′′) B(w, ε) has a simple real eigenvalue 0 with eigenvector e1.
(R2′′) B(w, ε) has k eigenvalues with real part less than λ̃ < 0 and l eigenvalues with real

part greater than μ̃ > 0.
(R3′′) E(w, ε)e1 = 1.

For the system (4.1)–(4.3) with ε = 0, wσ-space consists of equilibria. The linearization
of (4.1)–(4.3) at one of these equilibria has the matrix

(4.4)

⎛
⎝0 I 0

0 B(w, 0) − σI 0
0 −E(w, 0) 0

⎞
⎠ .

For w ∈W and σ = 0, this matrix has the following:
• An eigenvalue 0 with algebraic multiplicity n+2. The generalized eigenspace is wz1σ-

space.
• k eigenvalues with real part less than λ̃ < 0 and l eigenvalues with real part greater

than μ̃ > 0.
For w ∈W and σ 	= 0, one of the zero eigenvalues becomes −σ. For w ∈W and |σ| < β0, the
matrix has the following:

• n + 2 eigenvalues with real part between −β0 and β0, at least n + 1 of which are 0,
having total algebraic multiplicity n+ 2. The sum of their generalized eigenspaces is
wz1σ-space.

• k eigenvalues with real part less than λ̃ + β0 < 0 and l eigenvalues with real part
greater than μ̃− β0 > 0.

The system (4.1)–(4.3) has, for each small ε, a normally hyperbolic invariant manifold Kε

of dimension n + 2 that contains the (n + 1)-dimensional set {(w, z, σ) : w ∈ W, z = 0, and
|σ| < β0}, which is locally invariant for every ε. Let K = {(w, z, σ, ε) : (w, z, σ) ∈ Kε}.

Lemma 4.1. K is a Cr+10 normally hyperbolic submanifold of wzσε-space. It has stable
fibers of dimension k and unstable fibers of dimension l. Both are Cr+10 and vary in a Cr+10

fashion with the base point.
Proof. K is also a normally hyperbolic invariant manifold for the Cr+11 system (1.10)–

(1.12). By [6] it is Cr+11 in the uvxε-variables and has stable and unstable fibers that are
Cr+11 and vary in a Cr+10 fashion with the base point. Applying the Cr+10 coordinate change
to the wzσε-variables, we get the result.

Let z̃ = (z2, . . . , zn). Kε has the form z̃ = g(w, z1, σ, ε), with g Cr+10 by Lemma 4.1. We
must have g(w, 0, σ, ε) = 0, so

(4.5) z̃ = z1h(w, z1, σ, ε)

with h Cr+9. K0 must be tangent at each point of wσ-space to wz1σ-space. Therefore,
h(w, 0, σ, 0) = 0, so

(4.6) h(w, z1, σ, ε) = z1h1(w, z1, σ, ε) + εh2(w, z1, σ, ε)

with h1 and h2 C
r+8.D
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838 STEPHEN SCHECTER AND PETER SZMOLYAN

On K the system (4.1)–(4.3) reduces to the Cr+9 system:

ẇ = z1(1, h),(4.7)

ż1 = B1(w, ε)z1(0, h) − σz1 + C1(w, ε)z2
1((1, h), (1, h)),(4.8)

σ̇ = ε− z1(1 + E(w, ε)(0, h)).(4.9)

We append the equation

(4.10) ε̇ = 0.

In (4.8) and (4.9) we have used

B1(w, ε)(1, h) = B1(w, ε)(1, 0) +B1(w, ε)(0, h) = 0 +B1(w, ε)(0, h) = B1(w, ε)(0, h),(4.11)
E(w, ε)(1, h) = E(w, ε)(1, 0) + E(w, ε)(0, h) = 1 + E(w, ε)(0, h).(4.12)

5. Blow-up. As in [25], in wz1σε-space we shall blow up w-space, which consists of equi-
libria that are not normally hyperbolic within wz1σ-space for (4.7)–(4.9) with ε = 0, to the
product of w-space with a 2-sphere. The 2-sphere is a blow-up of the origin in z1σε-space.

The blow-up transformation is a map from R
n × S2 × [0,∞) to wz1σε-space defined as

follows. Let (w, (z̄1, σ̄, ε̄), r̄) be a point of R
n × S2 × [0,∞); we have z̄12 + σ̄2 + ε̄2 = 1. Then

the blow-up transformation is

w = w,(5.1)

z1 = r̄2z̄1,(5.2)
σ = r̄σ̄,(5.3)

ε = r̄2ε̄.(5.4)

We refer to R
n×S2 × [0,∞) as blow-up space, and we call R

n ×S2×{0} the blow-up cylinder.
Under the transformation (5.1)–(5.4), the system (4.7)–(4.10) becomes one for which the blow-
up cylinder r̄ = 0 consists entirely of equilibria. The system we shall study is this one divided
by r̄. Division by r̄ desingularizes the system on the blow-up cylinder but leaves it invariant.

Note that from (4.6),

(5.5) h(w, z1, σ, ε) = r̄2h̃(w, z̄1, σ̄, ε̄, r̄),

with h̃ Cr+8.
We shall need three charts.

