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Abstract

Deng’s lemma gives estimates on the behavior of solutions of ordinary differential equations in the neigh-
borhood of a partially hyperbolic equilibrium. We prove a generalization in which “partially hyperbolic
equilibrium” is replaced by “normally hyperbolic invariant manifold.”
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1. Introduction

Boundary value problems for ordinary differential equations are ubiquitous in applied mathe-
matics. Consider one of the form

ξ̇ = F(ξ, ε), ξ(t−) ∈ A−(ε), ξ(t+) ∈ A+(ε), (1.1)

in which ξ ∈ R
n; ε � 0 is a small parameter; A−(ε) and A+(ε) are manifolds; t− and t+ may be

specified functions of ε or may be left unspecified, in which case we simply want a solution that
goes from A−(ε) to A+(ε). See Fig. 1. For example, if A−(ε) is part of the unstable manifold
of an equilibrium ξ−(ε), and A+(ε) is part of the stable manifold of an equilibrium ξ+(ε), then
a solution of (1.1), when extended to the time interval −∞ < t < ∞, is a heteroclinic solution
from ξ−(ε) to ξ+(ε). Such a solution may be of interest because it represents a traveling wave of
a related partial differential equation.
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Fig. 1. A boundary value problem and its solution.

Fig. 2. Unperturbed and perturbed flows.

To show the existence of a solution of (1.1) with ε > 0, one often uses a perturbation argu-
ment from ε = 0 to show that the manifold of solutions that start on A−(ε) and the manifold of
solutions that end on A+(ε) meet transversally. See Fig. 1.

Frequently, the problem (1.1) with ε = 0 is degenerate in some way, and is only of interest
insofar as it helps to solve (1.1) with ε > 0. Such problems are typically referred to a singularly
perturbed. The geometric approach to such problems, which focuses on tracking manifolds of
potential solutions rather than on asymptotic expansions of solutions, is called geometric singular
perturbation theory [7,8].

Suppose, for example, that (1.1) with ε = 0 has an m-dimensional manifold of normally hy-
perbolic equilibria E0, and that, after following A−(0) forward, we have a manifold M0 that is
transverse to the stable manifold of E0. If we follow M0 forward it becomes a manifold M∗

0 as
pictured in Fig. 2. For small ε > 0, following A−(ε) forward leads to a manifold Mε near M0
that is transverse to the stable manifold of Eε , the perturbed normally hyperbolic invariant man-
ifold near E0. Since Eε typically does not consist of equilibria, in forward time Mε becomes a
manifold M∗

ε as pictured in Fig. 2. M∗
ε is far from M∗

0 .
The differential equation on the normally hyperbolic invariant manifold Eε locally reduces

to ċ = εG(c, ε), c ∈ R
n. The flow of c′ = G(c,0), the limiting rescaled differential equation, is

called the slow flow. The most common situation is rectifiable slow flow: on the region of interest,
c′ = G(c,0) can be put in the form c′

1 = 1, c′
2 = · · · = c′

m = 0. In this case, the Exchange Lemma
[9–11,24] asserts that M∗

ε is close to part of the unstable manifold of Eε , which is in turn close
to part of the unstable manifold of E0. Thus transversality to the stable manifold of E0 has been
“exchanged” for closeness to part of the unstable manifold of E0. This information can then be
used to follow A−(ε) forward farther and thus to solve the boundary value problem.

At present, much work in geometric singular perturbation theory deals with manifolds of equi-
libria E0 that fail to be normally hyperbolic at some points. If there are no normally hyperbolic
directions at such points, the flow near E0 for small ε can often be understood using the “blowing
up” construction [4,5,13,17,21,23].
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If there are normally hyperbolic directions, a recipe for analyzing the flow near E0 for small
ε is as follows. One imbeds E0 in a larger manifold K0 that contains the directions along which
normal hyperbolicity is lost. K0 is itself normally hyperbolic, and hence perturbs to nearby nor-
mally hyperbolic manifolds Kε . The flow on Kε can by analyzed by blowing up. One then
needs a generalization of the Exchange Lemma to relate this flow to the flow on a neighbor-
hood of Kε . Since K0 is not a manifold of equilibria, the Exchange Lemma just described does
not apply.

One type of loss of normal hyperbolicity is the turning point: a manifold of equilibria E0 is
known to perturb to a family of invariant manifolds Eε , but normal hyperbolicity is lost along
a codimension-one submanifold of E0. At a loss-of-stability turning point, a real eigenvalue
changes from negative to positive as one crosses the codimension-one submanifold in the direc-
tion of the slow flow. Exchange lemmas for loss-of-stability turning points have been proved by
Weishi Liu [16].

My motivation to work in this area comes from gain-of-stability turning points: a real eigen-
value changes from positive to negative as one crosses the codimension-one submanifold in the
direction of the slow flow. Gain-of-stability turning points occur when one looks for a self-similar
solution of the Dafermos regularization of a system of conservation laws near a Riemann solu-
tion of the underlying system of conservation laws that includes a rarefaction wave [21]. For
information about the Dafermos regularization, its possible relevance to the long-time behavior
of solutions of viscous conservation laws, its self-similar solutions, and their stability, see [2,25]
and [15].

It turned out that instead of proving an exchange lemma for gain-of-stability turning points,
one can state and prove a General Exchange Lemma that encompasses all these situations (nor-
mally hyperbolic invariant manifold with rectifiable slow flow, loss-of-stability turning points,
gain-of-stability turning point) and perhaps others. This General Exchange Lemma and its ap-
plication to self-similar solutions of the Dafermos regularization are the subject of the present
series of papers.

In the literature, there are three ways to prove exchange lemmas: (1) Jones and Kopell’s ap-
proach [10,11,16], which is to follow the tangent space to Mε forward using the extension of
the linearized differential equation to differential forms; (2) Brunovský’s approach [1,18,19],
which is to locate M∗

ε by solving a boundary value problem in Silnikov variables; and (3) Krupa,
Sandstede, and Szmolyan’s approach [12], which uses Lin’s method [14].

We follow Brunovský’s approach, which is in turn based on work of Deng [3]. Brunovský
generalized a lemma of Deng that gives estimates on solutions of boundary value problems in
Silnikov variables.

