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Abstract

Exchange lemmas are used in geometric singular perturbation theory to track flows near normally hy-
perbolic invariant manifolds. We prove a General Exchange Lemma, and show that it implies versions of
existing exchange lemmas for rectifiable slow flows and loss-of-stability turning points.
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1. Introduction

This paper is the second in a series of three; the others are [11] and [12]. An introduction to
the series is in [11]. In this paper, we state and prove a General Exchange Lemma, and show that
it implies versions of existing exchange lemmas for rectifiable slow flows and loss-of-stability
turning points.

We begin in Section 2 by reviewing exchange lemmas for rectifiable slow flows and loss-of-
stability turning points. In Section 3 we state the General Exchange Lemma. In Section 4 we
show that it implies versions of existing exchange lemmas. We then state in Section 5 a version
of the Implicit Function Theorem that is useful in proving the General Exchange Lemma. The
proof of the General Exchange Lemma is given in Section 6. In addition to the Implicit Function
Theorem, the proof uses the generalization of Deng’s lemma that was proved in [11].
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In the third paper in this series [12], we shall use the General Exchange Lemma to prove an
exchange lemma for gain-of-stability turning points.

2. Exchange lemmas

2.1. Slow–fast systems [4,5]

A slow–fast system has the form

ȧ = f (a, b, ε), (2.1)

ḃ = εg(a, b, ε), (2.2)

with a ∈ R
n, b ∈ R

m, and ε � 0 a small parameter. The variable a is fast; the variable b is slow.
The dot represents derivative with respect to t , the fast time.

Let τ = εt , the slow time. Using prime to denote derivative with respect to τ , the system
(2.1)–(2.2) becomes

εa′ = f (a, b, ε), (2.3)

b′ = g(a, b, ε). (2.4)

System (2.1)–(2.2) is the fast form of the slow–fast system; system (2.3)–(2.4) is the slow form.
The fast subsystem is obtained by setting ε = 0 in (2.1)–(2.2):

ȧ = f (a, b,0), (2.5)

ḃ = 0. (2.6)

The slow subsystem is obtained by setting ε = 0 in (2.3)–(2.4):

0 = f (a, b,0), (2.7)

b′ = g(a, b,0). (2.8)

The fast subsystem (2.5)–(2.6) can be viewed as a parameterized family of differential equa-
tions on R

n. Its equilibria are pairs (a, b) such that f (a, b,0) = 0. Suppose there is a manifold
E0 of such equilibria parameterized by b, each a hyperbolic equilibrium for the differential equa-
tion (2.5) with b fixed. More precisely, suppose:

(SF1) There is an open set V in R
m, and a smooth function ǎ(b) defined on V , such that

(a) for all b ∈ V , f (ǎ(b), b,0) = 0, and
(b) there are numbers λ0 < 0 < μ0 such that for all b ∈ V , Daf (ǎ(b), b,0) has k eigen-

values with real part in (−∞, λ0) and l = n−k eigenvalues with real part in (μ0,∞).
(SF2) The differential equation b′ = g(ǎ(b), b,0) �= 0 is rectifiable on V .

According to Fenichel theory [4,5], after an ε-dependent change of coordinates, (2.1)–(2.2)
takes the form
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ẋ = A(x,y, c, ε)x, (2.9)

ẏ = B(x, y, c, ε)y, (2.10)

ċ = ε
(
(1,0, . . . ,0) + L(x, y, c, ε)xy

)
, (2.11)

with x ∈ R
k , y ∈ R

l , c ∈ R
m; the matrices A(0,0, c,0) and B(0,0, c,0) have the real parts of

their eigenvalues in (−∞, λ0) and (μ0,∞), respectively.

2.2. Exchange Lemma of Jones and Kopell in the case m = 1

Consider the system (2.9)–(2.11) with m, the dimension of c-space, equal to 1. The third
equation is then just ċ = ε(1 + l(x, y, c, ε)xy).

For each ε � 0, let Mε be a submanifold of xyc-space of dimension l. Assume

(JK1) M = {(x, y, c, ε): (x, y, c) ∈ Mε} is itself a manifold.
(JK2) M0 meets the space y = 0 transversally at a point (x∗,0,0).

In applications one usually has x∗ �= 0, but this is not necessary to the statement of the result.
Under the forward flow of (2.9)–(2.11), Mε becomes a manifold M∗

ε of dimension l + 1.

Theorem 2.1. (See [7,8].) Assume (2.9)–(2.11) is a Cr+1 system and M is a Cr+1 manifold,
r � 1. Let 0 < c∗, and let y∗ �= 0 be small. Let Δ be a small neighborhood of (y∗, c∗) in yc-
space. Then for ε0 > 0 sufficiently small there is Cr function x̃ : Δ × [0, ε0) → R

k such that:

(1) x̃(y, c,0) = 0.
(2) As ε → 0, x̃ → 0 exponentially, along with its derivatives through order r with respect to all

variables.
(3) For 0 < ε < ε0, {(x, y, c): (y, c) ∈ Δ and x = x̃(y, c, ε)} is contained in M∗

ε .

See Fig. 1(a) and (b). When we say that a function h(ε) → 0 exponentially as ε → 0, we

mean that there are numbers K > 0 and L > 0 such that for small ε > 0, ‖h(ε)‖ � Ke− L
ε .

We remark that using [3], one can show that if (2.1)–(2.2) is Cr+3, then the coordinate change
can be chosen so that (2.9)–(2.11) is Cr+1.

2.3. Reformulation of Jones and Kopell’s Exchange Lemma as an Inclination Lemma

In the formulation of Jones and Kopell, the subject of the Exchange Lemma is the entrance
of a manifold of orbits into a neighborhood of a normally hyperbolic invariant manifold and
the subsequent exit of these orbits from that neighborhood. In Brunovsky’s reformulation, the
subject is the entrance of a manifold of orbits into a neighborhood of a normally hyperbolic
invariant manifold and their subsequent behavior, whether or not they exit the neighborhood.

Theorem 2.2. (See [1].) Assume (2.9)–(2.11) is a Cr+1 system and M is a Cr+1 manifold, r � 1.
Let 0 < c∗. Let Δ be a small neighborhood of (0, c∗) in yc-space. Then for ε0 > 0 sufficiently
small there is Cr function x̃ : Δ × [0, ε0) → R

k such that:
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Fig. 1. Jones and Kopell’s Exchange Lemma in the case m = 1. (a) ε = 0. (b) ε > 0, Jones and Kopell’s formulation.
(c) ε > 0, Brunovsky’s formulation.

(1) x̃(y, c,0) = 0.
(2) As ε → 0, x̃ → 0 exponentially, along with its derivatives through order r with respect to all

variables.
(3) For 0 < ε < ε0, {(x, y, c): (y, c) ∈ Δ and x = x̃(y, c, ε)} is contained in M∗

ε .

See Fig. 1(c). We shall give exchange lemmas in Brunovsky’s formulation rather than the
original formulation of Jones and Kopell.

2.4. Exchange Lemma of Jones and Tin

Consider the system (2.9)–(2.11) with m, the dimension of c-space, greater than or equal to 1.
For each ε � 0, let Mε be a submanifold of xyc-space of dimension l + p, 0 � p � m − 1.

Assume

(JT1) M = {(x, y, c, ε): (x, y, c) ∈ Mε} is itself a manifold.
(JT2) M0 meets the space y = 0 transversally at a point (x∗,0,0).
(JT3) T(x∗,0,0)M0 contains no nonzero vectors with y = 0 and c2 = · · · = cm = 0.

From (JT2), each Mε meets the space y = 0 transversally in a manifold Nε of dimen-
sion p. From (JT3), Nε projects to a submanifold Pε of c-space of dimension p, and the vector
(1,0, . . . ,0) is not tangent to P0 at the origin.

After an ε-dependent change of coordinates c(u, v,w, ε), (u, v,w) ∈ R×R
p ×R

m−1−p , that
takes each Pε to v-space, (2.9)–(2.11) can be put in the form

ẋ = A(x,y,u, v,w, ε)x, (2.12)

ẏ = B(x, y,u, v,w, ε)y, (2.13)

u̇ = ε
(
1 + e(x, y,u, v,w, ε)xy

)
, (2.14)

v̇ = εF (x, y,u, v,w, ε)xy, (2.15)

ẇ = εG(x, y,u, v,w, ε)xy. (2.16)
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Fig. 2. The Exchange Lemma of Jones and Tin. The first picture shows xyc-space with ε = 0. The second shows a more
detailed view of c-space for ε > 0. In uvw-coordinates on c-space, Pε corresponds to v-space and P ∗

ε to uv-space.

Under the forward flow of (2.9)–(2.11), Mε and Pε become manifolds M∗
ε and P ∗

ε of dimen-
sion l + p + 1 and p + 1, respectively. P ∗

ε corresponds to uv-space. See Fig. 2.

Theorem 2.3. (See [6,13].) Assume (2.12)–(2.16) is a Cr+1 system and M is a Cr+1 manifold,
r � 1. Let 0 < u∗. Let Δ be a small neighborhood of (0, u∗,0) in yuv-space. Then for ε0 > 0 suf-
ficiently small there are Cr functions x̃ : Δ × [0, ε0) → R

k and w̃ : Δ × [0, ε0) → R
m−1−psuch

that:

(1) x̃(y, u, v,0) = 0.
(2) w̃(y,u, v,0) = w̃(0, u, v, ε) = 0.
(3) As ε → 0, (x̃, w̃) → 0 exponentially, along with its derivatives through order r with respect

to all variables.
(4) For 0 < ε < ε0, {(x, y,u, v,w): (y,u, v) ∈ Δ and (x,w) = (x̃, w̃)(y,u, v, ε)} is contained

in M∗
ε .

The original Jones–Kopell Exchange Lemma, which we stated only in the case m = 1, is
actually the Jones–Tin Exchange Lemma in the case p = 0, in which case assumption (JT3) is
automatic.

We remark that using [3], one can show that if (2.1)–(2.2) is Cr+3, then coordinate change
can be chosen so that (2.12)–(2.16) is Cr+1.

2.5. Normally hyperbolic manifolds of equilibria

We consider a differential equation ξ̇ = F(ξ, ε) on R
n such that ξ̇ = F(ξ,0) has an m-dimen-

sional normally hyperbolic manifold E0 of equilibria. We assume there are numbers λ0 < 0 < μ0
such that for all ξ ∈ E0, DξF(ξ,0) has k eigenvalues with real part in (−∞, λ0) and l eigenvalues
with real part in (μ0,∞), with k + l + m = n.