5.1. Chart for σ̄ < 0. This chart uses the coordinates w, za = z̄1
σ̄2 , ra = −r̄σ̄, and εa = ε̄

σ̄2

on the set of points in R
n × S2 × [0,∞) with σ̄ < 0. Thus we have

w = w,(5.6)

z1 = r2aza,(5.7)
σ = −ra,(5.8)

ε = r2aεa,(5.9)
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RAREFACTIONS UNDER DAFERMOS REGULARIZATION 839

with ra > 0. After division by ra (equivalent to division by r̄ up to multiplication by a positive
function), the system (4.7)–(4.10) becomes the Cr+8 system

ẇ = raza(1, r2ah̃),(5.10)

ża = za(1 + raB1(w, r2aεa)(0, h̃) + razaC1(w, r2aεa)(1, r
2
ah̃)(1, r

2
ah̃)

+ 2(εa − za − r2azaE(w, r2aεa)(0, h̃))),
(5.11)

ṙa = ra(za − εa + r2azaE(w, r2aεa)(0, h̃)),(5.12)

ε̇a = 2εa(εa − za − r2azaE(w, r2aεa)(0, h̃)).(5.13)

We consider the system (5.10)–(5.13) with ra ≥ 0. We have the following structures:
(1) Codimension-one invariant sets: (1) za = 0, (2) ra = 0, (3) εa = 0, (4) r2aεa = k.
(2) Invariant foliations:

(a) Of za = 0, each plane w = w0 is invariant.
(b) Of ra = 0, each plane w = w0 is invariant.

(3) Equilibria: (1) za = εa = 0; (2) za = 1
2 , ra = εa = 0.

The flow in one of the invariant planes ra = 0, w = w0 is pictured in Figure 6. In this figure,
the lines za = 0 and εa = 0 are invariant. There are a hyperbolic attractor at (za, ε) = (1

2 , 0)
and a nonhyperbolic equilibrium at the origin. The latter’s unstable manifold is the line
εa = 0, and one center manifold is the line za = 0. The origin is quadratically repelling on the
portion of this line with εa > 0.

. .za

εa

1/2

Figure 6. Flow of (5.10)–(5.13) in the invariant plane ra = 0, w = w0.

5.2. Chart for ε̄ > 0. This chart uses the coordinates w, zb = z̄1
ε̄ , σb = σ̄√

ε̄
, and rb = r̄

√
ε̄

on the set of points in R
n × S2 × [0,∞) with ε̄ > 0. Thus we have

w = w,(5.14)

z1 = r2bzb,(5.15)
σ = rbσb,(5.16)

ε = r2b ,(5.17)
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840 STEPHEN SCHECTER AND PETER SZMOLYAN

with rb > 0. After division by rb (equivalent to division by r̄ up to multiplication by a positive
function), the system (4.7)–(4.10) becomes the Cr+8 system

ẇ = rbzb(1, r2b h̃),(5.18)

żb = rbzbB1(w, r2b )(0, h̃) − σbzb + rbz
2
bC1(w, r2b )(1, r

2
b h̃)(1, r

2
b h̃),(5.19)

σ̇b = 1 − zb − r2bzbE(w, r2b )(0, h̃),(5.20)
ṙb = 0.(5.21)

We consider the system (5.18)–(5.21) with rb ≥ 0. We have the following structures:

(1) Codimension-one invariant sets: (1) zb = 0, (2) rb = r0b .
(2) Invariant foliations:

(a) Of zb = 0, each plane w = w0 is invariant.
(b) Of rb = 0, each plane w = w0 is invariant.

(3) Equilibria: zb = 1, σb = rb = 0.

The flow in one of the invariant planes rb = 0, w = w0 is pictured in Figure 7. In this figure,
the line zb = 0 is invariant, and there is a hyperbolic saddle at (zb, σb) = (1, 0).

.
σb

zb

1

Figure 7. Chart for ε̄ > 0. Flow of (5.18)–(5.21) in the invariant plane rb = 0, w = w0.

5.3. Chart for σ̄ > 0. This chart uses the coordinates w, zc = z̄1
σ̄2 , rc = r̄σ̄, and εc = ε̄

σ̄2

on the set of points in R
n × S2 × [0,∞) with σ̄ > 0. Thus we have

w = w,(5.22)

z1 = r2czc,(5.23)
σ = rc,(5.24)

ε = r2c εc,(5.25)
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RAREFACTIONS UNDER DAFERMOS REGULARIZATION 841

with rc > 0. After division by rc (equivalent to division by r̄ up to multiplication by a positive
function), the system (4.7)–(4.10) becomes the Cr+8 system

ẇ = rczc(1, r2c h̃),(5.26)

żc = zc(−1 + rcB1(w, r2c εc)(0, h̃) + rczcC1(w, r2c εc)(1, r
2
c h̃)(1, r

2
c h̃)

− 2(εc − zc − r2czcE(w, r2c εc)(0, h̃))),
(5.27)

ṙc = rc(εc − zc − r2czcE(w, r2c εc)(0, h̃)),(5.28)

ε̇c = 2εc(−εc + zc + r2czcE(w, r2c εc)(0, h̃)).(5.29)

We consider the system (5.26)–(5.29) with rc ≥ 0. The description of the flow is similar to that
for the chart for σ̄ < 0. Again, within the space rc = 0, each plane w = w0 is invariant. For a
fixed w0, the flow in this plane is pictured in Figure 8. This time there are a hyperbolic repeller
at (zc, ε) = (1

2 , 0) and a nonhyperbolic equilibrium at the origin. The latter’s stable manifold
is the line εc = 0, and one center manifold is the line zc = 0. The origin is quadratically
attracting on the portion of this line with εc > 0.