In Deng’s work, the boundary data lie near an equilibrium that may be nonhyperbolic. In
Brunovský’s work, the boundary data lie near a solution of a rectifiable slow flow on a normally
hyperbolic invariant manifold. Our work requires us to consider more general flows on normally
hyperbolic invariant manifolds.

The present paper is devoted to the required generalization of Deng’s lemma, which we state
in Section 2 and prove in Section 3.

In the second paper in this series [20], we state and prove the General Exchange Lemma, and
explain how it easily implies versions of existing exchange lemmas for rectifiable slow flows and
loss-of-stability turning points. In the third paper [22], which is joint work with Peter Szmolyan,
we use the General Exchange Lemma to prove an exchange lemma for gain-of-stability turning
points and to study self-similar solutions of the Dafermos regularization.
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2. Generalized Deng’s lemma

On R
n we use coordinates ξ = (x, y, c), with x ∈ R

k , y ∈ R
l , c ∈ R

m, k + l + m = n. Let
V be an open subset of R

m. We consider a Cr+1, r � 1, differential equation ξ̇ = F(ξ) on a
neighborhood of {0} × {0} × V in R

n of the following form:

ẋ = Ã(x, y, c)x, (2.1)

ẏ = B̃(x, y, c)y, (2.2)

ċ = C̃(c) + Ẽ(x, y, c)xy. (2.3)

Thus we assume Ãx, B̃y, C̃, and Ẽxy are Cr+1. Let φ(t, c) be the flow of ċ = C̃(c). For each
c ∈ V there is a maximal interval Ic containing 0 such that φ(t, c) ∈ V for all t ∈ Ic. Let the
linearized solution operator of (2.1)–(2.3) along the solution (0,0, φ(t, c0)) be

⎛
⎝ x̄(t)

ȳ(t)

c̄(t)

⎞
⎠ =

⎛
⎝Φs(t, s, c0) 0 0

0 Φu(t, s, c0) 0

0 0 Φc(t, s, c0)

⎞
⎠

⎛
⎝ x̄(s)

ȳ(s)

c̄(s)

⎞
⎠ . (2.4)

We assume:

(E1) There are numbers λ0 < 0 < μ0, β > 0, and M > 0 such that for all c0 ∈ V and s, t ∈ Ic0 ,

∥∥Φs
(
t, s, c0)∥∥ � Meλ0(t−s) if t � s, (2.5)∥∥Φu

(
t, s, c0)∥∥ � Meμ0(t−s) if t � s, (2.6)∥∥Φc

(
t, s, c0)∥∥ � Meβ|t−s| for all t, s. (2.7)

In addition, we assume one of the following:

(D1) λ0 + rβ < 0 < λ0 + μ0 − rβ .
(D2) λ0 + μ0 + rβ < 0 < μ0 − rβ .

We wish to study solutions of Silnikov’s boundary value problem, which is (2.1)–(2.3) on an
interval 0 � t � τ , together with one of the following sets of boundary conditions:

x(0) = x0, y(τ ) = y1, c(0) = c0 (2.8)

or

x(0) = x0, y(τ ) = y1, c(τ ) = c1. (2.9)

We denote the solution of (2.1)–(2.3) with boundary conditions (2.8) by (x, y, c)(t, τ, x0, y1, c0),
and the solution of (2.1)–(2.3) with boundary conditions (2.9) by (x, y, c)(t, τ, x0, y1, c1).
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We shall use the following notation. Let f : R
p → R

q be a function, and let i = i1, . . . , i|i| be
a sequence of |i| integers between 1 and p. Then

Dif = ∂ |i|f
∂ui1 · · · ∂ui|i|

.

We shall allow |i| = 0; in this case i is the empty sequence, and Dif = f . Since the ordering
of the sequence is irrelevant when Dif is continuous, which will always be the case, we will
reorder i whenever it is convenient.

Theorem 2.1 (Deng’s lemma for Silnikov’s first boundary value problem). Let V0 and V1 be
compact subsets of V such that V0 ⊂ Int(V1). For each c0 ∈ V0 let Jc0 be the maximal interval
such that φ(t, c0) ∈ Int(V1) for all t ∈ Jc0 . Choose numbers λ and μ such that λ0 < λ < 0 <

μ < μ0, and (E1) and (D1) hold with (λ,μ) replacing (λ0,μ0). Then there is a number δ0 > 0
such that if ‖x0‖ � δ0, ‖y1‖ � δ0, c0 ∈ V0, and τ > 0 is in Jc0 , then Silnikov’s first boundary
value problem (2.8) has a solution (x, y, c)(t, τ, x0, y1, c0) on the interval 0 � t � τ . Moreover,
there is a number K > 0 such that for all (t, τ, x0, y1, c0) as above,

∥∥x
(
t, τ, x0, y1, c0)∥∥ � Keλt , (2.10)∥∥y

(
t, τ, x0, y1, c0)∥∥ � Keμ(t−τ), (2.11)∥∥c

(
t, τ, x0, y1, c0) − φ

(
t, c0)∥∥ � Keλt+μ(t−τ). (2.12)

In addition, if i is any |i|-tuple of integers between 1 and 2 + n, with 1 � |i| � r , then

∥∥Dix
(
t, τ, x0, y1, c0)∥∥ � Ke(λ+|i|β)t , (2.13)∥∥Diy

(
t, τ, x0, y1, c0)∥∥ � Ke(μ−|i|β)(t−τ), (2.14)∥∥Dic

(
t, τ, x0, y1, c0) − Diφ

(
t, c0)∥∥ � Ke(λ+|i|β)t+(μ−|i|β)(t−τ). (2.15)

In (2.12) and (2.15), note that

φ
(
t, c0) = c

(
t, τ,0,0, c0) = c

(
t, τ, x0,0, c0) = c

(
t, τ,0, y1, c0).

Cases of this result were proved by Deng [3] and Brunovský [1].