Such a system can be put in the form

ẋ = A(x,y, c, ε)x, (2.17)

ẏ = B(x, y, c, ε)y, (2.18)

ḃ = εǨ(b, ε) + Ľ(x, y, b, ε)xy, (2.19)
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with x ∈ R
k , y ∈ R

l , c ∈ R
m; the matrices A(0,0, c,0) and B(0,0, c,0) have the real parts of

their eigenvalues in (−∞, λ0) and (μ0,∞), respectively.
Near a compact nontrivial orbit segment of b′ = Ǩ(b,0), the system can be put in the form

ẋ = A(x,y, c, ε)x, (2.20)

ẏ = B(x, y, c, ε)y, (2.21)

ċ = ε(1,0, . . . ,0) + L(x, y, c, ε)xy. (2.22)

For each ε � 0, let Mε be a submanifold of xyc-space of dimension l +p, 0 � p � m−1, that
satisfies (JT1)–(JT3) of Section 2.4. Define Nε and Pε as in that section. After an ε-dependent
change of coordinates c(u, v,w, ε), (u, v,w) ∈ R×R

p ×R
m−1−p , that takes each Pε to v-space,

(2.20)–(2.22) can be put in the form

ẋ = A(x,y,u, v,w, ε)x, (2.23)

ẏ = B(x, y,u, v,w, ε)y, (2.24)

u̇ = ε + e(x, y,u, v,w, ε)xy, (2.25)

v̇ = F(x, y,u, v,w, ε)xy, (2.26)

ẇ = G(x,y,u, v,w, ε)xy. (2.27)

Under the forward flow of (2.23)–(2.27), Mε becomes a manifold M∗
ε of dimension l +p + 1.

Theorem 2.3 holds exactly as stated. (This fact is remarked in [7] and [1].)

2.6. Loss-of-stability turning points

Liu [9] considers a slow–fast system

ȧ = f (a, b, ε) = fε(a, b), (2.28)

ḃ = εg(a, b, ε) = εgε(a, b), (2.29)

with a ∈ R
k+l+1 and b ∈ V̌ ⊂ R

m−1, V̌ open, and m � 2. The system has the following proper-
ties.

(L1) f (0, b, ε) = 0. Hence {0} × V̌ is locally invariant for each ε, and consists of equilibria for
ε = 0.

(L2) There are numbers λ0 < 0 < μ0, and a codimension-one submanifold V̌0 of V̌ , such that
for all b ∈ V̌ , Daf0(0, b) has
• k eigenvalues with real part less than λ0;
• l eigenvalues with real part greater than μ0;
• one eigenvalue ν(b) with λ0 < ν(b) < μ0;
• ν(b) = 0 if b ∈ V̌0.

(L3) For b ∈ V̌0, Dν(b)g0(0, b) > 0.
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(L1)–(L3) imply that for ε = 0, the (m − 1)-dimensional manifold of equilibria {0} × V̌ loses
normal hyperbolicity along {0} × V̌0. More precisely, as one crosses {0} × V̌0 along solutions of
ḃ = g0(0, b), an eigenvalue of Daf0(0, b) changes from negative to positive (loss of stability).

From [9], for each small ε, the (m − 1)-dimensional invariant set {0} × V̌ is contained in an
m-dimensional normally hyperbolic invariant manifold Kε . Let K = {(a, b, ε): (a, b) ∈ Kε}, an
(m + 1)-dimensional normally hyperbolic invariant manifold of abε-space.

Let b0 ∈ V̌0. According to [9], near (0, b0,0), we can choose coordinates (x, y, z,ω, ε) on
a neighborhood of {0} × V̌ × {0} in abε-space, with x ∈ R

k , y ∈ R
l , z ∈ R, ω ∈ R

m−1, and
(z,ω, ε) coordinates on K , such that (0, b0,0) corresponds to the origin, and the system (2.28)–
(2.29) becomes

ẋ = Ǎ(x, y, z,ω, ε)x, (2.30)

ẏ = B̌(x, y, z,ω, ε)y, (2.31)

ż = ȟ(z,ω, ε)z + ǩ(x, y, z,ω, ε)xy, (2.32)

ω̇ = ε
(
(1,0, . . . ,0) + Ľ(z,ω, ε)z + M̌(x, y, z,ω, ε)xy

)
, (2.33)

with sgn ȟ(0, (ω1,ω2, . . . ,ωm−1),0) = sgnω1 and ∂ȟ
∂ω1

(0, (0,ω2, . . . ,ωm−1),0) > 0. The ma-

trices Ǎ(0,0, z,ω,0) and B̌(0,0, z,ω,0) have the real parts of their eigenvalues in (−∞, λ0)

and (μ0,∞), respectively. After dividing by the positive function 1 + Ľ1(z,ω, ε)z, we have
ω̇1 = ε(1 + terms of order xy), i.e., Ľ1(z,ω, ε)z = 0; we shall assume that this has been done.

Let

I =
{

ω ∈ R
m−1: ω1 < 0 and there exists ω∗

1 > 0 such that

(1) (t,ω2, . . . ,ωm−1) ∈ V̌ for ω1 � t � ω∗
1, and

(2)

ω∗
1∫

ω1

ȟ
(
0, (t,ω2, . . . ,ωm−1),0

)
dt = 0

}
.

Define a map π : I → R as follows: π(ω) is the smallest number ω∗
1 such that

ω∗
1∫

ω1

ȟ
(
0, (t,ω2, . . . ,ωm−1),0

)
dt = 0.

For later use we define Π0 : I → R
m−1 by Π0(ω1,ω2, . . . ,ωm−1) = (π(ω),ω2, . . . ,ωm−1).

Choose numbers β0 > 0 and η > 0, and a neighborhood V̆ of the origin in ω-space, such that

• for all (z,ω, ε) with |z| < η, ω ∈ V̆ , and |ε| < η, ∂
∂z

(zĥ) < β0;
• λ0 + μ0 + rβ0 < 0 < μ0 − max(6,2r + 1)β0;
• if ω ∈ V̆ with ω1 < 0, then ω ∈ I , and the points (t,ω2, . . . ,ωm−1) with ω1 � t � π(ω) are

in V̆ .
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Fig. 3. The mapping Πε with ε > 0 and m = 2.

(The numbers λ0 and μ0 used in assumption (L2) may need to be adjusted to allow this.) Let
V = {(z,ω, z): |z| < η and ω ∈ V̆ }.

Choose a small number δ1 > 0. Let W∗ = {ω ∈ V̆ : ω1 < −δ1}. Then for the system (2.30)–
(2.33) with ε = 0, the subset {0} × {0} × {0} × W∗ of xyzω-space is a normally hyperbolic
invariant manifold of equilibria, with stable manifold equal to an open subset of xzω-space,
and unstable manifold equal to an open subset of yω-space. Similarly, let W ∗ = {ω ∈ V̆ : ω1 >

π(−δ1,ω2, . . . ,ωm−1)}. Then for the system (2.30)–(2.33) with ε = 0, the subset {0} × {0} ×
{0} × W ∗ of xyzω-space is a normally hyperbolic invariant manifold of equilibria, with stable
manifold equal to an open subset of xω-space, and unstable manifold equal to an open subset
of yzω-space. For ε > 0, W∗ and W ∗ remain normally hyperbolic invariant manifolds with the
same properties.

For a given δ, 0 < δ < η, let Iδ denote the set of points in zω-space with z = δ and ω ∈ W∗,
and let Jδ denote the set of points in zω-space with z = δ and ω ∈ W ∗.

For ε > 0 there is a Poincaré map from a large open subset of Iδ to Jδ given by (δ,ω) →
(δ,Πε(ω)). See Fig. 3.

For each ε � 0, let Mε be a submanifold of xyzω-space of dimension l + p, 0 � p � m − 2.
Assume:

(L4) M = {(x, y, z,ω, ε): (x, y, z,ω) ∈ Mε} is itself a manifold.
(L5) M0 meets the space y = 0 transversally at a point (x∗,0, δ,ω∗) in the stable manifold of

{0} × {0} × {0} × W∗.
(L6) T(x∗,0,δ,ω∗)M0 contains no nonzero vectors with y = 0 and ω2 = · · · = ωm−1 = 0.

We may assume that M ⊂ {(x, y, z,ω, ε): z = δ}. See Fig. 4.
Each Mε meets the space y = 0 transversally in a manifold Nε of dimension p. Each

Nε projects along stable fibers to a p-dimensional submanifold Pε of zω-space, which in
turn projects along stable fibers to a p-dimensional submanifold Qε of ω-space. The vector
(1,0, . . . ,0) is not tangent to Qε .

Under the flow, Mε and Pε become manifolds M∗
ε and P ∗

ε of dimensions l +p + 1 and p + 1,
respectively.

For each ε � 0 the mapping (δ,ω) → (δ,Πε(ω)) takes Pε to a p-dimensional submanifold
P †

ε of Jδ .
Assume:

(L7) The functions ȟ(z,ω, ε) and Ľ(z,ω, ε)z are Cr+1.
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Fig. 4. A loss-of-stability turning point with k = 0, l = 1, m = 2, p = 0. The flow for ε = 0 is shown. Since k = 0,
N0 = P0.

Then by [2], the mappings Πε , ε � 0, fit together to form a Cr+1 mapping Π(ω, ε) = Πε(ω),
ε � 0. Therefore the sets P †

ε , ε � 0, fit together to form a Cr+1 manifold P † of Jδ × R.
On a neighborhood V ∗ of (δ,Π0(ω∗)) in zω-space, there is an ε-dependent change of coor-

dinates (z,ω)(u1, v1,w1, ε), (u1, v1,w1) ∈ R × R
p × R

m−1−p , such that:

• z = δ if and only if u1 = 0.
• (z,ω)(0,0,0,0) = (δ,Π0(ω∗)).
• (z,ω)(0, v1,w1, ε) ∈ P †

ε if and only if w1 = 0.
• In the new coordinates, (2.32)–(2.33) becomes

u̇1 = 1, v̇1 = 0, ẇ1 = 0.

See Fig. 5. In these coordinates, P † is vε-space.

Theorem 2.4. (See [9].) Assume (2.30)–(2.33) is a Cr+1 system and M is a Cr+1 manifold,
r � 1. On a neighborhood of (0,0, δ,Π0(ω∗),0) in xyzωε-space, with ε � 0, use the coordinates
(x, y,u1, v1,w1, ε).

Let Δ be a small neighborhood of (0,0,0) in yu1v1-space. Then for ε0 > 0 sufficiently small
there is a Cr function (x̃, w̃) : Δ × [0, ε0) → R

k × R
m−1−p such that:

(1) x̃(y, u1, v1,0) = 0.
(2) w̃(y,u1, v1,0) = w̃(0, u1, v1, ε) = 0.
(3) As ε → 0, (x̃, w̃) → 0 exponentially, along with its derivatives through order r with respect

to all variables.
(4) For 0 < ε < ε0, {(x, y,u1, v1,w1): (y,u1, v1) ∈ Δ and (x,w1) = (x̃, w̃)(y,u1, v1, ε)} is

contained in M∗
ε .

See Fig. 5.
We remark that using [3], one can show that if (2.28)–(2.29) is Cr+4, r � 1, then the coordi-

nate change can be chosen so that (2.30)–(2.33) is Cr+2, in which case (L7) and the differentia-
bility assumption of the theorem are both satisfied.