.. zc

εc

1/2

Figure 8. Flow of (5.26)–(5.29) in the invariant plane rc = 0, w = w0.

5.4. Summary. Figure 9 shows the flow in the portion of blow-up space with ε̄ ≥ 0, as
reconstructed from these coordinate charts and the corresponding ones for z̄1 < 0 and z̄1 > 0.
(The circled numbers in the figure will be discussed in the next section.) A value w = w0 is
fixed; in the figure we look straight down the ε-axis. We see the top of the sphere w = w0,
r̄ = 0, and, outside it, the plane w = w0, ε = 0, in which the origin has been blown up to
a circle. In this plane there are two lines of equilibria along the σ-axis and two equilibria
elsewhere on the circle. The figure shows as dashed curves stable and unstable manifolds of
these equilibria that do not actually lie in w = w0. We also see one other equilibrium on the
sphere w = w0, r̄ = 0; it was identified in subsection 5.2.

To see the flow in all of the blow-up space with ε̄ ≥ 0, one must cross Figure 9 with
w-space. Thus the lines of equilibria become (n+ 1)-dimensional planes of equilibria, and the
equilibrium identified in subsection 5.2 becomes an n-dimensional plane of equilibria in the
blow-up cylinder. This plane is denoted L0 in the following section.D
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. ..

......... .........

z1

1 2

3 4

5

Figure 9. The blown-up flow. Numbers correspond to subsections of section 6.

6. Tracking. We consider the p-dimensional submanifolds Pε of Kε defined at the end of
section 3. In wz1σ-coordinates on Kε, Pε is given by equations of the form

wi = ŵi(w2, . . . , wp, z1, ε), i = 1, p + 1, . . . , n,
σ = −σ̂(w2, . . . , wp, z1, ε),

with ŵi and σ̂ Cr+10 by Lemma 4.1; ŵi = 0 if z1 = 0, and σ̂(0, 0, 0) = σ∗ > 0. The sets Qε

defined in section 3 are given by the same equations with z1 = 0.

6.1. P ∗
ε approaches the unstable manifold of w2 . . . wp-space. Let δ > 0 be small.

Within wz1σ-space, {(w, z1, σ) : w ∈ W, z1 = 0, −β0 < σ < −1
2δ} is, for each ε, a normally

hyperbolic (repelling) invariant manifold. Therefore, as long as σ < −1
2δ, we can follow the

evolution of the Pε using the usual exchange lemma. After a Cr+8 coordinate change, the
Cr+9 system (4.7)–(4.9) becomes a Cr+7 system in which stable fibers are lines. We obtain
the following result.

Proposition 6.1. Let

A =
{

(w2, . . . , wp, z1, σ) : max(|w2|, . . . , |wp|, |z1|) < δ and −3δ < σ < −1
2
δ

}
.

For ε0 > 0 sufficiently small, there is a Cr+6 function (w̃1, w̃p+1, . . . , w̃n) : A×[0, ε0) → R
n−p+1

such that the following hold:
(1) If z1 = 0, then (w̃1, w̃p+1, . . . , w̃n) = 0.
(2) For ε = 0, the unstable manifold of the subset of wσ-space given by max(|w2|, . . . , |wp|)

< δ, w1 = wp+1 = · · · = wn = 0, and −3δ < σ < −1
2δ has the equations (w1, wp+1, . . . ,

wn) = (w̃1, w̃p+1, . . . , w̃n)(w2, . . . , wp, z1, σ, 0).
(3) For 0 < ε < ε0, {(w, z1, σ) : (w2, . . . , wp, z1, σ) ∈ A and (w1, wp+1, . . . , wn) =

(w̃1, w̃p+1, . . . , w̃n)(w2, . . . , wp, z1, σ, ε)} is an open subset of P ∗
ε .

Let P ∗ denote {(w, z1, σ, ε) : ε > 0 and (w, z1, σ) ∈ P ∗
ε }, together with the limit points

of this set that have ε = 0. Proposition 6.1 describes P ∗ for −3δ < σ < −1
2δ. We shall use

our blow-up to track P ∗ as σ increases further; we shall denote the preimage of P ∗ under the
blow-up transformation, as well as the corresponding set in a local coordinate system, by P ∗

as well.D
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Figure 9 gives an outline of this section. The numbers in the figure correspond to sub-
sections of this section. In subsection 6.1, the present one, we have followed P ∗ along the
plane of equilibria in σ < 0. In subsection 6.2 P ∗ “turns the corner” and passes along the
blow-up cylinder. In subsection 6.3 P ∗ approaches the manifold of equilibria L0 along its
stable manifold and then moves along it in the w1 direction. In subsection 6.4 P ∗ leaves the
manifold of equilibria L0 at w1 = t∗ along its unstable manifold. In subsection 6.5 P ∗ again
“turns the corner” and passes along the plane of equilibria in σ > 0.