Theorem 2.2 (Deng’s lemma for Silnikov’s second boundary value problem). Let V0 and V1 be
compact subsets of V such that V0 ⊂ Int(V1). For each c1 ∈ V0 let Jc1 be the maximal interval
such that φ(t, c1) ∈ Int(V1) for all t ∈ Jc1 . Choose numbers λ and μ such that λ0 < λ < 0 <

μ < μ0, and (E1) and (D2) hold with (λ,μ) replacing (λ0,μ0). Then there is a number δ0 > 0
such that if ‖x0‖ � δ0, ‖y1‖ � δ0, c1 ∈ V0, and −τ < 0 is in Jc1 , then Silnikov’s second boundary
value problem (2.9) has a solution (x, y, c)(t, τ, x0, y1, c1) on the interval 0 � t � τ . Moreover,
there is a number K > 0 such that for all (t, τ, x0, y1, c1) as above,

∥∥x
(
t, τ, x0, y1, c1)∥∥ � Keλt , (2.16)∥∥y

(
t, τ, x0, y1, c1)∥∥ � Keμ(t−τ), (2.17)∥∥c

(
t, τ, x0, y1, c1) − φ

(
t − τ, c1)∥∥ � Keλt+μ(t−τ). (2.18)
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In addition, if i is any |i|-tuple of integers between 1 and 2 + n, with 1 � |i| � r , then

∥∥Dix
(
t, τ, x0, y1, c1)∥∥ � Ke(λ+|i|β)t , (2.19)∥∥Diy

(
t, τ, x0, y1, c1)∥∥ � Ke(μ−|i|β)(t−τ), (2.20)∥∥Dic

(
t, τ, x0, y1, c1) − Diφ

(
t − τ, c1)∥∥ � Ke(λ+|i|β)t+(μ−|i|β)(t−τ). (2.21)

In (2.18) and (2.21), note that

φ
(
t − τ, c1) = c

(
t, τ,0,0, c1) = c

(
t, τ, x0,0, c1) = c

(
t, τ,0, y1, c1).

Remark 2.3 (Normally hyperbolic invariant manifolds). Suppose M is a Cs normally hyperbolic
compact invariant manifold of dimension m for the Cs differential equation ζ̇ = G(ζ) on R

n.
This means:

(N1) There is a splitting of the tangent bundle to Rn along M into subbundles of dimension k, l,
and m, k + l +m = n, with the last being the tangent bundle of M : TMR

n = S +U +T M .
(N2) This splitting is invariant under the linearized solution operator along M .
(N3) Let ψ(t, ζ ) be the flow of ζ̇ = G(ζ), and let Ψ (t, s, ζ ) be the linearized solution operator

along ψ(t, ζ ): Ψ (t, s, ζ ) = Dψ(t, ζ ) ◦ Dψ(−s,ψ(s, ζ )). Then for each ζ 0 ∈ M , there are
numbers λ0 < 0 < μ0, 0 < β < min(|λ0|,μ0), and M > 0, all depending on ζ 0, such that

∥∥Ψ
(
t, s, ζ 0)v̄(s)

∥∥ � Meλ0(t−s)
∥∥v̄(s)

∥∥ if v̄(s) ∈ Sψ
(
s,ζ 0) and t � s, (2.22)∥∥Ψ

(
t, s, ζ 0)v̄(s)

∥∥ � Meμ0(t−s)
∥∥v̄(s)

∥∥ if v̄(s) ∈ Uψ
(
s,ζ 0) and t � s, (2.23)∥∥Ψ

(
t, s, ζ 0)v̄(s)

∥∥ � Meβ|t−s|∥∥v̄(s)
∥∥ if v̄(s) ∈ Tψ

(
s,ζ 0)M, for all t, s. (2.24)

(N4) supM λ0 < 0 < infM μ0.

Suppose in addition that there is r ′ � s such that at each point of M ,

λ0 + r ′β < 0 < μ0 − r ′β. (2.25)

Then M is covered by open sets U in R
n on each of which there are Cr ′−1 coordinates ξ = ξ(ζ )

in which ζ̇ = G(ζ) has the form (2.1)–(2.3); {0} × {0} × V corresponds to U ∩ M [6]. In the
new coordinates, the differential equation is Cr ′−2. However, (λ0,μ0, β) cannot necessarily be
chosen independent of c0.

Our statement and proof of Theorems 2.1 and 2.2 require uniform, not pointwise, assumptions.
In addition, we require (D2) or (D3) rather than an inequality like (2.25). Thus our assumptions
are a little stronger than normal hyperbolicity.

Remark 2.4. Notice that all components of c must be given at t = 0, or all components of c must
be given at t = τ . This is true in Deng’s and Brunovský’s work as well. Thus the proof of the
Corner Lemma in [18] is wrong and must be reworked.
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3. Proof of the generalized Deng’s lemma

3.1. Introduction

We shall prove Theorem 2.1 only.
Let c = φ(t, c0) + z. The system (2.1)–(2.3) becomes

ẋ = A
(
t, c0)x + f

(
t, c0, x, y, z

)
, (3.1)

ẏ = B
(
t, c0)y + g

(
t, c0, x, y, z

)
, (3.2)

ż = C
(
t, c0)z + θ

(
t, c0, z

) + h
(
t, c0, x, y, z

)
, (3.3)

with

A(t, c0) = Ã
(
0,0, φ

(
t, c0)),

f
(
t, c0, x, y, z

) = (
Ã

(
x, y,φ

(
t, c0) + z

) − Ã
(
0,0, φ

(
t, c0)))x,

B(t, c0) = B̃
(
0,0, φ

(
t, c0)),

g
(
t, c0, x, y, z

) = (
B̃

(
x, y,φ

(
t, c0) + z

) − B̃
(
0,0, φ

(
t, c0)))y,

C(t, c0) = DC̃
(
φ
(
t, c0)),

θ
(
t, c0, z

) = C̃
(
φ
(
t, c0) + z

) − C̃
(
φ
(
t, c0)) − DC̃

(
φ
(
t, c0))z,

h
(
t, c0, x, y, z

) = Ẽ
(
x, y,φ

(
t, c0) + z

)
xy.

The first six of these functions are Cr ; the last is Cr+1. To see that the last is Cr+1, let
E(x,y, z) = Ẽ(x, y, z)xy. Then E is Cr+1, and

h
(
t, c0, x, y, z

) = E
(
x, y,φ

(
t, c0) + z

)
. (3.4)

The solution operator of the linear equation

(ẋ, ẏ, ż) = diag
(
A(t, c0),B(t, c0),C(t, c0)

)
(x, y, z)

is

(
x̄(t), ȳ(t), z̄(t)

) = diag
(
Φs

(
t, s, c0),Φu

(
t, s, c0),Φc

(
t, s, c0))(x̄(s), ȳ(s), z̄(s)

)
.