I would like to emphasize the importance of the fact that the mappings Πε , ε � 0, fit together
to form a Cr+1 mapping defined for ε � 0, which is essential to the proof of this theorem that
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Fig. 5. Theorem 2.4 with k = 0, l = 1, m = 2, p = 0. The flow for ε = 0 is shown. Since p = 0, there is no v1-coordinate.

we will give in Section 4. This fact was recently proved by Peter De Maesschalck; to the best
of my knowledge, it was not previously in the literature. The asymptotic expansion of Πε(ω) is
calculated in [10], but the existence of an asymptotic expansion does not imply the result. Liu [9]
makes a weaker assertion, namely that Πε approaches Π0 in the Cr+1 topology if (2.30)–(2.33)
is sufficiently differentiable, but he does not give a reference even for the weaker result.

3. General Exchange Lemma

On R
n we use coordinates ξ = (x, y, c), with x ∈ R

k , y ∈ R
l , c ∈ R

m, k + l + m = n. Let
V be an open subset of R

m. We consider a Cr+1 differential equation ξ̇ = F(ξ, ε), r � 1, on a
neighborhood of {0} × {0} × V × {0} in R

n × R of the following form:

ẋ = A(x,y, c, ε)x, (3.1)

ẏ = B(x, y, c, ε)y, (3.2)

ċ = C(c, ε) + E(x,y, c, ε)xy. (3.3)

Let φε(t, c) be the flow of ċ = C(c, ε). For each c ∈ V there is a maximal interval Ic contain-
ing 0 such that φ0(t, c) ∈ V for all t ∈ Ic. Let the linearized solution operator of (3.1)–(3.3), with
ε = 0, along the solution (0,0, φ0(t, c

0)) be

⎛
⎝ x̄(t)

ȳ(t)

c̄(t)

⎞
⎠ =

⎛
⎝Φs(t, s, c0) 0 0

0 Φu(t, s, c0) 0

0 0 Φc(t, s, c0)

⎞
⎠

⎛
⎝ x̄(s)

ȳ(s)

c̄(s)

⎞
⎠ . (3.4)

We shall make five types of assumptions: (1) assumptions on the linearized solution opera-
tor (3.4); (2) assumptions on the incoming manifolds Mε ; (3) assumptions on the flow on V

near the starting points; (4) assumptions on the flow on V near the ending points; and (5) an
assumption on the time spent flowing.

Assumptions on the linearized solution operator (3.4).

(E1) There are numbers λ0 < 0 < μ0, β0 > 0, and M > 0 such that for all c0 ∈ V and s, t ∈ Ic0 ,

∥∥Φs
(
t, s, c0)∥∥ � Meλ0(t−s) if t � s, (3.5)
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∥∥Φu
(
t, s, c0)∥∥ � Meμ0(t−s) if t � s, (3.6)∥∥Φc

(
t, s, c0)∥∥ � Meβ0|t−s| for all t, s. (3.7)

(E2) λ0 + μ0 + rβ0 < 0 < μ0 − max(6,2r + 1)β0.

After slightly changing λ0, μ0, β0, and M , we may assume that these estimates also hold for
linearization around solutions of ċ = C(c, ε) on V for ε small.

Assumptions on the incoming manifolds Mε . For each ε � 0, let Mε be a Cr+1 submanifold
of xyc-space of dimension l + p, 0 � p � m − 1.

(E3) M = {(x, y, c, ε): (x, y, c) ∈ Mε} is itself a Cr+1 manifold.
(E4) M0 meets the space y = 0 transversally at a point (x∗,0, c∗).
(E5) T(x∗,0,c∗)M0 contains no nonzero vectors (x̄, ȳ, c̄) with ȳ = 0 and c̄ = 0.

From (E3) and (E4), each Mε meets the space y = 0 transversally in a manifold Nε of di-
mension p. From (E5), each Nε projects to a submanifold Pε of c-space of dimension p. Let
P = {(c, ε): c ∈ Pε}.

Assumptions on the flow on V near the starting points. There is an open neighborhood V∗ of
c∗ in V , and coordinates c(u0, v0,w0, ε) on V∗, with (u0, v0,w0) ∈ U∗ ⊂ R × R

p × R
m−1−p

and ε � 0 small, such that c(0,0,0,0) = c∗ and P is contained in v0ε-space. After shrinking
M if necessary, we may assume that U∗ contains the closed ball of radius 3γ about the origin,
and each Pε ⊂ {(u0, v0,w0): (u0,w0) = (0,0) and ‖v0‖ < γ }. We assume the coordinates can
be chosen so that:

(E6) ẇ0 = 0.
(E7) u̇0 is a function of ε only. Moreover, there are numbers a > 0 and K3 > 0 such that for

small ε > 0, u̇0 > K3ε
a .

(E8) The coordinate change c(u0, v0,w0, ε) is Cr+1, and the differential equation in these co-
ordinates is Cr+1.

Assumptions on the flow on V near the ending points. For ε > 0 we have the following:
From (E7), under the flow of ċ = C(c, ε), each Pε becomes a manifold P ∗

ε of dimension p + 1.
Similarly, under the flow of ξ̇ = F(ξ, ε), each Mε becomes a manifold M∗

ε of dimension l +
p + 1.

We assume there is an open subset V ∗ of V with the following properties:

(E9) There are coordinates c(v1,w1, ε) on V ∗, with (v1,w1) ∈ U∗ ⊂ R
p+1 × R

m−1−p and
ε � 0 small, such that for each ε > 0, the set P ∗

ε ∩ V ∗ is given by w1 = 0.
(E10) The coordinate change c(v1,w1, ε) is Cr+1, and the differential equation in these coordi-

nates is Cr+1.

See Fig. 6.

Assumption on the time spent flowing. For each c1 ∈ P ∗
ε ∩ V ∗ there is a positive number

τ(c1, ε) such that φε(−τ(c1, ε), c1) ∈ Pε .
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Fig. 6. Coordinates on V∗ and V ∗. Note that v0-space is p-dimensional (it is Pε ) but v1-space is (p + 1)-dimensional.

(E11) There are positive numbers β , β1, K1, and K2 such that (1) β0 < β < β1, (2) 0 < μ0 −
max(6,2r + 1)β1, (3) K1 < K2 <

β1
β

K1, and (4) for small ε > 0 and all c1 ∈ P ∗
ε ∩ V ∗,

K1
εa � τ(c1, ε) � K2

εa .

We are now ready to state the General Exchange Lemma.

Theorem 3.1. Let (v1∗,0) ∈ U∗. Let A be a small neighborhood of (0, v1∗) in yv1-space. Then
for ε0 > 0 sufficiently small there are Cr functions x̃ : A × [0, ε0) → R

k and w̃ : A × [0, ε0) →
R

m−p−1such that:

(1) x̃(y, v1,0) = 0.
(2) w̃(y, v1,0) = w̃(0, v1, ε) = 0.
(3) As ε → 0, (x̃, w̃) → 0 exponentially, along with its derivatives through order r with respect

to all variables. More precisely, any first partial derivative of (x̃, w̃) is of order e− K1
εa

(μ0−4β1),

and, for 2 � i � r , any partial derivative of (x̃, w̃) of order i is of order e− K1
εa

(μ0−(2i+1)β1).
(4) For 0 < ε < ε0, {(x, y, v1,w1): (y, v1) ∈ A and (x,w) = (x̃, w̃)(y, v1, ε)} is contained

in M∗
ε .

Remark 3.2. Two of the assumptions of the General Exchange Lemma deserve comment.
Assumption (E7) requires that one be able to choose coordinates on V∗ in which u̇0 depends

only on ε. It would be desirable to remove this assumption.
Assumption (E11) only requires looking at the time of transit from Pε to points of P ∗

ε in V ∗.
It does not require looking in general at the time of transit from V∗ to V ∗. This is important
because it may be impossible to define an open set V ∗ in which, for small ε > 0, every point
comes from a point in V∗. The proof will show, however, that points in V ∗ with w1 exponentially
small as ε → 0 (i.e., points in V ∗ that are very close to P ∗

ε ) do come from points in V∗, and this
is essential to the proof.

4. The General Exchange Lemma and existing exchange lemmas

4.1. Normally hyperbolic manifolds of equilibria

As in Section 2.5, we consider a differential equation ξ̇ = F(ξ, ε) such that ξ̇ = F(ξ,0) has an
m-dimensional normally hyperbolic manifold of equilibria, and the assumptions of Section 2.5
on the eigenvalues and the manifold Mε are satisfied. (The situations described in Sections 2.3
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and 2.4 are special cases of this one.) We write the system in the form (2.23)–(2.27), and let
c = (u, v,w).

By decreasing μ0 if necessary, we can make λ0 + μ0 < 0. Then for any sufficiently small
β0 > 0, (E1) and (E2) are satisfied.

Let c∗ be the origin of uvw-space. Then (E3)–(E5) are satisfied. Let V∗ be a small neighbor-
hood of c∗, with coordinates (u, v,w) = (u0, v0,w0). Since ẇ = 0 and u̇ = ε on V∗, (E6)–(E8)
are satisfied; in (E7) we use a = 1.

Let u∗ > 0 and let V ∗ be a small neighborhood of (u∗,0,0) in uvw-space. For ε > 0,
Pε ∩ V∗ = {(u, v,w) ∈ V∗: (u,w) = (0,0)}, so P ∗

ε ∩ V ∗ = {(u, v,w) ∈ V ∗: w = 0}. Hence
(E9) and (E10) are satisfied with the coordinates

u = v1
0, v1 = v1

1, . . . , vp = v1
p, w = w1.

We have τ(u, v,0, ε) = u
ε

, so (E11) is satisfied if V ∗ is small enough.

4.2. Liu’s Exchange Lemma

As in Section 2.6, we consider a differential equation (2.28)–(2.29) that satisfies (L1)–(L3).
We write the system in the form (2.30)–(2.33), let c = (z,ω), and choose β0 and V as described
in Section 2.6. Then (E1) and (E2) are satisfied.

Given a family of manifolds Mε that satisfy (L4)–(L6), let c∗ = (δ,ω∗). Then (E3)–(E5) are
satisfied.

On a neighborhood V∗ of (δ,ω∗) in zω-space, there is an ε-dependent change of coordinates
(z,ω)(u0, v0,w0, ε), (u0, v0,w0) ∈ R × R

p × R
m−1−p , such that:

• z = δ if and only if u0 = 0.
• (z,ω)(0,0,0,0) = (δ,ω∗).
• (z,ω)(0, v0,w0, ε) ∈ Pε if and only if w0 = 0.
• In the new coordinates, (2.32)–(2.33) becomes

u̇0 = 1, v̇0 = 0, ẇ0 = 0.

Thus (E6)–(E8) are satisfied. In (E7) we could use any a > 0; we use a = 1.
Let V ∗ be as defined in Section 2.6. The ε-dependent coordinates (u1, v1,w1) defined on V ∗

there show that (E9) and (E10) are satisfied; (u1,w1) plays the role of w1 in the statement of
those conditions. Note that assumption (L7) was used to construct this coordinate system.

(E11) is satisfied if V ∗ is small enough because in the system (2.30)–(2.33), ω̇1 = ε.

5. Implicit Function Theorem

Let Y be an open set in R
l , let Z be an open neighborhood of 0 in R

m, and let s : Y × Z → R

be a positive continuous function. Let

Ω = {
(x, y, z) ∈ R

k × R
l × R

m: (y, z) ∈ Y × Z and ‖x‖ � s(y, z)
}
.