6.2. P ∗
ε arrives at the blow-up cylinder. In wzaraεa-coordinates, the equations for P ∗

become

wi = w̌i(w2, . . . , wp, r
2
aza,−ra, r2aεa), i = 1, p + 1, . . . , n,

max(|w2|, . . . , |wp|, |r2aza|) < δ,
1
2
δ < ra < 3δ, 0 ≤ r2aεa < ε0.

Equations for P ∗
ε are obtained by setting r2aεa = ε.

The following proposition describes P ∗ as it arrives at ra = 0. See Figure 10.
Proposition 6.2. Let

B = {(w2, . . . , wp, za, ra, εa) : max(|w2|, . . . , |wp|, |za|) < δ, 0 ≤ ra < δ, and 0 < εa < δ}.

For δ > 0 sufficiently small, there is a Cr+5 function (w̌1, w̌p+1, . . . , w̌n) : B → R
n−p+1 such

that the following hold:
(1) If za = 0 or ra = 0, then (w̌1, w̌p+1, . . . , w̌n) = 0.
(2) {(w, za, ra, εa) : (w2, . . . , wp, za, ra, εa) ∈ B and (w1, wp+1, . . . , wn)=(w̌1, w̌p+1, . . . , w̌n)

(w2, . . . , wp, za, ra, εa)} is an open subset of P ∗.
Proof. In wzaraεa-space, we consider the Cr+8 system (5.10)–(5.13). For δ > 0 small, the

codimension-one set

{(w, za, ra, εa) : max |wi| < δ, za = 0, 0 ≤ ra < 3δ, and 0 ≤ εa < δ}

is normally hyperbolic (repelling).
The unstable fibers of points in za = 0 are curves. After a coordinate change of class

Cr+7, we obtain new coordinates (w̆, za, r̆a, ε̆a), with

(6.1) w̆ = w + razaW̆ , r̆a = ra(1 + zaR̆), ε̆a = εa(1 + zaĔ),

in which unstable fibers are lines (w̆, r̆a, ε̆a) = constant.
To simplify the notation, we drop the cups in the new coordinates. In the new coordinates,

the system becomes

ẇ = 0,(6.2)
ża = zaa(w, za, ra, εa),(6.3)
ṙa = −raεa,(6.4)

ε̇a = 2ε2a.(6.5)
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844 STEPHEN SCHECTER AND PETER SZMOLYAN

εa

ra

za

B

Pε*

δ

δ

δ

2δ

Figure 10. P ∗
ε in the coordinate chart for σ̄ < 0, with w suppressed. The cross-section of P ∗ defined by

(6.6)–(6.7) is shaded.

It is of class Cr+6. Moreover, there is a number ν0 > 0 such that a(w, za, ra, εa) > ν0.
We shall follow the evolution of a cross-section of P ∗ parameterized by (w2, . . . , wp, za, εa);

the equations of the cross-section have the form

wi = ŵi(w2, . . . , wp, za, εa),
ŵi(w2, . . . , wp, 0, εa) = ŵi(w2, . . . , wp, za, 0) = 0, i = 1, p + 1, . . . , n;(6.6)

ra = 2δ;(6.7)

from Proposition 6.1, the functions ŵi are Cr+6.
We denote the solution of (6.2)–(6.5) whose value at t = τ is (w1, z1

a, r
1
a, ε

1
a) by

(w, za, ra, εa)(t, τ, w1, z1
a, r

1
a, ε

1
a),

a Cr+6 function. This is the solution of a Silnikov problem of the second type, so Deng’s
lemma (Theorem 2.2 of [22]) applies.

One easily calculates that for τ = 1
2ε1a

(4( δ
r1
a
)2 − 1), ra(0, τ, w1, z1

a, r
1
a, ε

1
a) = δ.

Given (w1
2, . . . , w

1
p, z

1
a, r

1
a, ε

1
a), we wish to find (w1

1 , w
1
p+1, . . . , w

1
n) such that for i = 1, p+ 1,

. . . , n,

(6.8) w1
i − ŵi

(
w1

2, . . . , w
1
p, za

(
0,

1
2ε1a

(
4
(
δ

r1a

)2

− 1

)
, w1, z1

a, ε
1
a

)
, ε1a

)
= 0.

D
ow

nl
oa

de
d 

02
/2

6/
13

 to
 1

52
.1

.2
52

.1
06

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RAREFACTIONS UNDER DAFERMOS REGULARIZATION 845

The desired function is then (w̃1, w̃p+1, . . . , w̃n) = (w1
1, w

1
p+1, . . . , w

1
n).

For i = 1, p + 1, . . . , n, we define

Gi((w1
1 , w

1
p+1, . . . , w

1
n), (w1

2 , . . . , w
1
p, r

1
a, ε

1
a), z

1
a)

to be the left-hand side of (6.8). Gi is a component of a Cr+6 map G into R
n−p+1. The

domain of G is X × Y × Z,

X = {(w1
1 , w

1
p+1, . . . , w

1
n) : max |w1

i | < δ},
Y = {(w1

2 , . . . , w
1
p, r

1
a, ε

1
a) : max |w1

i | < δ, 0 < r1a < δ, 0 < ε1a < δ},
Z = {z1

a : |z1
a| < δ}.