Then (x(t), y(t), c(t)) is a solution of Silnikov’s problem (2.1)–(2.3), (2.8), if and only if c(t) =
φ(t, c0) + z(t) and η(t) = (x(t), y(t), z(t)) satisfy

x(t) = Φs
(
t,0, c0)x0 +

t∫
0

Φs
(
t, s, c0)f (

s, c0, η(s)
)
ds, (3.5)
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y(t) = Φu
(
t, τ, c0)y1 +

t∫
τ

Φu
(
t, s, c0)g(

s, c0, η(s)
)
ds, (3.6)

z(t) =
t∫

0

Φc
(
t, s, c0)(θ(

s, c0, z(s)
) + h

(
s, c0, η(s)

))
ds. (3.7)

For a fixed τ > 0, let X be the set of continuous functions η : [0, τ ] → R
n, η(t) =

(x(t), y(t), z(t)). On X we will use several different norms: for j = 0, . . . , r ,

‖η‖j = sup
0�t�τ

(
e−(λ+jβ)t

∥∥x(t)
∥∥, e−(μ−jβ)(t−τ)

∥∥y(t)
∥∥, e−(λ+jβ)t−(μ−jβ)(t−τ)

∥∥z(t)
∥∥)

.

Let N0 and N1 be positive constants defined below, and let

σ = min
(
β,λ − λ0,μ0 − μ, |λ + β|,μ − β,λ + μ − β

)
> 0,

δ0 = min

(
1,

σ

4M2 max(N0,4N1)

)
> 0,

Σ = {
η ∈X : ‖η‖0 � 2Mδ0

}
.

Given (τ, x0, y1, c0), define T : Σ →X by the right-hand side of (3.5)–(3.7).

Proposition 3.1. If ‖x0‖ � δ0, ‖y1‖ � δ0, c0 ∈ V0, and τ > 0 is in Jc0 , then T is a contraction of
Σ in the norm ‖ ‖0 with contraction constant at most 1

2 .

To prove Theorem 2.1, we shall first derive, in Section 3.2, some useful estimates. Then, in
Section 3.3, we shall prove Proposition 3.1. We shall also show that for η ∈ Σ , DT (η) has norm
at most 1

2 in each norm ‖ · ‖j , j = 0, . . . , r . Finally, in Section 3.4, we study partial derivatives
of the fixed point η(t) of T with respect to t and the parameters (τ, x0, y1, c0). Each is a fixed
point of a nonhomogeneous linear equation. The solution can be estimated using the results of
Section 3.2 and the estimate of the norm of DT (η).

Actually, the framework we have presented does not allow study of partial derivatives with
respect to τ , since τ is used in the definition of the space X and therefore cannot be treated as
a parameter. To get around this difficulty, one can, for example, use a larger τ ′ in the definition
of X , and treat the value τ at which boundary conditions are posed as a parameter; the solution is
then defined on 0 � t � τ ′. As is common in studies of this sort, we shall ignore this technicality
in the rest of the paper.

3.2. Estimates

Proposition 3.2. There are constants Kj , j = 1, . . . , r + 1, such that if i is a j -tuple of integers
between 1 and 1 + m, c0 ∈ V0, and t ∈ Jc0 , then

∥∥Diφ
(
t, c0)∥∥ � Kje

jβ|t |.
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Proof. We shall give the proof for t � 0. We have Dtφ(t, c0) = C̃(φ(t, c0)). Therefore, if i is an
integer between 1 and 1 + m,

DtDiφ
(
t, c0) = DC̃

(
φ
(
t, c0))Diφ

(
t, c0).

The solution of this differential equation is

Diφ
(
t, c0) = Φc

(
t,0, c0)Diφ

(
0, c0),

where Diφ(0, c0) is the ith column of the m × (1 + m) matrix

(
C̃

(
c0) I

)
.

Therefore,

∥∥Diφ
(
t, c0)∥∥ � Meβt max

(‖C̃‖0,1
)
.

Thus the proposition is true for j = 1.
Assume 2 � p � r + 1 and the proposition is true for j = 1, . . . , p − 1. Let i be a p-tuple of

integers between 1 and 1 + m. We have

DtDiφ
(
t, c0) = DC̃

(
φ
(
t, c0))Diφ

(
t, c0) + Γi

(
t, c0), (3.8)

Γi
(
t, c0) =

∑
aj i1...ij D

j C̃
(
φ
(
t, c0))Di1φ

(
t, c0) · · ·Dij φ

(
t, c0) (3.9)

for certain constants aj i1...ij ; j = 2, . . . , p; |i1|, . . . , |ij | are each between 1 and p−1; and i1 . . . ij

is a permutation of i, so |i1| + · · · + |ij | = p. The solution of the differential equation (3.8) is

Diφ
(
t, c0) = Φc

(
t,0, c0)Diφ

(
0, c0) +

t∫
0

Φ
(
t, s, c0)Γi

(
s, c0)ds.

Therefore

∥∥Diφ
(
t, c0)∥∥ � Meβt

∥∥Diφ
(
0, c0)∥∥ +

t∫
0

Meβ(t−s)
∥∥Γi

(
s, c0)∥∥ds. (3.10)

By the inductive hypothesis,

∥∥Di1φ
(
t, c0)∥∥ · · ·∥∥Dij φ

(
t, c0)∥∥ � K|i1|e|i1|βt · · ·K|ij |e|ij |βt = K|i1| · · ·K|ij |epβt . (3.11)

From (3.11) and (3.9), we see that ‖Γi(s, c
0)‖ in (3.10) is bounded by a constant times epβs .