Let G : Ω → R
k be a Cr function.
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Theorem 5.1. Assume there are real-valued functions m on Y × Z, n on Y , and p on Ω , and a
number λ, 0 < λ < 1, such that:

(I1) ‖G(0, y, z)‖ � m(y, z) for all (y, z) ∈ Y × Z.
(I2) DxG(0, y,0) is invertible and ‖DxG(0, y,0)−1‖ � n(y) for all y ∈ Y .
(I3) ‖DxG(x, y, z) − DxG(0, y,0)‖ � p(y, z) for all (x, y, z) ∈ Ω .
(I4) n(y)p(y, z) � λ for all (y, z) ∈ Y × Z.

Let

δ(y, z) = n(y)m(y, z)

1 − n(y)p(y, z)
.

Assume:

(I5) For each (y, z) ∈ Y × Z, δ(y, z) � s(y, z).

Then for each (y, z) ∈ Y × Z there is a unique x with ‖x‖ � δ(y, z) such that G(x,y, z) = 0. If
we let x = g(y, z), then g is Cr .

Proof. Write

G(x,y, z) = G(0, y, z) + DxG(0, y,0)x + R(x, y, z).

G(x, y, z) = 0 if and only if

x = T (x, y, z) = −DxG(0, y,0)−1(G(0, y, z) + R(x, y, z)
)
.

Note that for ‖x‖ � δ(y, z),

∥∥R(x, y, z)
∥∥ = ∥∥R(x, y, z) − R(0, y, z) + R(0, y, z)

∥∥ = ∥∥R(x, y, z) − R(0, y, z)
∥∥

� sup
‖x′‖�δ(y,z)

∥∥DxR(x′, y, z)
∥∥‖x‖ � p(y, z)δ(y, z).

Hence, if ‖x‖ � δ(y, z), then

∥∥T (x, y, z)
∥∥ � n(y)

(
m(y, z) + p(y, z)δ(y, z)

) = δ(y, z).

In addition, if ‖x1‖ � δ(y, z) and ‖x2‖ � δ(y, z), then

∥∥T (x1, y, z) − T (x2, y, z)
∥∥ �

∥∥DG(0, y,0)−1
∥∥∥∥R(x1, y, z) − R(x2, y, z)

∥∥
� n(y)p(y, z)‖x1 − x2‖ � λ‖x1 − x2‖.

Hence for each (y, z), T is a contraction of {x: ‖x‖ � δ(y, z)}. The result follows from the Cr

Contraction Mapping Theorem. �



Author's personal copy

S. Schecter / J. Differential Equations 245 (2008) 411–441 425

6. Proof of the General Exchange Lemma

We consider the system (3.1)–(3.3) with assumptions (E1)–(E11). On V∗ and V ∗ we use the
coordinates (u0, v0,w0) and (v1,w1) defined in Section 3. On R

k × R
l ×V∗ × R, we set x = x0

and y = y0, obtaining coordinates (x0, y0, u0, v0,w0, ε). On R
k × R

l × V ∗ × R, we set x = x1

and y = y1, obtaining coordinates (x1, y1, v1,w1, ε).
In our coordinates on R

k × R
l × V∗ × R, M takes the form

(
x0, u0,w0) = (x̂, û, ŵ)

(
y0, v0, ε

)
, x̂(0,0,0) = x∗, (û, ŵ)

(
0, v0, ε

) = (0,0). (6.1)

We have used the fact that P is contained in v0ε-space. The mapping (x̂, û, ŵ) is Cr+1.
We wish to consider Silnikov’s second boundary value problem, i.e., (3.1)–(3.3) together with

the boundary conditions

x(0) = x0, y(τ ) = y1, c(τ ) = c1.

The solution is denoted (x, y, c)(t, τ, x0, y1, c1, ε) and is Cr+1. We shall always take c1 ∈ V ∗
and values of τ such that c(0, τ, x0, y1, c1, ε) ∈ V∗. Hence we will write c(0, τ, x0, y1, c1, ε) =
(u0, v0,w0) and c1 = (v1,w1). Thus for t near 0 we will denote the solution of the bound-
ary value problem by (x0, y0, u0, v0,w0)(t, τ, x0, y1, v1,w1, ε). Deng’s lemma (Theorem 2.2
of [11]) provides estimates on the solution, which remain valid despite the coordinate changes.

To prove the General Exchange Lemma, given (y1, v1) ∈ A and a small ε > 0, we want to
find (τ, x0,w1) such that

(
x0,

(
u0,w0)(0, τ, x0, y1, v1,w1, ε

)) = (x̂, û, ŵ)
((

y0, v0)(0, τ, x0, y1, v1,w1, ε
)
, ε

)
. (6.2)

Once (τ, x0,w1) is found, the desired functions x̃ and w̃ are

x̃
(
y1, v1, ε

) = x
(
τ, τ, x0, y1, v1,w1, ε

)
, w̃

(
y1, v1, ε

) = w1. (6.3)

The estimates on x̃ and w̃ required by conclusion (3) of the General Exchange Lemma are ob-
tained with the help of Deng’s lemma (Theorem 2.2 of [11]).

Recall the function τ(c1, ε) defined in Section 3. In our coordinates on V ∗ it becomes a
function τ(v1,0, ε).

We gather some simple facts in the following lemma.

Lemma 6.1.

(1) (u0, v0,w0)(0, τ,0,0, v1,w1, ε) = (u0, v0,w0)(0, τ, x0,0, v1,w1, ε) = (u0, v0,w0)(0, τ,

0, y1, v1,w1, ε).
(2) y0(0, τ, x0,0, v1,w1, ε) = 0.
(3) u0(0, τ (v1,0, ε),0,0, v1,0, ε) = 0.
(4) w0(0, τ (v1,0, ε),0,0, v1,0, ε) = 0.

Proof. To show (1), note that (u0, v0,w0)(0, τ,0,0, v1,w1, ε) is given by the backward flow in
c-space; it is just φε(−τ, c(v1,w1, ε)). From (3.3), the evolution of the c variables is unchanged
as long as y = 0 or x = 0. (2) follows from (3.2): if y = 0, then ẏ = 0, so y remains 0. (3) is just
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the definition of τ(v1,0, ε). (4) says that for the flow in c-space, if w1 = 0, then w0 = 0; this is
a consequence of our choice of coordinates on V ∗. �

We wish to extend the function τ(v1,0, ε) to a function τ(v1,w1, ε) with the property

u0(0, τ
(
v1,w1, ε

)
,0,0, v1,w1, ε

) = 0. (6.4)

Lemma 6.2. τ(v1,w1, ε) satisfying (6.4) is defined and Cr+1 for (v1,w1) ∈ U∗ with ‖w1‖ �
e− 2K2

εa
β0 and ε > 0 sufficiently small. Moreover, for slightly smaller K1 and slightly larger K2,

still satisfying (3) of (E11),

K1

εa
� τ

(
v1,w1, ε

)
� K2

εa
.

Proof. For ‖w1‖ � e− 2K2
εa

β0 and small ε > 0, (3.7) and assumption (E11) imply

∥∥(
u0, v0,w0)(0, τ

(
v1,0, ε

)
,0,0, v1,w1, ε

) − (
u0, v0,w0)(0, τ

(
v1,0, ε

)
,0,0, v1,0, ε

)∥∥
� sup

σ∈[0,1]

∥∥∥∥∂(u0, v0,w0)

∂w1

(
0, τ

(
v1,0, ε

)
,0,0, v1, σw1, ε

)∥∥∥∥∥∥w1
∥∥

� Meβ0τ(v1,0,ε)
∥∥w1

∥∥ � Me
K2
εa

β0e− 2K2
εa

β0 = Me− K2
εa

β0 . (6.5)

From the description of the (u0, v0,w0)-coordinate system in Section 3, (u0, v0,w0)(0, τ (v1,0,

ε),0,0, v1,0, ε) = (0, v0,0) with ‖v0‖ < γ . Therefore for (u0, v0,w0)(0, τ (v1,0, ε),0,0, v1,

w1, ε) with ε sufficiently small, (6.5) implies

max
(∣∣u0

∣∣,∥∥v0
∥∥ − γ,

∥∥w0
∥∥)

� Me− K2
εa

β0 < γ. (6.6)

Choose L such that for (u0, v0,w0) in the closed ball of radius 3γ about the origin and ε

small, ‖(u̇0, v̇0, ẇ0)‖ � L. Then for (u0, v0,w0) in the closed ball of radius 2γ about the origin,
φε(t, (u

0, v0,w0)) is defined for |t | � γ
L

. For (u0, v0,w0) satisfying (6.6), on the other hand,
assumption (E7) implies that the value of t for which φε(t, (u

0, v0,w0)) has u0-coordinate equal
to 0 satisfies

|t | � 1

K3εa
Me− K2

εa
β0 � Ke− K1

εa
β0 ,

which is smaller than γ
L

for ε small. Therefore, for (u0, v0,w0) satisfying (6.6), we can define

t (u0, v0,w0, ε), with |t (u0, v0,w0, ε)| � Ke− K1
εa

β0 , such that φε(t (u
0, v0,w0), (u0, v0,w0)) has

u0-coordinate equal to 0.
Let

τ
(
v1,w1, ε

) = τ
(
v1,0, ε

) + t
((

u0, v0,w0)(0, τ
(
v1,0, ε

)
,0,0, v1,w1, ε

)
, ε

)
.

Then (6.4) holds, and τ(v1,w1, ε) satisfies the required estimate. �
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Because of Lemma 6.2, we shall always assume ‖w1‖ � e− 2K2
εa

β0 .
From Lemma 6.1, we see that a family of solutions of (6.2), with (v1, ε) arbitrary, is

τ = τ
(
v1,0, ε

)
, (6.7)

x0 = x̂
(
0, v0(0, τ

(
v1,0, ε

)
,0,0, v1,0, ε

)
, ε

)
, (6.8)

y1 = 0, (6.9)

w1 = 0. (6.10)

Let

x0 = x̂
(
0, v0(0, τ,0,0, v1,w1, ε

)
, ε

) + x̄0, (6.11)

τ = τ
(
v1,w1, ε

) + τ̄ . (6.12)

Let x̌(τ̄ , x̄0, v1,w1, ε) be the composite of (6.11) and (6.12):

x0 = x̌
(
τ̄ , x̄0, v1,w1, ε

) = x̂
(
0, v0(0, τ

(
v1,w1, ε

) + τ̄ ,0,0, v1,w1, ε
)
, ε

) + x̄0. (6.13)

Let Y be the product of a neighborhood of 0 in R
p+1 and an interval (0, ε0), and let Z be a

neighborhood of 0 in R
l . For (τ̄ , x̄0,w1) near (0,0,0) and ((v1, ε), y1) ∈ Y × Z, define

G
((

τ̄ , x̄0,w1), (v1, ε
)
, y1)

=
⎛
⎝ x0 − x̂((y0, v0)(0, τ, x0, y1, v1,w1, ε), ε)

u0(0, τ, x0, y1, v1,w1, ε) − û((y0, v0)(0, τ, x0, y1, v1,w1, ε), ε)

w0(0, τ, x0, y1, v1,w1, ε) − ŵ((y0, v0)(0, τ, x0, y1, v1,w1, ε), ε)

⎞
⎠ , (6.14)

with x0 and τ given in terms of (τ̄ , x̄0, v1,w1, ε) by (6.13) and (6.12). G is Cr+1. According to
(6.2), we need to find solutions of G = 0.