The proof then proceeds in the following steps. We omit the details; for a similar, but
harder, argument, see the proof of the general exchange lemma in [23]. Let 0 < (r+5)γ < ν0.

(1) G(0, (w1
2 , . . . , w

1
p, r

1
a, ε

1
a), 0) = 0, and G(0, (w1

2 , . . . , w
1
p, r

1
a, ε

1
a), z

1
a) is of order e−ν0τ , τ =

1
2ε1a

(4( δ
r1
a
)2 − 1).

(2) D(w1
1,w1

p+1,...,w1
n)G(0, (w1

2 , . . . , w
1
p, r

1
a, ε

1
a), 0) = I.

(3) D(w1
1,w1

p+1,...,w1
n)G((w1

1 , w
1
p+1, . . . , w

1
n), (w1

2 , . . . , w
1
p, r

1
a, ε

1
a), z

1
a) − D(w1

1,w1
p+1,...,w1

n)G(0,

(w1
2, . . . , w

1
p, r

1
a, ε

1
a), 0) is of order e−(ν0−γ)τ .

(4) By the implicit function theorem (Theorem 5.1 of [23]), for each ((w1
2 , . . . , w

1
p, r

1
a, ε

1
a), z1

a)
∈ Y × Z, there is a unique (w1

1, w
1
p+1, . . . , w

1
n), of order e−ν0τ , such that G((w1

1 , w
1
p+1,

. . . , w1
n), (w1

2 , . . . , w
1
p, r

1
a, ε

1
a), z1

a) = 0. Moreover, (w1
1 , w

1
p+1, . . . , w

1
n) is a Cr+6 function

of ((w1
2 , . . . , w

1
p, r

1
a, ε

1
a), z

1
a).

(5) Any partial derivative of order i ofG, 1 ≤ i ≤ r+5, with respect to ((w1
2, . . . , w

1
p, r

1
a, ε

1
a),

z1
a) is of order e−(ν0−iγ)τ .

(6) Any partial derivative of order i of (w1
1, w

1
p+1, . . . , w

1
n), 1 ≤ i ≤ r + 5, with respect to

((w1
2, . . . , w

1
p, r

1
a, ε

1
a), z1

a) is of order e−(ν0−iγ)τ .
By (1), (w̃1, w̃p+1, . . . , w̃n) = 0 when z1

a = 0. By (6), (w̃1, w̃p+1, . . . , w̃n) extends to equal 0
for r1a = 0, and the extended function has all partial derivatives through order r + 5 equal
to 0 for r1a = 0. Returning to the original wzaraεa-coordinates, the equations for P ∗ have the
properties given in the proposition.

6.3. P ∗
ε arrives at the plane of equilibria L0. The transformation from wzbσbrb-coordi-

nates to wzaraεa-coordinates is given by

w = w, za =
zb
σ2

b

, ra = −σbrb, εa =
1
σ2

b

.

Using this change of coordinates, Proposition 6.2 yields the following proposition.
Proposition 6.3. Let

B̌ =
{

(w2, . . . , wp, zb, σb, rb) : |wi| < δ for i = 2, . . . , p,

−∞ < σb < −δ− 1
2 , |zb| < δσ2

b , and 0 ≤ rb < − δ

σb

}
.
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846 STEPHEN SCHECTER AND PETER SZMOLYAN

For δ > 0 sufficiently small, there is a Cr+5 function

(w̌1, w̌p+1, . . . , w̌n) : B̌ → R
n−p+1

for which the following hold:
(1) If zb = 0 or rb = 0, then (w̌1, w̌p+1, . . . , w̌n) = 0.
(2) {(w, zb, σb, rb) : (w2, . . . , wp, zb, σb, rb) ∈ B̌ and (w1, wp+1, . . . , wn)=(w̌1, w̌p+1, . . . , w̌n)

(w2, . . . , wp, zb, σb, rb)} is an open subset of P ∗.
We choose a cross-section C of P ∗ with σb = σ∗b << 0. Let Crb

= {(w, zb, σb) :
(w, zb, σb, rb) ∈ C}.

zb

σb

rb

1

−δ
−1/2

zb=δσb
2

rb=−δ/σb

B

C
σb
∗

Figure 11. The portions of B and C with zb ≥ 0; w is suppressed. They meet the stable manifold of the
equilibrium shown, which lies in rb = 0.