Therefore the integral in (3.10) is bounded by a constant times epβt . If the sequence i contains
no 1’s, then Diφ(0, c0) = 0. Otherwise Diφ(0, c0) can be calculated from an equation like (3.8)
and is bounded by a constant times e(p−1)βt . The result follows. �
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Proposition 3.3. There are constants Mj , j = 1, . . . , r , such that if i is a j -tuple of integers
between 1 and 2 + m, c0 ∈ V0, and t, s ∈ Jc0 ,

∥∥DiΦ
s
(
t, s, c0)∥∥ � Mje

λ0(t−s)+jβt for t � s, (3.12)∥∥DiΦ
u
(
t, s, c0)∥∥ � Mje

μ0(t−s)+jβt for t � s, (3.13)∥∥DiΦ
c
(
t, s, c0)∥∥ � Mje

β(t−s)+jβt for t � s. (3.14)

Proof. We will prove only (3.12). Let k be a k-tuple of integers between 1 and 1 + m, with
1 � k � r . We have

DkA
(
t, c0) = DkÃ

(
0,0, φ

(
t, c0))

=
∑

ajk1...kj D
j
c Ã

(
0,0, φ

(
t, c0))Dk1φ

(
t, c0) · · ·Dkj φ

(
t, c0)

for certain constants ajk1...kj ; j = 1, . . . , k; |k1|, . . . , |kj | are each between 1 and k; and k1 . . .kj

is a permutation of k, so |k1| + · · · + |kj | = k. Then Proposition 3.2 implies that there are con-
stants L1, . . . ,Lr such that for k = 1, . . . , r ,

∥∥DkA
(
t, c0)∥∥ � Lke

kβt . (3.15)

Let i be an integer between 1 and 2 + m. We have DtΦ
s(t, s, c0) = A(t, c0)Φs(t, s, c0).

Therefore

DtDiΦ
s
(
t, s, c0) = A

(
t, c0)DiΦ

s
(
t, s, c0) + DiA

(
t, c0)Φs

(
t, s, c0).

The solution is

DiΦ
s
(
t, s, c0) = Φs

(
t, s, c0)DiΦ

s
(
s, s, c0) +

t∫
s

Φs
(
t, r, c0)DiA

(
r, c0)Φs

(
r, s, c0)dr.

Therefore

∥∥DiΦ
s
(
t, s, c0)∥∥ � Meλ0(t−s)

∥∥DiΦ
s
(
s, s, c0)∥∥ +

t∫
s

Meλ0(t−r)L1e
βrMeλ0(r−s) dr,

where DiΦ
s(s, s, c0) is the ith column of the m × (2 + m) matrix

(
C̃

(
c0) −C̃

(
c0) I

)
.

Thus (3.12) is true for j = 1.
Assume 2 � p � r and the proposition is true for j = 1, . . . , p − 1. Let i be a p-tuple of

integers between 1 and 2 + m. We have
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DtDiΦ
s
(
t, s, c0) = A

(
t, c0)DiΦ

s
(
t, s, c0) + Γi

(
t, s, c0), (3.16)

Γi
(
t, s, c0) =

∑
aklDkA

(
t, c0)DlΦ

s
(
t, s, c0) (3.17)

for certain constants akl; |k| � 0, |l| � 1, kl is a permutation of i. The solution is

DiΦ
s
(
t, s, c0) = Φs

(
t, s, c0)DiΦ

s
(
s, s, c0) +

t∫
s

Φs
(
t, r, c0)Γi

(
r, s, c0)dr.

Therefore

∥∥DiΦ
s
(
t, s, c0)∥∥ � Meλ0(t−s)

∥∥DiΦ
s
(
s, s, c0)∥∥ +

t∫
s

Meλ0(t−r)
∥∥Γi

(
r, s, c0)∥∥ds. (3.18)

From (3.15) and the inductive hypothesis,

∥∥DkA
(
r, c0)DlΦ

s
(
r, s, c0)∥∥ � L|k|e|k|βrM|l|eλ0(r−s)+|l|βr = L|k|M|l|eλ0(r−s)+pβr . (3.19)

From (3.19) and (3.17), we see that ‖Γi(r, s, c
0)‖ in (3.18) is bounded by a constant times

eλ0(r−s)+pβr . Therefore the integral in (3.18) is bounded by a constant times eλ0(t−s)+pβt . If
the sequence i contains no 1’s or 2’s, then DiΦ

s(s, s, c0) = 0. Otherwise DiΦ
s(s, s, c0) can be

calculated from an equation like (3.16) and is bounded by a constant times e(p−1)βt . The result
follows. �
Proposition 3.4. There is a constant N0 such that for all c0 ∈ V0, t ∈ Jc0 , and η in a bounded
set:

(1) ‖f (t, c0, η)‖ � N0‖η‖‖x‖.
(2) ‖g(t, c0, η)‖ � N0‖η‖‖y‖.
(3) ‖θ(t, c0, z)‖ � N0‖z‖2.
(4) ‖h(t, c0, η)‖ � N0‖x‖‖y‖.

Proposition 3.5. There is a constant N1 such that the following is true. Let i be an integer
between 1 and 1 + m + n, let c0 ∈ V0, let t ∈ Jc0 , and let η belong to a bounded set. Then:

(1) If i � 1 + m, then ‖Dif (t, c0, η)‖ � N1‖x‖eβt . If 2 + m � i � 1 + m + k, then
‖Dif (t, c0, η)‖ � N1‖η‖. For other i, ‖Dif (t, c0, η)‖ � N1‖x‖.

(2) If i � 1 + m, then ‖Dig(t, c0, η)‖ � N1‖y‖eβt . If 2 + m + k � i � 1 + m + k + l, then
‖Dig(t, c0, η)‖ � N1‖η‖. For other i, ‖Dig(t, c0, η)‖ � N1‖y‖.

(3) If i � 1 + m, then ‖Diθ(t, c0, z)‖ � N1‖z‖eβt . If 2 + m + k + l � i � n, then
‖Diθ(t, c0, z)‖ � N1‖z‖. For other i, ‖Diθ(t, c0, z)‖ = 0.