We will prove the General Exchange Lemma in the following steps, in which the notation
of Section 3 is used. We use the letter K to denote a variety of different constants. Let τ1(ε) =
inf(v1,w1) τ (v1,w1, ε), τ2(ε) = sup(v1,w1) τ (v1,w1, ε).

(1) ‖G((0,0,0), (v1, ε), y1)‖ � Ke−μ0τ(v1,0,ε).
(2) ‖D(τ̄,x̄0,w1)G((0,0,0), (v1, ε),0)−1‖ � Keβτ(v1,0,ε).

(3)
∥∥D(τ̄,x̄0,w1)G

((
τ̄ , x̄0,w1

)
, (v1, ε), y1

) − D(τ̄,x̄0,w1)G
(
(0,0,0),

(
v1, ε

)
,0

)∥∥
� Ke−(μ0−2β)(τ1(ε)−|τ̄ |) + Ke2β(τ2(ε)+|τ̄ |)∥∥(

τ̄ , x̄0,w1
)∥∥.

(4) Using the Implicit Function Theorem (Theorem 5.1), we show that for each ((v1, ε), y1) ∈
Y × Z, the equation G((τ̄ , x̄0,w1), (v1, ε), y1) = 0 has a unique solution with

‖(τ̄ , x̄0,w1)‖ � Ke− K1
εa

(μ0−β1). Moreover, (τ̄ , x̄0,w1) is a Cr+1 function of ((v1, ε), y1).

(5) For ‖(τ̄ , x̄0,w1)‖ � Ke− K1
εa

(μ0−β1) (consistent with step (4)), any first partial derivative of G

with respect to ((v1, ε), y1) is of order e− K1
εa

(μ0−3β1) (i.e., is bounded in norm by a constant
times this function), and, for 2 � i � r , any partial derivative of order i of G with respect to

((v1, ε), y1) is of order e− K1
εa

(μ0−2iβ1).
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(6) For ‖(τ̄ , x̄0,w1)‖ � Ke− K1
εa

(μ0−β1) (consistent with step (4)), ‖D(τ̄,x̄0,w1)G((τ̄ , x̄0,w1),

(v1, ε), y1)−1‖ is of order e
K2
εa

β .
(7) Any first partial derivative of (τ̄ , x̄0,w1) with respect to ((v1, ε), y1) is of order

e− K1
εa

(μ0−4β1), and, for 2 � i � r , any partial derivative of order i of (τ̄ , x̄0,w1) with re-

spect to ((v1, ε), y1) is of order e− K1
εa

(μ0−(2i+1)β1).

The last step implies the result: using (6.3), the desired estimates on w̃ for 0 < ε < ε0 are imme-
diate, and those on x̃ for 0 < ε < ε0 follow from Deng’s lemma. If we extend w̃ and x̃ to be 0
for ε = 0, then these estimates, together with l’Hopital’s rule, imply that the extended w̃ and x̃

are Cr .
We gather some more useful facts in the following lemma. Here and throughout this section,

we shall use, for example, ∂

∂w1 to denote the matrix of partial derivatives more properly denoted
by Dw1 .

Lemma 6.3.

(1) ∂u0

∂τ
(0, τ,0,0, v1,w1, ε) depends only on ε and is � K3ε

a .

(2) ∂w0

∂τ
(0, τ,0,0, v1,w1, ε) = 0.

(3) For 1 � i � r + 1, any partial derivative of (u0, v0,w0)(0, τ,0,0, v1,w1, ε) of order i that
includes j derivatives with respect to τ is of order e(i−j)β0τ .

(4) For 1 � i � r + 1, any partial derivative of τ(v1,w1, ε) of order i is of order eiβτ .
(5) For 1 � i � r , any partial derivative of x0 given by (6.11) of order i that includes j deriva-

tives with respect to τ is of order e(i−j)β0τ .
(6) For 1 � i � r , any partial derivative of x̌ of order i is of order eiβτ .

Proof. The functions u0(0, τ,0,0, v1,w1, ε), etc., are just components of φε(−τ, c(u1, v1, ε)).
(1) and (2) follow from (E7) and (E6). (3) is based on (3.7) and is a general fact about the deriv-
atives of the flow of a Cr+1 differential equation; compare [11, Proposition 3.2]. To prove (4),
note that from (6.4),

∂u0

∂τ

(
0, τ

(
v1,w1, ε

)
,0,0, v1,w1, ε

) ∂τ

∂w1

(
v1,w1, ε

)

+ ∂u0

∂w1

(
0, τ

(
v1,w1, ε

)
,0,0, v1,w1, ε

) = 0. (6.15)

Therefore

∂τ

∂w1

(
v1,w1, ε

) = −
(

∂u0

∂τ

(
0, τ

(
v1,w1, ε

)
,0,0, v1,w1, ε

))−1

× ∂u0

∂w1

(
0, τ

(
v1,w1, ε

)
,0,0, v1,w1, ε

)
.
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Then from (1), (3), and Lemma 6.2,

∥∥∥∥ ∂τ

∂w1

∥∥∥∥ � 1

K3εa
Keβ0τ = K

K3K1

K1

εa
eβ0τ � K

K3K1
τeβ0τ = K

K3K1
eln τ+β0τ � K̃eβτ .

The same estimates hold for ∂τ

∂v1 and ∂τ
∂ε

. The general result follows by induction using (3).
To prove (5) for i = 1, note that partial derivatives of x̂ are bounded, and partial derivatives of

v0(0, τ,0,0, v1,w1, ε) can be estimated by (3). The general result follows by induction. (6) fol-
lows from (4) and (5). �

It is convenient to write

G
((

τ̄ , x̄0,w1), (v1, ε
)
, y1) = G

(
(0,0,0),

(
v1, ε

)
,0

) + I
((

τ̄ , x̄0,w1), (v1, ε
))

+ J
((

τ̄ , x̄0,w1), (v1, ε
)
, y1)

with

I
((

τ̄ , x̄0,w1), (v1, ε
)) = (

G
((

τ̄ , x̄0,w1), (v1, ε
)
,0

) − G
(
(0,0,0),

(
v1, ε

)
,0

))
,

J
((

τ̄ , x̄0,w1), (v1, ε
)
, y1) = (

G
((

τ̄ , x̄0,w1), (v1, ε
)
, y1) − G

((
τ̄ , x̄0,w1), (v1, ε

)
,0

))
.

Using (6.1) and Lemma 6.1, we see that

G
(
(0,0,0),

(
v1, ε

)
,0

)

=
⎛
⎜⎝

x̂(0, v0(0, τ (v1,0, ε),0,0, v1,0, ε), ε) − x̂(0, v0(0, τ (v1,0, ε),0,0, v1,0, ε), ε)

u0(0, τ (v1,0, ε),0,0, v1,0, ε) − û(0, v0(0, τ (v1,0, ε),0,0, v1,0, ε), ε)

w0(0, τ (v1,0, ε),0,0, v1,0, ε) − ŵ(0, v0(0, τ (v1,0, ε),0,0, v1,0, ε), ε)

⎞
⎟⎠

=
⎛
⎝0

0

0

⎞
⎠ . (6.16)

Equation (6.16) expresses the fact that (6.7)–(6.10) is a family of solutions of (6.2). It follows
that G = I + J .

Again using (6.1) and Lemma 6.1, we obtain

I
((

τ̄ , x̄0,w1), (v1, ε
))

=
⎛
⎜⎝

x̂(0, v0(0, τ,0,0, v1,w1, ε), ε) + x̄0 − x̂(0, v0(0, τ, x0,0, v1,w1, ε), ε)

u0(0, τ, x0,0, v1,w1, ε) − û(0, v0(0, τ, x0,0, v1,w1, ε), ε)

w0(0, τ, x0,0, v1,w1, ε) − ŵ(0, v0(0, τ, x0,0, v1,w1, ε), ε)

⎞
⎟⎠

=
⎛
⎜⎝

x̄0

u0(0, τ,0,0, v1,w1, ε)

w0(0, τ,0,0, v1,w1, ε)

⎞
⎟⎠ , (6.17)
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with τ given by (6.12). From Lemma 6.1(1) we have

J
((

τ̄ , x̄0,w1), (v1, ε
)
, y1)

=
⎛
⎜⎝

0

u0(0, τ, x0, y1, v1,w1, ε) − u0(0, τ, x0,0, v1,w1, ε)

w0(0, τ, x0, y1, v1,w1, ε) − w0(0, τ, x0,0, v1,w1, ε)

⎞
⎟⎠

−
⎛
⎜⎝

x̂((y0, v0)(0, τ, x0, y1, v1,w1, ε), ε) − x̂(0, v0(0, τ, x0,0, v1,w1, ε), ε)

û((y0, v0)(0, τ, x0, y1, v1,w1, ε), ε) − û(0, v0(0, τ, x0,0, v1,w1, ε), ε)

ŵ((y0, v0)(0, τ, x0, y1, v1,w1, ε), ε) − ŵ(0, v0(0, τ, x0,0, v1,w1, ε), ε)

⎞
⎟⎠

=
⎛
⎜⎝

0

u0(0, τ, x0, y1, v1,w1, ε) − u0(0, τ,0,0, v1,w1, ε)

w0(0, τ, x0, y1, v1,w1, ε) − w0(0, τ,0,0, v1,w1, ε)

⎞
⎟⎠

−
⎛
⎜⎝

x̂((y0, v0)(0, τ, x0, y1, v1,w1, ε), ε) − x̂(0, v0(0, τ,0,0, v1,w1, ε), ε)

û((y0, v0)(0, τ, x0, y1, v1,w1, ε), ε) − û(0, v0(0, τ,0,0, v1,w1, ε), ε)

ŵ((y0, v0)(0, τ, x0, y1, v1,w1, ε), ε) − ŵ(0, v0(0, τ,0,0, v1,w1, ε), ε)

⎞
⎟⎠ (6.18)

with τ given by (6.12) and x0 given by (6.13).
Step 1. Using G = I + J , (6.17), and (6.18), we have

G
(
(0,0,0),

(
v1, ε

)
, y1)

=
⎛
⎜⎝

0

u0(0, τ,0,0, v1,0, ε)

w0(0, τ,0,0, v1,0, ε)

⎞
⎟⎠ +

⎛
⎜⎝

0

u0(0, τ, x0, y1, v1,0, ε) − u0(0, τ,0,0, v1,0, ε)

w0(0, τ, x0, y1, v1,0, ε) − w0(0, τ,0,0, v1,0, ε)

⎞
⎟⎠

−
⎛
⎜⎝

x̂((y0, v0)(0, τ, x0, y1, v1,0, ε), ε) − x̂(0, v0(0, τ,0,0, v1,0, ε), ε)

û((y0, v0)(0, τ, x0, y1, v1,0, ε), ε) − û(0, v0(0, τ,0,0, v1,0, ε), ε)

ŵ((y0, v0)(0, τ, x0, y1, v1,0, ε), ε) − ŵ(0, v0(0, τ,0,0, v1,0, ε), ε)

⎞
⎟⎠ (6.19)

with x0 = x̂(0, v0(0, τ,0,0, v1,0, ε), ε) and τ = τ(v1,0, ε). The first matrix is 0 by Lem-
ma 6.1(3) and (4). The second is of order e−μ0τ(v1,0,ε) by Deng’s lemma (Theorem 2.2 of [11]).
As for the third, let us consider its first line. In norm it is at most a bound on the first partial
derivatives of x̂ times

∥∥(
y0, v0)(0, τ, x0, y1, v1,w1, ε

) − (
0, v0(0, τ,0,0, v1,w1, ε

))∥∥,

which by Deng’s lemma is of order e−μ0τ(v1,0,ε). The other lines of the matrix are treated analo-
gously.