Note that from (5.21), ṙb = 0, so rb can be regarded as a parameter in the Cr+8 system
(5.18)–(5.20). (From (5.17), ε = r2b .) For rb = 0, the system (5.18)–(5.20) has the normally
hyperbolic manifold of equilibria L0 = {(w, zb, σb) : (zb, σb) = (1, 0)}. For small rb > 0, L0

perturbs to a normally hyperbolic invariant manifold Lrb
. The stable and unstable manifolds

of Lrb
are given by

W s(Lrb
) = {(w, zb, σb) : zb = zs

b (w, σb, rb)},
W u(Lrb

) = {(w, zb, σb) : zb = zu
b (w, σb, rb)};

the functions zs
b and zu

b are Cr+8. For rb = 0, each point (w0, 1, 0) of L0 is an equilibrium; its
stable fiber is simply its one-dimensional stable manifold, which has the equation (w, zb) =
(w0, zs

b (w
0, σb, 0)). The portion of W s(L0) in σb < 0 has 0 < zb < 1. Therefore, if we choose

σ∗b sufficiently negative in defining C, the surfaces C0 and W s(L0) meet transversally. See
Figure 11. The intersection projects along the foliation ofW s(L0) by stable manifolds of points
to the submanifold of L0 given by {(w, zb, σb) : w1 = wp+1 = · · · = wn = 0, (zb, σb) = (1, 0)}.D
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RAREFACTIONS UNDER DAFERMOS REGULARIZATION 847

zb

σb

w1

C0
E0

Figure 12. The invariant space (w2, . . . , wn) fixed, rb = 0 for (5.18)–(5.21).

The flow of (5.18)–(5.20) on Lrb
is ẇ = rb(1, 0) + O(r2b ). For small rb > 0 we follow the

solution from Crb
until w1 is close to t∗. From the exchange lemma for normally hyperbolic

manifolds of equilibria (Theorem 2.3 of [23]), we have the following result.
Proposition 6.4. Let η > 0 be small. Let

D = {(w1, w2, . . . , wp, σb) : max(|w1 − t∗|, |w2|, . . . , |wp|, |σb|) < η}.

For r∗b > 0 sufficiently small, there is a Cr+2 function (w̆p+1, . . . , w̆n, z̆b) : D×[0, r∗b ) → R
n−p+1

such that:
(1) As rb → 0, (w̆p+1, . . . , w̆n)(w1, w2, . . . , wp, σb, rb), and z̆b(w1, w2, . . . , wp, σb, rb) −

zu
b (w1, w2, . . . , wp, 0, . . . , 0, σb, rb) approach 0 exponentially, along with all their par-

tial derivatives of order at most r.
(2) Let Erb

= {(w, zb, σb) : (w1, w2, . . . , wp, σb) ∈ D and (wp+1, . . . , wn, zb) = (w̆p+1, . . . ,
w̆n, z̆b)(w1, w2, . . . , wp, σb, rb)}. For 0 < rb < r∗b , Erb

is an open subset of P ∗
ε , ε = r2b .

See Figure 12. Let E = {(w, zb, σb, rb) : 0 ≤ rb < r∗b and (w, zb, σb) ∈ Erb
}.

6.4. P ∗
ε leaves the plane of equilibria L0. The transformation from wzbσbrb-coordinates

to wzcrcεc-coordinates is given by

w = w, zc =
zb
σ2

b

, rc = σbrb, εc =
1
σ2

b

.
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848 STEPHEN SCHECTER AND PETER SZMOLYAN

In wzcrcεc-coordinates, the two-dimensional face of E with σb = η corresponds to

F 1
η2

=
{

(w, zc, rc, εc) : max(|w1 − t∗|, |w2|, . . . , |wp|) < η, 0 ≤ rc < ηr∗b , εc =
1
η2
,

(wp+1, . . . , wn) = (ŵp+1, . . . , ŵn)
(
w1, w2, . . . , wp, η,

rc
η

)
, zc =

1
η2
ẑb

(
w1, w2, . . . , wp, η,

rc
η

)}
.

See Figure 13.

εc

rc

zc

Fδδ

Figure 13. Flow of (5.26)–(5.29), with w suppressed. The set of points in Fδ with a fixed value of
(w1, w2, . . . , wp) is a curve. Solutions through points in this curve are shown.

We follow the flow of (5.26)–(5.29) until εc = δ > 0, arriving at a set Fδ of the form

(6.9) Fδ = {w, zc, rc, εc) : max(|w1 − t∗|, |w2|, . . . , |wp|) < δ, 0 ≤ rc < δ, εc = δ,

(wp+1, . . . , wn, zc) = (w

p+1, . . . , w



n, z



c)(w1, w2, . . . , wp, rc)},

where (w

p+1, . . . , w



n, z



c) is Cr+2.

6.5. P ∗
ε leaves the blow-up cylinder. Finally, we follow solutions from Fδ until rc is close

to σ∗.
Proposition 6.5. Let δ > 0 be small. Let

G = {(w1, w2, . . . , wp, rc) : max(|w1 − t∗|, |w2|, . . . , |wp|, |rc − σ∗|) < δ}.D
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RAREFACTIONS UNDER DAFERMOS REGULARIZATION 849

For ε∗c > 0 sufficiently small, there is a Cr+2 function

(w̃p+1, . . . , w̃n, z̃c) : G× [0, ε∗c) → R
n−p+1

for which
(1) (w̃p+1, . . . , w̃n, z̃c) = 0 when εc = 0, and
(2) {(w, zc, rc, εc) : (w1, w2, . . . , wp, rc, εc) ∈ G×[0, ε∗c) and (wp+1, . . . , wn, zc) = (w̃p+1, . . . ,

w̃n, z̃c)(w1, w2, . . . , wp, rc, εc)} is an open subset of P ∗.
Proof. In wzcrcεc-space, for δ > 0 small, the codimension-one set

{(w, zc, rc, εc) : |w| < δ, zc = 0, 0 ≤ rc < σ∗ + δ, and 0 ≤ εc < 2δ}
is normally hyperbolic (attracting) for the Cr+8 system (5.26)–(5.29).