(4) If i � 1 + m, then ‖Dih(t, c0, η)‖ � N1‖x‖‖y‖eβt . If 2 + m � i � 1 + m + k, then
‖Dih(t, c0, η)‖ � N1‖y‖. If 2 + m + k � i � 1 + m + k + l, then ‖Dih(t, c0, η)‖ � N1‖x‖.
Otherwise, ‖Dih(t, c0, η)‖ � N1‖x‖‖y‖.
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Proof. We shall only discuss parts (1) and (4) of both propositions. In the definition of
f (t, c0, η), the expression Ã(x, y,φ(t, c0) + z) − Ã(0,0, φ(t, c0)) is O(η) because Ã is C1;
this justifies (1) in the first proposition. To treat (1) in the second proposition, note that

Dif
(
t, c0, η

) = Di

(
Ã

(
x, y,φ

(
t, c0) + z

) − Ã
(
0,0, φ

(
t, c0)))x

+ (
Ã

(
x, y,φ

(
t, c0) + z

) − Ã
(
0,0, φ

(
t, c0)))Dix.

If i � 1 + m, we see from Proposition 3.2 that the first summand is of order ‖x‖eβt . The second
summand is 0. If 2 +m � i � 1 +m+ k, the first summand is the product of a bounded term and
one of order ‖x‖, and the second is the product of a term of order ‖η‖ and one that is bounded.
Otherwise, the first summand is the product of a bounded term and one of order ‖x‖, and the
second is 0.

To treat (4) in the second proposition, one uses (3.4), noting that E and φ are at least C2, and
E(0, y, z) = E(x,0, z) = 0. �

For an integer j with 2 � j � r , let i be a j -tuple of integers between 1 and 1 + m + n. Write
i = kn, where k is all terms that are between 1 and 1 + m, and n is all terms that are between
2 + m and 1 + m + n. Similar arguments yield:

Proposition 3.6. There are constants Nj , j = 2, . . . , r , such that the following is true. Let i = kn
be any j -tuple of integers between 1 and 1 + m + n, decomposed as above, let c0 ∈ V0, and let
t ∈ Jc0 . Then:

(1) ‖Dif (t, c0, η)‖ � Nj‖x‖αe|k|βt , where α = 1 if no i is between 2 + m and 1 + m + k, and
α = 0 otherwise.

(2) ‖Dig(t, c0, η)‖ � Nj‖y‖γ e|k|βt , where γ = 1 if no i is between 2+m+k and 1+m+k + l,
and γ = 0 otherwise.

(3) ‖Diθ(t, c0, z)‖ � Nj‖z‖αe|k|βt , where α is 1 if no i is between 2 + m + k + l and n, and
α = 0 otherwise.

(4) ‖Dih(t, c0, η)‖ � Nj‖x‖α‖y‖γ e|k|βt , where α = 1 if no i is between 2 + m and 1 + m + k,
and α = 0 otherwise; γ = 1 if no i is between 2 + m + k and 1 + m + k + l, and γ = 0
otherwise.

3.3. Proof that T is a contraction

Let (τ, x0, y1, c0) be as above, let (x, y, z) ∈ Σ , and let (x̂, ŷ, ẑ) = T (x, y, z). From the defi-
nition of T and Proposition 3.4(1), we have, for 0 � t � τ ,

∥∥x̂(t)
∥∥ � Meλ0t

∥∥x0
∥∥ +

t∫
0

Meλ0(t−s)N0
∥∥η(s)

∥∥∥∥x(s)
∥∥ds

� Meλ0t δ0 +
t∫

0

Meλ0(t−s)N0 · 2Mδ0 · 2Mδ0e
λs ds

� Meλtδ0 + 4M3N0δ
2
0eλ0t (λ − λ0)

−1e(λ−λ0)t

= Meλtδ0
(
1 + 4M2N0δ0σ

−1) � 2Mδ0e
λt .
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Therefore

e−λt
∥∥x̂(t)

∥∥ � 2Mδ0. (3.20)

Similarly,

e−μ(t−τ)
∥∥ŷ(t)

∥∥ � 2Mδ0. (3.21)

Finally, using Proposition 3.5(3) and (4),

∥∥ẑ(t)
∥∥ �

t∫
0

Meβ(t−s)
(
N0

∥∥z(s)
∥∥2 + N0

∥∥x(s)
∥∥∥∥y(s)

∥∥)
ds

�
t∫

0

Meβ(t−s)N0(2Mδ0)
2(e2λs+2μ(s−τ) + eλs+μ(s−τ)

)
ds

�
t∫

0

8M3N0δ
2
0eβ(t−s)eλs+μ(s−τ) ds

� 8M3N0δ
2
0eβt−μτ (λ + μ − β)−1e(λ+μ−β)t

� 8M3N0δ
2
0σ−1eλt+μ(t−τ) � 2Mδ0e

λt+μ(t−τ).

Therefore

e−λt−μ(t−τ)
∥∥ẑ(t)

∥∥ � 2Mδ0. (3.22)

From (3.20)–(3.22) we see that F maps Σ into itself. F is a contraction by the case j = 0 of
Proposition 3.7 below.

The linearization of T : Σ → X at η = (x, y, z), applied to η̄ = (x̄, ȳ, z̄), is the map
DT (η)η̄ = ˆ̄η given by

ˆ̄x(t) =
t∫

0

Φs
(
t, s, c0)Dηf

(
s, c0, η(s)

)
η̄(s) ds, (3.23)

ˆ̄y(t) =
t∫

τ

Φu
(
t, s, c0)Dηg

(
s, c0, η(s)

)
η̄(s) ds, (3.24)

ˆ̄z(t) =
t∫

0

Φc
(
t, s, c0)(Dzθ

(
s, c0, z(s)

)
z̄(s) + Dηh

(
s, c0, η(s)

)
η̄(s)

)
ds. (3.25)

Proposition 3.7. Let η ∈ Σ and let X have one of the norms ‖ ‖j , j = 0, . . . , r . Then
‖DT (η)‖ � 1

2 .
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Proof. From Proposition 3.5(1),

∥∥ ˆ̄x(t)
∥∥ �

t∫
0

Meλ0(t−s)N1
(∥∥η(s)

∥∥∥∥x̄(s)
∥∥ + ∥∥x(s)

∥∥∥∥ȳ(s)
∥∥ + ∥∥x(s)

∥∥∥∥z̄(s)
∥∥)

ds

�
t∫

0

Meλ0(t−s)N1 · 2Mδ0 · e(λ+jβ)s‖η̄‖j ds

+
t∫

0

Meλ0(t−s)N1 · 2Mδ0
(
eλs + eλs

) · ‖η̄‖j ds

� 2M2N1δ0e
λ0t (λ − λ0 + jβ)−1e(λ−λ0+jβ)t‖η̄‖j

+ 4M2N1δ0e
λ0t (λ − λ0)

−1e(λ−λ0)t‖η̄‖j

� 6M2N1δ0σ
−1eλt‖η̄‖j � 3

8
eλt‖η̄‖j .