Step 2. Since J = 0 when y1 = 0, we have G((τ̄ , x̄0,w1), (v1, ε),0) = I ((τ̄ , x̄0,w1), (v1, ε)).
D(τ̄ ,x̄0,w1)G((τ̄ , x̄0,w1), (v1, ε), y1) can be regarded as 3 × 3 block-partitioned matrix. Us-
ing (6.17) and Lemma 6.3(2) we have
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D(τ̄,x̄0,w1)G
((

τ̄ , x̄0,w1), (v1, ε
)
,0

)
= D(τ̄,x̄0,w1)I

((
τ̄ , x̄0,w1), (v1, ε

))

=
⎛
⎜⎜⎝

0 I 0
∂u0

∂τ
(0, τ,0,0, v1,w1, ε) 0 ∂u0

∂τ
(0, τ,0,0, v1,w1, ε) ∂τ

∂w1 (v1,w1, ε) + ∂u0

∂w1 (0, τ,0,0, v1,w1, ε)

0 0 ∂w0

∂w1 (0, τ,0,0, v1,w1, ε)

⎞
⎟⎟⎠ ,

with τ = τ(v1,w1, ε) + τ̄ . From (6.15), it follows that

D(τ̄,x̄0,w1)G
(
(0,0,0),

(
v1, ε

)
,0

)
= D(τ̄,x̄0,w1)I

(
(0,0,0),

(
v1, ε

))

=
⎛
⎜⎝

0 I 0
∂u0

∂τ
(0, τ (v1,0, ε),0,0, v1,0, ε) 0 0

0 0 ∂w0

∂w1 (0, τ (v1,0, ε),0,0, v1,0, ε)

⎞
⎟⎠ . (6.20)

If ∂w0

∂w1 is invertible, we have

(
D(τ̄,x̄0,w1)G

(
(0,0,0),

(
v1, ε

)
,0

))−1

=
⎛
⎜⎝

0 ( ∂u0

∂τ
(0, τ (v1,0, ε),0,0, v1,0, ε))−1 0

I 0 0

0 0 ( ∂w0

∂w1 (0, τ (v1,0, ε),0,0, v1,0, ε))−1

⎞
⎟⎠ .

(6.21)

By Lemma 6.3(1), ( ∂u0

∂τ
(0, τ (v1,0, ε),0,0, v1,0, ε))−1 is of order ε−a , hence of order e

K1
εa

β ,
hence of order eβτ(v1,0,ε).

For c ∈ V∗ and φε(t, c) ∈ V ∗, let us write φε(t, c) as (v1,w1)(t, u0, v0,w0, ε). Then

w1(τ(
v1,w1, ε

)
,0,

(
v0,w0)(0, τ

(
v1,w1, ε

)
,0,0, v1,w1, ε

)
, ε

) = w1.

Therefore

∂w1

∂τ

∂τ

∂w1
+ ∂w1

∂v0

(
∂v0

∂τ

∂τ

∂w1
+ ∂v0

∂w1

)
+ ∂w1

∂w0

(
∂w0

∂τ

∂τ

∂w1
+ ∂w0

∂w1

)
= I. (6.22)

From Lemma 6.3(2), ∂w0

∂τ
= 0. From the definition of w1 in Section 3, if w1 = 0, the terms

∂w1

∂τ
and ∂w1

∂v0 also vanish. Hence, for w1 = 0, (6.22) reduces to

∂w1

∂w0

∂w0

∂w1
= I.
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We therefore see that the inverse of ∂w0

∂w1 (0, τ (v1,0, ε),0,0, v1,0, ε) is

∂w1

∂w0

(
τ
(
v1,0, ε

)
,0, v0(0, τ

(
v1,0, ε

)
,0,0, v1,0, ε

)
,0, ε

)
.

By the analogue of Lemma 6.3(3) for the forward flow φε(t, c
0), this expression is of order

eβτ(v1,0,ε).
Step 3. We have

D(τ̄,x̄0,w1)G
((

τ̄ , x̄0,w1), (v1, ε
)
, y1) − D(τ̄,x̄0,w1)G

(
(0,0,0),

(
v1, ε

)
,0

)
= D(τ̄ ,x̄0,w1)I

((
τ̄ , x̄0,w1), (v1, ε

)) − D(τ̄,x̄0,w1)I
(
(0,0,0),

(
v1, ε

))
+ D(τ̄,x̄0,w1)J

((
τ̄ , x̄0,w1), (v1, ε

)
, y1

)
.

We will show in Step 5 that all first partial derivatives of J are of order e−(μ0−2β)τ (see Proposi-
tions 6.6 and 6.7). We therefore consider

D(τ̄,x̄0,w1)I
((

τ̄ , x̄0,w1), (v1, ε
)) − D(τ̄,x̄0,w1)I

(
(0,0,0),

(
v1, ε

))
.

Both matrices were calculated in Step 2. The difference has three nonzero terms:

(1) ∂u0

∂τ
(0, τ,0,0, v1,w1, ε) − ∂u0

∂τ
(0, τ (v1,0, ε),0,0, v1,0, ε),

(2) ∂u0

∂τ
(0, τ,0,0, v1,w1, ε) ∂τ

∂w1 (v1,w1, ε) + ∂u0

∂w1 (0, τ,0,0, v1,w1, ε),

(3) ∂w0

∂w1 (0, τ,0,0, v1,w1, ε) − ∂w0

∂w1 (0, τ (v1,0, ε),0,0, v1,0, ε),

with τ = τ(v1,w1, ε) + τ̄ . We consider each term.
(1) By Lemma 6.3(1), ∂u0

∂τ
depends only on ε, so this term is 0.

(2) ∂u0

∂w1 (0, τ,0,0, v1,w1, ε) is independent of τ , because

∂2u0

∂τ∂w1
= ∂2u0

∂w1∂τ
= 0.

Since ∂u0

∂τ
is also independent of τ , we rewrite this term as (6.15) and see that it is 0.

(3) We rewrite this term as

∂w0

∂w1

(
0, τ

(
v1,w1, ε

) + τ̄ ,0,0, v1,w1, ε
) − ∂w0

∂w1

(
0, τ

(
v1,0, ε

)
,0,0, v1,0, ε

)

= ∂w0

∂w1

(
0, τ

(
v1,w1, ε

) + τ̄ ,0,0, v1,w1, ε
) − ∂w0

∂w1

(
0, τ

(
v1,w1, ε

)
,0,0, v1,w1, ε

)

+ ∂w0

∂w1

(
0, τ

(
v1,w1, ε

)
,0,0, v1,w1, ε

) − ∂w0

∂w1

(
0, τ

(
v1,w1, ε

)
,0,0, v1,0, ε

)

+ ∂w0

∂w1

(
0, τ

(
v1,w1, ε

)
,0,0, v1,0, ε

) − ∂w0

∂w1

(
0, τ

(
v1,0, ε

)
,0,0, v1,0, ε

)
.
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In norm this is at most

sup
σ∈[0,τ̄ ]

∥∥∥∥ ∂2w0

∂τ∂w1

(
0, τ

(
v1,w1, ε

) + σ,0,0, v1,w1, ε
)∥∥∥∥|τ̄ |

+ sup
w∈[0,w1]

∥∥∥∥ ∂2w0

∂(w1)2

(
0, τ

(
v1,w1, ε

)
,0,0, v1,w, ε

)∥∥∥∥∥∥w1
∥∥

+ sup
σ∈[τ(v1,0,ε),τ (v1,w1,ε)]

∥∥∥∥ ∂2w0

∂τ∂w1

(
0, σ,0,0, v1,0, ε

)∥∥∥∥∣∣τ(
v1,w1, ε

) − τ
(
v1,0, ε

)∣∣.
By Lemma 6.3(3), the first two summands are at most

Ke2β(τ(v1,w1,ε)+|τ̄ |)∥∥(
τ̄ , x̄0,w1)∥∥.

By Lemma 6.3(3) and (4), the third summand is at most

sup
σ∈[τ(v1,0,ε),τ (v1,w1,ε)]

∥∥∥∥ ∂2w0

∂τ∂w1

(
0, σ,0,0, v1,0, ε

)∥∥∥∥ sup
w∈[0,w1]

∥∥∥∥ ∂τ

∂w1

(
v1,w, ε

)∥∥∥∥∥∥w1
∥∥

� Keβτ2(ε) · Keβτ(v1,w1,ε)
∥∥w1

∥∥.

Putting everything together, we have the result.
Step 4. From Step 1 and (E11),

∥∥G
(
(0,0,0),

(
v1, ε

)
, y1)∥∥ � Ke− K1

εa
μ0 . (6.23)

From Step 2 and (E11),

∥∥D(τ̄ ,x̄0,w1)G
(
(0,0,0),

(
v1, ε

)
,0

)−1∥∥ � Ke
K2
εa

β . (6.24)

From Step 3 and Lemma 6.2, if ‖(τ̄ , x̄0,w1)‖ � δ, then

∥∥D(τ̄,x̄0,w1)G
((

τ̄ , x̄0,w1), (v1, ε
)
, y1) − D(τ̄,x̄0,w1)G

(
(0,0,0),

(
v1, ε

)
,0

)∥∥
� Ke−(μ0−2β)(

K1
εa

−δ) + Ke2β(
K2
εa

+δ)δ. (6.25)

For δ < 1 and ε small, using β < β1 and K2β < K1β1, (6.25) implies

∥∥D(τ̄,x̄0,w1)G
((

τ̄ , x̄0,w1), (v1, ε
)
, y1) − D(τ̄,x̄0,w1)G

(
(0,0,0),

(
v1, ε

)
,0

)∥∥
� Ke− K1

εa
(μ0−2β1) + Ke

2K1
εa

β1δ. (6.26)

We define

m = Ke− K1
εa

μ0, n = Ke
K2
εa

β, r = Ke− K1
εa

(μ0−2β1), q = Ke
2K1
εa

β1, p = r + qδ.
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With these definitions, (6.23), (6.24), and (6.26) show that hypotheses (I1)–(I3) of Theorem 5.1
are satisfied.