The stable fibers of points in zc = 0 are curves. In new Cr+7 coordinates (w̌, zc, řc, ε̌c),
with

(6.10) w̌ = w + rczcW̌ , řc = rc(1 + zcŘ), ε̌c = εc(1 + zcĚ),

they are lines (w̌, řc, ε̌c) = constant.
To simplify the notation, we drop the checks in the new coordinates. In the new coordi-

nates, the system becomes

ẇ = 0,(6.11)
żc = zcb(w, zc, rc, εc),(6.12)
ṙc = rcεc,(6.13)

ε̇c = −2ε2c ,(6.14)

a Cr+6 system. Moreover, there is a number ω0 < 0 such that b(w, zc, rc, εc) < ω0.
We denote the solution of (6.11)–(6.14) whose value at t = 0 is (w0, z0

c , r
0
c , ε

0
c) by

(w, zc, rc, εc)(t, 0, w0, z0
c , r

0
c , ε

0
c),

a Cr+6 function. This is the solution of an initial value problem; in the terminology of [22], it
is also a solution of Silnikov’s first boundary value problem, so Deng’s lemma (Theorem 2.2
of [22]) applies.

We easily calculate that if ε0c = δ and (rc, εc) = (r1c , ε
1
c) at time t, then r0c = r1c

√
ε1c
δ and

t = δ−ε1c
2δε1c

.
To avoid proliferation of notation, we shall use the description (6.9) of Fδ in the new

coordinates.
The desired function (w̃p+1, . . . , w̃n, z̃c)(w1

1, w
1
2 , . . . , w

1
p, r

1
c , ε

1
c) is as follows. Given (w1

1 , w
1
2,

. . . , w1
p, r

1
c , ε

1
c), with max(|w1

1 − t∗|, |w1
2 |, . . . , |w1

p|, |r1c − σ∗|) < δ and 0 < ε1c < ε∗c , where ε∗c is

small, let ε0c = δ, r0c = r1c

√
ε1c
δ , and t = δ−ε1c

2δε1c
. Then

w̃1
i (w

1
1 , w

1
2, . . . , w

1
p, r

1
c , ε

1
c) = w


i(w
1
1, . . . , w

1
p, r

0
c ), i = p+ 1, . . . , n,

z1
c (w

1
1 , w

1
2, . . . , w

1
p, r

1
c , ε

1
c) = zc(t, 0, w1

1 , . . . , w
1
p, (w



p+1, . . . , w



n, z



c)(w

1
1 , . . . , w

1
p, r

0
c ), r

0
c , ε

0
c).
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850 STEPHEN SCHECTER AND PETER SZMOLYAN

The functions w

i and z


c are of class Cr+2.
From Proposition 6.4 it follows that in the coordinates we are using, all partial derivatives

of (w

p+1, . . . , w



n, z



c) of order i ≤ r + 2 go to 0 exponentially as r0c → 0. Choose γ > 0

such that ω0 + (r + 5)γ < 0. By Deng’s lemma, all partial derivatives of zc(t, 0, w0, z0
c , r

0
c , ε

0
c)

of order i ≤ r + 5 are of order e(ω0+iγ)t. It follows that as εc → 0, (w̃p+1, . . . , w̃n, z̃c) → 0
exponentially, along with its derivatives through order r + 2 with respect to all variables.
Returning to the original wzcrcεc-coordinates, the equations for P ∗ have the properties given
in the proposition.

7. Completion of the proof. We are now ready to prove Theorem 3.1 by verifying the
hypotheses of the general exchange lemma from [23].

We have seen that (4.1)–(4.3) has, for each small ε, a normally hyperbolic invariant man-
ifold Kε of dimension n + 2 that contains {(w, z, σ) : w ∈ W, z = 0, and |σ| < β0}. Let
λ0 = λ̃ + β0 < 0 and μ̃0 = μ̃ − β0 > 0. For w ∈ W and |σ| < β0, the matrix (4.4) has k
eigenvalues with real part less than λ0, l eigenvalues with real part greater than μ0, and n+2
real eigenvalues between −β0 and β0. From (3.1),

λ0 + μ0 + rβ0 = λ̃+ μ̃+ rβ0 < 0 < μ̃− max(7, 2r + 2)β0 = μ0 − max(6, 2r + 1)β0.

It follows easily that hypotheses (E1) and (E2) of the general exchange lemma are satisfied
on a neighborhood of K in wzσε-space.

Let Σ be a codimension-one submanifold of wzσε-space defined by an equation of the form
σ = σ(w, z, ε), with σ(w, 0, 0) = −δ. From (R4)–(R6), for ε > 0 we can use the usual exchange
lemma to follow M until it meets Σ. Let M̃ = M∗ ∩ Σ, M̃ε = {(w, z, σ) : (w, z, σ, ε) ∈ M̃}.
Instead of the manifolds Mε described by (R4)–(R6), in verifying hypotheses (E3)–(E5) of the
general exchange lemma, we will use the manifolds M̃ε. Since M is Cr+11, the usual exchange
lemma implies that M̃ is Cr+8. Each M̃ε has dimension l+p, and hypotheses (E3)–(E5) of the
general exchange lemma are satisfied. Since M̃0 is contained in W u

0 ({(w, z, σ) : w1 = wp+1 =
· · · = wn = 0, z = 0, σ near −δ}), in hypothesis (E4) we have x∗ = 0.