Therefore

e−(λ+jβ)t
∥∥ ˆ̄x(t)

∥∥ � 3

8
‖η̄‖j . (3.26)

Similarly,

e−(μ−jβ)(t−τ)
∥∥ ˆ̄y(t)

∥∥ � 3

8
‖η̄‖j . (3.27)

Finally,

∥∥ ˆ̄z(t)∥∥ �
t∫

0

Meβ(t−s)
(
N1

∥∥z(s)
∥∥∥∥z̄(s)

∥∥
+ N1

(∥∥y(s)
∥∥∥∥x̄(s)

∥∥ + ∥∥x(s)
∥∥∥∥ȳ(s)

∥∥ + ∥∥x(s)
∥∥∥∥y(s)

∥∥∥∥z̄(s)
∥∥))‖η̄‖j ds

�
t∫

0

Meβ(t−s)N1 · 2Mδ0
(
eλs+μ(s−τ)e(λ+jβ)s+(μ−jβ)(s−τ) + eμ(s−τ)e(λ+jβ)s

+ eλse(μ−jβ)(s−τ) + eλseμ(s−τ)e(λ+jβ)s+(μ−jβ)(s−τ)
)‖η̄‖j ds

�
t∫

0

8M2N1δ0e
β(t−s)e(λ+jβ)s+(μ−jβ)(s−τ)‖η̄‖j ds

� 8M2N1δ0e
βt−(μ−jβ)τ (λ + μ − β)−1e(λ+μ−β)t‖η̄‖j

� 8M2N1δ0σ
−1eλt+(μ−jβ)(t−τ)‖η̄‖j � 1

2
eλt+(μ−jβ)(t−τ)‖η̄‖j .
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Therefore

e−(λ+jβ)t−(μ−jβ)(t−τ)
∥∥ ˆ̄z(t)∥∥ � 1

2
‖η‖j . (3.28)

The result follows from (3.26)–(3.28). �
3.4. Differentiability

Let i be an |i|-tuple of integers between 1 and 2 + n, with 1 � |i| � r . From (3.5)–(3.7),
Diη(t, τ, x0, y1, c0) satisfies the following system:

Dix
(
t, τ, x0, y1, c0) =

t∫
0

Φs
(
t, s, c0)Dηf

(
s, c0, η

(
t, τ, x0, y1, c0))Diη

(
t, τ, x0, y1, c0)ds

+ Γi1
(
t, τ, x0, y1, c0), (3.29)

Diy
(
t, τ, x0, y1, c0) =

t∫
τ

Φu
(
t, s, c0)Dηg

(
s, c0, η

(
t, τ, x0, y1, c0))Diη

(
t, τ, x0, y1, c0)ds

+ Γi2
(
t, τ, x0, y1, c0), (3.30)

Diz
(
t, τ, x0, y1, c0) =

t∫
0

Φc
(
t, s, c0)(Dzθ

(
s, c0, z

(
t, τ, x0, y1, c0))Diz

(
t, τ, x0, y1, c0)

+ Dηh
(
s, c0, η

(
t, τ, x0, y1, c0))Diη

(
t, τ, x0, y1, c0))ds

+ Γi3
(
t, τ, x0, y1, c0). (3.31)

We have

Γi1
(
t, τ, x0, y1, c0)

= Di
(
Φs

(
t,0, c0)x0) +

t∫
0

∑
ajkl1...l|n|DjΦ

s
(
t, s, c0)Dkf

(
s, c0, η

(
s, τ, x0, y1, c0))

× Dl1ηn1

(
s, τ, x0, y1, c0) · · ·Dl|n|ηn|n|

(
s, τ, x0, y1, c0)ds (3.32)

for certain constants ajkl1...l|n| , where

(C1) j is a |j|-tuple of integers between 1 and 2 + m, none of which is 2;
(C2) k is a |k|-tuple of integers between 2 and 1 + m + n;
(C3) k = mn, where m is all terms that are between 2 and 1 + m, and n is all terms that are

between 2 + m and 1 + m + n;
(C4) n′ = (n1, . . . , n|n|) is n with the numbers decreased by 1 + m, so that they are all between

1 and n;
(C5) l1 . . . l|n| is each a sequence of integers between 2 and 2 + n;
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(C6) |j| + |m| + |l1| + · · · + |l|n|| = |i|;
(C7) |j| + |k| � |i|;
(C8) if j = m = ∅ and |n| = 1, in which case we must have l1 = i, then ajki = 0.

Similarly,

Γi2
(
t, τ, x0, y1, c0)

= Di
(
Φu

(
t, τ, c0)y1) +

t∫
τ

∑
ajkl1...l|n|DjΦ

u
(
t, s, c0)Dkg

(
s, c0, η

(
s, τ, x0, y1, c0))

× Dl1ηn1

(
s, τ, x0, y1, c0) · · ·Dl|n|ηn|n|

(
s, τ, x0, y1, c0)ds (3.33)

and

Γi3
(
t, τ, x0, y1, c0)

=
t∫

0

∑
ajkl1...l|n|DjΦ

c
(
t, s, c0)Dk

(
θ
(
s, c0, z

(
s, τ, x0, y1, c0)) + h

(
s, c0, η

(
s, τ, x0, y1, c0)))

× Dl1ηn1

(
s, τ, x0, y1, c0) · · ·Dl|n|ηn|n|

(
s, τ, x0, y1, c0)ds (3.34)

with similar provisos.
Thus Diη satisfies the linear equation

U = AU + Γi(t), (3.35)

with U = (X,Y,Z),

AU(t) =
( t∫

0

Φs
(
t, s, c0)Dηf

(
s, c0, η

(
t, τ, x0, y1, c0))U(t) ds,

t∫
τ

Φu
(
t, s, c0)Dηg

(
s, c0, η

(
t, τ, x0, y1, c0))U(t) ds,

t∫
0

Φc
(
t, s, c0)(Dzθ

(
s, c0, z

(
t, τ, x0, y1, c0))Z(t)

+ Dηh
(
s, c0, η

(
t, τ, x0, y1, c0))U(t)

)
ds

)

and Γi(t) = (Γi1(t),Γi2(t),Γi3(t)).
To complete the proof of Theorem 2.1, we consider the following statements (Ak), (Bk),

k = 1, . . . , r :



Author's personal copy

408 S. Schecter / J. Differential Equations 245 (2008) 392–410

(Ak) There is a constant Pk such that if ‖x0‖ � δ0, ‖y1‖ � δ0, c0 ∈ V0, τ > 0 is in Jc0 , and
|i| = k then ‖Γi‖k � Pk .