Motivated by the proof of Theorem 5.1, we wish to choose δ to be the smaller of the two
solutions of the equation

δ = nm

1 − np
= nm

1 − n(r + qδ)
.

Therefore

δ = 1

2nq

(
1 − nr − (

(1 − nr)2 − 4n2qm
) 1

2
)
. (6.27)

Using K2β < K1β1, we have

nr = K2e
1
εa

(K2β−K1μ0+2K1β1) � K2e− K1
εa

(μ0−3β1),

4n2qm = 4K4e
1
εa

(2K2β+2K1β1−K1μ0) � 4K4e− 1
εa

(μ0−4β1)K1 .

Therefore nr and 4n2qm approach 0 as ε → 0, so for small ε > 0 the definition (6.27) yields a
positive number for δ.

We now easily see that δ < 1
2nq

, so

np = nr + nqδ < nr + nq
1

2nq
= nr + 1

2
.

Therefore np < 3
4 for small ε > 0, so hypothesis (I4) of Theorem 5.1 is satisfied. Then

δ = nm

1 − np
< 4nm = 4K2e

1
εa

(K2β−K1μ0) � 4K2e
1
εa

(K1β1−K1μ0) = 2K2e− K1
εa

(μ0−β1). (6.28)

By (E11), μ0 − 6β1 > 0, so in particular μ0 − β1 > 3β1. Therefore

δ < 2K2e− 3K1
εa

β1 < 2K2e− 3K2
εa

β < e− 2K2
εa

β

for ε small. Recall from Lemma 6.2 that τ(v1,w1, ε), and hence G, is defined for ‖w1‖ <

e− 2K2
εa

β . Therefore, for small ε, hypothesis (I5) of Theorem 5.1 holds. Therefore Theorem 5.1
applies, and the desired estimate on δ is given by (6.28).

Step 5. We use G = I + J , and consider separately I and J . From (6.17),

⎛
⎝ I1((τ̄ , x̄0,w1), (v1, ε))

I2((τ̄ , x̄0,w1), (v1, ε))

I3((τ̄ , x̄0,w1), (v1, ε))

⎞
⎠ =

⎛
⎝ x̄0

u0(0, τ (v1,w1, ε) + τ̄ ,0,0, v1,w1, ε)

w0(0, τ (v1,w1, ε) + τ̄ ,0,0, v1,w1, ε)

⎞
⎠ .

Proposition 6.4. For 1 � i � r :

(1) ‖ ∂iI2
∂εi ‖ is of order e− K1

εa
(μ0−(i+1)β1).
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(2) Any ith partial derivative of I2 with respect to (v1, ε) in which I2 is differentiated at least
once with respect to v1 is 0.

(3) Any ith partial derivative of I2 with respect to (v1, ε) is of order e− K1
εa

(μ0−(i+2)β1).

Proof. (1) We first consider ∂I2
∂ε

. From Lemma 6.3(1), ∂u0

∂τ
(0, τ,0,0, v1,w1, ε) is independent

of τ . Using this fact and Lemma 6.1(3), we have

∂I2

∂ε

((
τ̄ , x̄0,w1), (v1, ε

))

= ∂u0

∂τ

(
0, τ

(
v1,w1, ε

) + τ̄ ,0,0, v1,w1, ε
)∂τ

∂ε
+ ∂u0

∂ε

(
0, τ

(
v1,w1, ε

) + τ̄ ,0,0, v1,w1, ε
)

= ∂u0

∂τ

(
0, τ

(
v1,w1, ε

)
,0,0, v1,w1, ε

)∂τ

∂ε
+ ∂u0

∂ε

(
0, τ

(
v1,w1, ε

)
,0,0, v1,w1, ε

)

+ ∂u0

∂ε

(
0, τ

(
v1,w1, ε

) + τ̄ ,0,0, v1,w1, ε
) − ∂u0

∂ε

(
0, τ

(
v1,w1, ε

)
,0,0, v1,w1, ε

)

= ∂u0

∂ε

(
0, τ

(
v1,w1, ε

) + τ̄ ,0,0, v1,w1, ε
) − ∂u0

∂ε

(
0, τ

(
v1,w1, ε

)
,0,0, v1,w1, ε

)
. (6.29)

In norm this is at most

sup
σ∈[0,τ̄ ]

∥∥∥∥ ∂2u0

∂τ∂ε

(
0, τ

(
v1,w1, ε

) + σ,0,0, v1,w1, ε
)∥∥∥∥|τ̄ |. (6.30)

Lemma 6.3(1) implies that ∂2u0

∂τ∂ε
(0, τ,0,0, v1,w1, ε) depends only on ε, because

∂2u0

∂τ∂ε

(
0, τ,0,0, v1,w1, ε

) = ∂2u0

∂ε∂τ

(
0, τ,0,0, v1,w1, ε

)
.

Therefore, using Lemma 6.3(3) and K2β < K1β1, (6.30) is at most

∥∥∥∥ ∂2u0

∂τ∂ε

(
0, τ

(
v1,w1, ε

)
,0,0, v1,w1, ε

)∥∥∥∥|τ̄ | � Ke
K2
εa

β · Ke− K1
εa

(μ−β1) � K2e− K1
εa

(μ−2β1).

Next we consider ∂2I2
∂ε2 . Since ∂2u0

∂τ∂ε
(0, τ,0,0, v1,w1, ε) depends only on ε, (6.29) yields

∂2I2

∂ε2

((
τ̄ , x̄0,w1), (v1, ε

))

= ∂2u0

∂ε2

(
0, τ

(
v1,w1, ε

) + τ̄ ,0,0, v1,w1, ε
) − ∂2u0

∂ε2

(
0, τ

(
v1,w1, ε

)
,0,0, v1,w1, ε

)
,

which by a similar argument has norm of order e− K1
εa

(μ0−3β1).
The general result follows by induction.
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(2) ∂u0

∂v1 (0, τ,0,0, v1,w1, ε) is independent of τ , because, from Lemma 6.3(1),

∂2u0

∂τ∂v1

(
0, τ,0,0, v1,w1, ε

) = ∂2u0

∂v1∂τ

(
0, τ,0,0, v1,w1, ε

) = 0.

Therefore, from Lemma 6.1(3),

∂I2

∂v1

((
τ̄ , x̄0,w1), (v1, ε

))

= ∂u0

∂τ

(
0, τ

(
v1,w1, ε

) + τ̄ ,0,0, v1,w1, ε
) ∂τ

∂v1
+ ∂u0

∂v1

(
0, τ

(
v1,w1, ε

) + τ̄ ,0,0, v1,w1, ε
)

= ∂u0

∂τ

(
0, τ

(
v1,w1, ε

)
,0,0, v1,w1, ε

) ∂τ

∂v1
+ ∂u0

∂v1

(
0, τ

(
v1,w1, ε

)
,0,0, v1,w1, ε

) = 0.

The result follows.
(3) From Lemma 6.3(2),

∂I3

∂v1

((
τ̄ , x̄0,w1), (v1, ε

))

= ∂w0

∂τ

(
0, τ

(
v1,w1, ε

) + τ̄ ,0,0, v1,w1, ε
) ∂τ

∂v1
+ ∂w0

∂v1

(
0, τ

(
v1,w1, ε

) + τ̄ ,0,0, v1,w1, ε
)

= ∂w0

∂v1

(
0, τ

(
v1,w1, ε

) + τ̄ ,0,0, v1,w1, ε
)
.

Since ∂w0

∂v1 (0, τ,0,0, v1,0, ε) = 0 (from the choice of the coordinate w1 in Section 3),

∥∥∥∥∂w0

∂v1

(
0, τ

(
v1,w1, ε

) + τ̄ ,0,0, v1,w1, ε
)∥∥∥∥

� sup
w∈[0,w1]

∥∥∥∥ ∂2w0

∂w1∂v1

(
0, τ

(
v1,w1, ε

) + τ̄ ,0,0, v1,w, ε
)∥∥∥∥∥∥w1

∥∥
� Ke2β(τ(v1,w1,ε)+1) · Ke− K1

εa
(μ0−β1) � Ke2β(

K2
εa

+1) · Ke− K1
εa

(μ0−β1)

= K2e
1
εa

(2β(K2+εa)−K1μ0+K1β1) � K2e
K1
εa

(3β1−μ0) = K2e− K1
εa

(μ0−3β1).

We have used Lemma 6.3(3), τ̄ < 1 for ε small, and K2β < K1β1.
The same estimate holds for ∂I3

∂ε
((τ̄ , x̄0,w1), (v1, ε)). Proceeding inductively, we find that for

1 � j + k � r ,

∂j+kI3

∂(v1)j εk

((
τ̄ , x̄0,w1), (v1, ε

)) = ∂j+kw0

∂(v1)j εk

(
0, τ

(
v1,w1, ε

) + τ̄ ,0,0, v1,w1, ε
)
,

and ‖ ∂j w0

∂(v1)kεj (0, τ (v1,w1, ε) + τ̄ ,0,0, v1,w1, ε)‖ � Ke− K1
εa

(μ0−(j+k+2)β1). �
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Before continuing, we record the following immediate consequence of Deng’s lemma (Theo-
rem 2.2 of [11]).

Lemma 6.5. For 1 � k � r , any partial derivative of a component of (u0, v0,w0)(0, τ, x0, y1,

v1,w1, ε) of order k, provided we differentiate at least once with respect to x0 or y0, is of order
e−(μ0−kβ0)τ .

Next we turn to J , which is given in (6.18) as the sum of two matrices.

Proposition 6.6. For the first of the two matrices that sum to J in (6.18), any ith partial deriva-
tive, 1 � i � r , is of order e−(μ0−2iβ)τ .

Proof. We first consider the expression

u0(0, τ, x0, y1, v1,w1, ε
) − u0(0, τ,0,0, v1,w1, ε

)
(6.31)

in (6.18), with τ and x0 as given by (6.12) and (6.13). The partial derivative with respect to v1 is

(
∂u0

∂τ

(
0, τ, x0, y1, v1,w1, ε

) − ∂u0

∂τ

(
0, τ,0,0, v1,w1, ε

)) ∂τ

∂v1

+ ∂u0

∂x0

(
0, τ, x0, y1, v1,w1, ε

) ∂x̌

∂v1

+
(

∂u0

∂v1

(
0, τ, x0, y1, v1,w1, ε

) − ∂u0

∂v1

(
0, τ,0,0, v1,w1, ε

))
.

By Deng’s lemma (Theorem 2.2 of [11]), the two differences are of order e−(μ0−β0)τ , and
∂u0

∂x0 (0, τ, x0, y1, v1,w1, ε) is also of order e−(μ0−β0)τ . From Lemma 6.3, ∂τ

∂v1 and ∂x̌

∂v1 are of

order eβτ . We conclude that the entire expression is of order e−(μ0−2β)τ . A similar argument
applies to the partial derivative of (6.31) with respect to any variable.

The result follows by induction. It is important to note that according to Lemma 6.5, any
partial derivative of v0(0, τ, x0, y1, v1,w1, ε) of order k, provided we differentiate at least once
with respect to x0 or y0, is of order e−(μ0−kβ0)τ .