The choice of Σ determines the sets Pε; the choice of Pε determines whether a coordinate
system on K in which (E6)–(E8) hold can be found. We shall first describe convenient
coordinates on K in which Σ can be defined. We shall then define coordinates on K in which
(E6)–(E8) hold.

On {(w, z1, σ, ε) : max(|wi|, |z1|) < δ, −3δ < σ < −1
2δ, 0 ≤ ε < δ}, we can make a Cr+8

change of coordinates such that the Cr+9 system (4.7)–(4.10) becomes

ẇ = 0,(7.1)
ż1 = z1a(w, z1, σ, ε),(7.2)
σ̇ = ε,(7.3)

a Cr+7 system with a(w, z1, σ, ε) > μ0 > 0. In these coordinates, we let Σ be defined by
σ = −2δ. Then a cross-section of P ∗ is given by

wi = ŵi(w2, . . . , wp, z1, ε), ŵi(w2, . . . , wp, 0, ε) = 0, i = 1, p+ 1, . . . , n,
σ = −2δ,
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with ŵi C
r+8. Let the solution of (7.1)–(7.3) with (w, z1, σ)(τ) = (w1, z1

1 , σ
1) be (w, z1, σ)

(t, τ, w1, z1
1 , σ

1, ε); the mapping is Cr+7. Note that σ(0, σ1+2δ
ε , w1, z1

1 , σ
1, ε) = −2δ.

For −2δ < σ1 < −1
2δ, we define new Cr+7 coordinates yi(w1, z1

1 , σ
1, ε), i = 1, p+ 1, . . . , n,

by
(7.4)

yi(w1, z1
1 , σ

1, ε) = w1
i − ŵi

(
w1

2, . . . , w
1
p, z1

(
0,
σ1 + 2δ

ε
, w1, z1

1 , σ
1, ε

)
, ε

)
, i = 1, p+ 1, . . . , n.

Proposition 7.1. yi − (w1
i − ŵi(w1

2, . . . , w
1
p, 0, ε)) and its derivatives through order r + 6 go

to 0 exponentially as ε → 0. If we use (y1, w2, . . . , wp, yp+1, . . . , yn, z1, σ, ε) as coordinates on
{(w, z1, σ, ε) : max(|wi|, |z1|) < δ, −3

2δ < σ < −1
2δ, 0 ≤ ε < δ}, the system takes the form

ẇi = 0, i = 2, . . . , p,(7.5)
ẏi = 0, i = 1, p + 1, . . . , n,(7.6)
ż1 = z1a(w, y, z1, σ, ε),(7.7)
σ̇ = ε,(7.8)

a Cr+6 system with a(w, y, z1, σ, ε) > μ0 > 0 and P ∗ given by y = 0.
Proof. From its definition, yi is constant on orbits and equals 0 on P ∗. Since yi is constant

on orbits, the new system has the form (7.5)–(7.8). By Deng’s lemma (Theorem 2.2 of [22]),
for −3

2δ < σ < −1
2δ, z1(0,

σ1+2δ
ε , w1, z1

1 , σ
1, ε) and its derivatives through order r + 6 go to 0

exponentially as ε→ 0. Therefore,

yi − (w1
i − ŵi(w1

2, . . . , w
1
p, 0, ε))

= ŵi(w1
2, . . . , w

1
p, 0, ε) − ŵi

(
w1

2, . . . , w
1
p, z1

(
0,
σ1 + 2δ

2
, w1, z1

1 , σ
1, ε

)
, ε

)

and its derivatives through order r + 6 go to 0 exponentially as ε→ 0.
In the coordinates (y1, w2, . . . , wp, yp+1, . . . , yn, z1, σ, ε), Σ is just the set σ = δ, and each Pε,

in the coordinates (y1, w2, . . . , wp, yp+1, . . . , yn, z1, σ), is given by (y1 = yp+1 = · · · = yn = 0,
σ = δ). The coordinates (u0, v0, w0) in which hypotheses (E6)–(E8) of the general exchange
lemma hold are given by

u0 = σ + δ, v0 = (w2, . . . , wp, z1), w0 = (y1, yp+1, . . . , yn).

In (E7) we use a = 1.
Let V ∗ = {(w, z1, σ) : max(|w1 − t∗|, |w2|, . . . , |wn|, |z1|, |σ − σ∗|) < δ}. The coordinate

system in which hypothesis (E9) holds is essentially given by Proposition 6.5; w1 is the Cr+2

function (w̃p+1, . . . , w̃n, z̃c). In these Cr+2 coordinates, the system is Cr+1, so (E10) is satisfied.
Since, for the original differential equation, ẋ = ε, (E11) is satisfied with a = 1 for δ sufficiently
small.

Since all hypotheses of the general exchange lemma are satisfied, Theorem 3.1 follows.D
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