The same argument applies to w0(0, τ, x0, y1, v1,w1, ε) − w0(0, τ,0,0, v1,w1, ε)

in (6.18). �
Proposition 6.7. For the second of the two matrices that sum to J in (6.18), any ith partial
derivative, 1 � i � r , is of order e−(μ0−2iβ)τ .

Proof. We consider the expression

x̂
((

y0, v0)(0, τ, x0, y1, v1,w1, ε
)
, ε

) − x̂
(
0, v0(0, τ,0,0, v1,w1, ε

)
, ε

)
(6.32)

in (6.18), with τ given by (6.12) and x0 given by (6.13).
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The partial derivative with respect to v1 of this composite function is

∂x̂

∂y0

(
∂y0

∂τ

∂τ

∂v1
+ ∂y0

∂x0

∂x̌

∂v1
+ ∂y0

∂v1

)
+ ∂x̂

∂v0

(
∂v0

∂τ

∂τ

∂v1
+ ∂v0

∂x0

∂x̌

∂v1
+ ∂v0

∂v1

)

− ∂x̂

∂v0

(
∂v0

∂τ

∂τ

∂v1
+ ∂v0

∂v1

)
, (6.33)

where we have suppressed the points at which partial derivatives are evaluated; thus terms that
appear to cancel do not.

In the term ∂x̂

∂y0 (
∂y0

∂τ
∂τ

∂v1 + ∂y0

∂x0
∂x̌

∂v1 + ∂y0

∂v1 ), ∂x̂

∂y0 is bounded; by Deng’s lemma (Theorem 2.2 of

[11]), partial derivatives of y0 are of order e−(μ0−β)τ ; and by Lemma 6.3, partial derivatives of τ

and x̌ are of order eβτ . Therefore this term is of order e−(μ0−2β)τ . One can see inductively that
for 2 � i � r , if one differentiates this term i − 1 more times with respect to any combination of
the variables, the result is of order e−(μ0−2iβ)τ .

A similar argument applies to the product ∂x̂

∂v0
∂v0

∂x0
∂x̌

∂v1 in the middle term. It is important to

note that according to Lemma 6.5, any partial derivative of v0(0, τ, x0, y1, v1,w1, ε) of order k,
provided we differentiate at least once with respect to x0 or y0, is of order e−(μ0−kβ0)τ .

The remaining terms in (6.33), taking into account where they are evaluated, are

∂x̂

∂v0

((
y0, v0)(0, τ, x0, y1, v1,w1, ε

)
, ε

)

×
(

∂v0

∂τ

(
0, τ, x0, y1, v1,w1, ε

) ∂τ

∂v1

(
v1,w1, ε

) + ∂v0

∂v1

(
0, τ, x0, y1, v1,w1, ε

))

− ∂x̂

∂v0

(
0, v0(0, τ,0,0, v1,w1, ε

)
, ε

)

×
(

∂v0

∂τ

(
0, τ,0,0, v1,w1, ε

) ∂τ

∂v1

(
v1,w1, ε

) + ∂v0

∂v1

(
0, τ,0,0, v1,w1, ε

))

= ∂x̂

∂v0

((
y0, v0)(0, τ, x0, y1, v1,w1, ε

)
, ε

)

×
((

∂v0

∂τ

(
0, τ, x0, y1, v1,w1, ε

) − ∂v0

∂τ

(
0, τ,0,0, v1,w1, ε

)) ∂τ

∂v1

(
v1,w1, ε

)

+ ∂v0

∂v1

(
0, τ, x0, y1, v1,w1, ε

) − ∂v0

∂v1

(
0, τ,0,0, v1,w1, ε

))

+
(

∂x̂

∂v0

((
y0, v0)(0, τ, x0, y1, v1,w1, ε

)
, ε

) − ∂x̂

∂v0

(
0, v0(0, τ,0,0, v1,w1, ε

)
, ε

))

×
(

∂v0

∂τ

(
0, τ,0,0, v1,w1, ε

) ∂τ

∂v1

(
v1,w1, ε

) + ∂v0

∂v1

(
0, τ,0,0, v1,w1, ε

))
. (6.34)

We consider (6.34) to be the sum of three terms. The first summand,
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∂x̂

∂v0

((
y0, v0)(0, τ, x0, y1, v1,w1, ε

)
, ε

)

×
(

∂v0

∂τ

(
0, τ, x0, y1, v1,w1, ε

) − ∂v0

∂τ

(
0, τ,0,0, v1,w1, ε

)) ∂τ

∂v1

(
v1,w1, ε

)
, (6.35)

is itself a product of three terms.
The first is bounded; the second, by Deng’s lemma (Theorem 2.2 of [11]), is of order

e−(μ0−β)τ ; the third is of order eβτ . Thus the product is of order e−(μ0−2β)τ . Moreover, for
2 � i � r , if one differentiates this product i − 1 more times with respect to some combination
of the variables, the result is a sum of products; each product is a j th derivative of the first term
times a kth derivative of the second times an lth derivative of the third, with j + k + l = i − 1.
These derivatives are respectively of order ejβτ , e−(μ−(2k+1)β)τ , and e(l+1)βτ ; hence each prod-
uct is of order e−(μ−(j+2k+l+2)β)τ . Since j + 2k + l + 2 = (j + k + l + 1) + (k + 1) � 2i, each
product is of order e−(μ−2iβ)τ .

The second summand in (6.34),

∂x̂

∂v0

((
y0, v0)(0, τ, x0, y1, v1,w1, ε

)
, ε

)

×
(

∂v0

∂v1

(
0, τ, x0, y1, v1,w1, ε

) − ∂v0

∂v1

(
0, τ,0,0, v1,w1, ε

))
,

can be treated similarly.
The third summand in (6.34),

(
∂x̂

∂v0

((
y0, v0)(0, τ, x0, y1, v1,w1, ε

)
, ε

) − ∂x̂

∂v0

(
0, v0(0, τ,0,0, v1,w1, ε

)
, ε

))

×
(

∂v0

∂τ

(
0, τ,0,0, v1,w1, ε

) ∂τ

∂v1

(
v1,w1, ε

) + ∂v0

∂v1

(
0, τ,0,0, v1,w1, ε

))
,

is a product of two terms. The first is at most a bound on the second partial derivatives of x̂ times

∥∥(
y0, v0)(0, τ, x0, y1, v1,w1, ε

) − (
0, v0(0, τ,0,0, v1,w1, ε

))∥∥,

which by Deng’s lemma is of order e−μ0τ . Using Lemma 6.3, we see that the second is of
order eβτ . Thus the product is of order e−(μ0−β)τ .

For 2 � i � r , if one differentiates this product i − 1 more times with respect to some combi-
nation of the variables, the result is a sum of products; each product is a j th derivative of the first
term times a kth derivative of the second, with j + k = i − 1. Any kth derivative of the second
term, 2 � k � r − 1, with respect to some combination of the variables, it is of order e(k+1)βτ .
As to j th derivatives of the first term,

∂x̂

∂v0

((
y0, v0)(0, τ, x0, y1, v1,w1, ε

)
, ε

) − ∂x̂

∂v0

(
0, v0(0, τ,0,0, v1,w1, ε

)
, ε

)
,
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one must essentially repeat the study performed thus far on derivatives of (6.32). One thus sets
up an induction that yields the result. Note that, just as our estimate on the size of this term used
a bound on the second partial derivative of x̂, a bound on

∂l x̂

∂(v0)l

((
y0, v0)(0, τ, x0, y1, v1,w1, ε

)
, ε

) − ∂l x̂

∂(v0)l

(
0, v0(0, τ,0,0, v1,w1, ε

)
, ε

)

will use a bound on the (l + 1)st partial derivative of x̂. Since x̂ is Cr+1, we have such bounds
through r th partial derivative of x̂.

This completes the argument for partial derivatives of (6.32) where we differentiate at least
once with respect to v1 (since the argument began by differentiating (6.32) with respect to v1).
Other partial derivatives of (6.32), and partial derivatives of the other entries of the matrix, are
treated similarly. �

Step 6. Note that if a linear operator A is invertible and ‖C −A‖ � 1
‖A−1‖ , then C is invertible,

and

∥∥C−1 − A−1
∥∥ � ‖A−1‖2‖C − A‖

1 − ‖A−1‖‖C − A‖ . (6.36)

From (6.26) and our estimate for δ,

∥∥D(τ̄,x̄0,w1)G
((

τ̄ , x̄0,w1), (v1, ε
)
, y1) − D(τ̄,x̄0,w1)G

(
(0,0,0),

(
v1, ε

)
,0

)∥∥
� Ke− K1

εa
(μ0−2β1) + Ke

2K1
εa

β1Ke− K1
εa

(μ0−β1) � 2K2e− K1
εa

(μ0−3β1). (6.37)

Since μ0 −4β1 > 0, K1(μ0 −3β1) > K1β1 > K2β. Then from (6.37) and (6.24), for small ε > 0,

∥∥D(τ̄,x̄0,w1)G
((

τ̄ , x̄0,w1), (v1, ε
)
, y1) − D(τ̄,x̄0,w1)G

(
(0,0,0),

(
v1, ε

)
,0

)∥∥
� 1

K
e− K2β

εa � 1

‖D(τ̄,x̄0,w1)G((0,0,0), (v1, ε),0)−1‖ .

Then from (6.36), (6.24), (6.37), and μ0 − 6β1 > 0,

∥∥D(τ̄,x̄0,w1)G
((

τ̄ , x̄0,w1), (v1, ε
)
, y1)−1 − D(τ̄,x̄0,w1)G

(
(0,0,0),

(
v1, ε

)
,0

)−1∥∥
� 2 · K2e

2K2β

εa · 2K2e− K1
εa

(μ0−3β1) � 4K4e− K1
εa

(μ0−5β1) � 2K4e
K1
εa

β1 .

The conclusion follows.
Step 7. Let X = (τ̄ , x̄0,w1), Y = ((v1, ε), y1), and let the solution of G(X,Y ) = 0 be

X = g(Y ). Differentiating G(X,Y ) = 0 yields

GX

(
g(Y ),Y

)
gY + GY

(
g(Y ),Y

) = 0, (6.38)

so

gY = −GX

(
g(Y ),Y

)−1
GY

(
g(Y ),Y

)
.
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Therefore

‖gY ‖ �
∥∥GX

(
g(Y ),Y

)−1∥∥∥∥GY

(
g(Y ),Y

)∥∥ � Ke
K2β

εa · Ke− K1
εa

(μ0−3β1) � K2e− K1
εa

(μ0−4β1).

Differentiating (6.38) yields

GXgyy + GXXg2
Y + 2GXY gY + GYY = 0,

so

gyy = −G−1
X

(
GXXg2

Y + 2GXY gY + GYY

)
.

For small ε > 0, the term in parentheses of largest norm is GYY , so

‖gyy‖ � 3
∥∥G−1

X

∥∥‖GYY ‖ � Ke
K2β

εa · 3Ke− K1
εa

(μ0−4β1) � 3K2e− K1
εa

(μ0−5β1).

The general result follows by induction.
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