(Bk) Under the same assumptions, ‖Diη‖k � 2Pk .

We first show (A1). We will consider only Γi1(t) given by (3.32), with |i| = 1. From (3.12) it
is easy to see that ‖Di(Φ

s(t,0, c0)x0)‖ is at most a multiple of e(λ0+β)t . To estimate the integral,
we note that there are two types of summands: (1) |j| = 1, m = ∅, and (2) j = ∅, |m| = 1. (The
case j = m = ∅ is ruled out by (C8).)

For a summand of the first type, ‖DjΦ
s(t, s, c0)‖ � M1e

λ0(t−s)+βt by (3.12), and

∥∥f
(
s, c0, η

(
s, τ, x0, y1, c0))∥∥ � N0

∥∥η(s)
∥∥∥∥x(s)

∥∥
by Proposition 3.4. The other terms are not present. Therefore, since δ0 � 1, the integral of one
summand is at most

t∫
0

M1e
λ0(t−s)+βtN0e

λs ds � M1N0e
(λ0+β)t (λ − λ0)

−1e(λ−λ0)t � M1N0σ
−1e(λ+β)t .

The second case is similar. From these estimates, it follows that e−(λ+β)t‖Γi1(t)‖ is bounded.
Next we show that (Ak) implies (Bk). Let X have the norm ‖ ‖k , and regard the right-hand

side of (3.35) as an affine linear map from X to itself. By Proposition 3.7, ‖A‖ � 1
2 . The result

follows.
Finally we prove that for p = 2, . . . , r , (B1), . . . , (Bp−1) together imply (Ap). Then all (Ak)

and (Bk) are true, and Theorem 2.1 is proved.
Assume (B1), . . . , (Bp−1) and let |i| = p. We first estimate ‖Γi1(t)‖ given by (3.32). From

Proposition 3.3 and the assumption that ‖x0‖ � δ0 � 1,∥∥Di
(
Φs

(
t,0, c0)x0)∥∥ � M|i|eλ0(t−s)+|i|t . (3.36)

To estimate the integral in (3.32), we must estimate

t∫
0

∥∥DjΦ
s
(
t, s, c0)∥∥∥∥Dkf

(
s, c0, η

(
s, τ, x0, y1, c0))∥∥

× ∥∥Dl1ηn1

(
s, τ, x0, y1, c0)∥∥ · · ·∥∥Dl|n|ηn|n|

(
s, τ, x0, y1, c0)∥∥ds. (3.37)

From Proposition 3.3, ∥∥DjΦ
s
(
t, s, c0)∥∥ � M|j|eλ0(t−s)+|j|βt . (3.38)

By the induction hypothesis,∥∥Dl1ηn1

(
s, τ, x0, y1, c0)∥∥ � 2P|l1|, . . . ,

∥∥Dl|n|ηn|n|
(
s, τ, x0, y1, c0)∥∥ � 2P|l|n||. (3.39)

If no ni is between 1 and k, then by Proposition 3.6(1),∥∥Dkf
(
s, c0, η

(
s, τ, x0, y1, c0))∥∥ � N|k|

∥∥x(s)
∥∥e|k|βs � N|k|e(λ+|k|β)s . (3.40)
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Let P = 2|n|M|j|N|k|P|l1| · · ·P|l|n||. Then (3.37) is less than or equal to

t∫
0

Peλ0(t−s)+|j|βt e(λ+|k|β)s ds � Pe(λ0+|j|β)t
(
λ + |k|β − λ0

)−1
e(λ+|k|β−λ0)t

� Pσ−1e(λ+(|j|+|k|)β)t � Pσ−1e(λ+pβ)t .

If some ni is between 1 and k, then by Proposition 3.6(1), (3.40) must be replaced by

∥∥Dkf
(
s, c0, η

(
s, τ, x0, y1, c0))∥∥ � N|k|e|k|βs .

Suppose, for example, that n1 � k. Then, fortunately, the first estimate in (3.39) can be replaced
by

∥∥Dl1ηn1

(
s, τ, x0, y1, c0)∥∥ � P|l1|e

(
λ+|l1|β)

s .

We obtain the same result.
Finally we estimate ‖Γi3(t)‖ given by (3.34). We must estimate

t∫
0

∥∥DjΦ
c
(
t, s, c0)∥∥(∥∥Dkθ

(
s, c0, z

(
s, τ, x0, y1, c0))∥∥ + ∥∥Dkh

(
s, c0, η

(
s, τ, x0, y1, c0))∥∥)

× ∥∥Dl1ηn1

(
s, τ, x0, y1, c0)∥∥ · · ·∥∥Dl|n|ηn|n|

(
s, τ, x0, y1, c0)∥∥ds. (3.41)

From Proposition 3.3,

∥∥DjΦ
c
(
t, s, c0)∥∥ � M|j|eβ(t−s)+|j|βt . (3.42)

By the induction hypothesis, we again have (3.39). If no ni is greater than k + l, then by Propo-
sition 3.6(3),

∥∥Dkθ
(
s, c0, z

(
s, τ, x0, y1, c0))∥∥ � N|k|

∥∥z(s)
∥∥e|k|βs � N|k|eλs+μ(s−τ)+|k|βs . (3.43)

If some ni is greater than k + l, then (3.43) must be replaced by

∥∥Dkθ
(
s, c0, z

(
s, τ, x0, y1, c0))∥∥ � N|k|e|k|βs .

Suppose, for example, that n|n| > k + l. Then, fortunately, the last estimate in (3.39) can be
replaced by

∥∥Dl|n|ηn|n|
(
s, τ, x0, y1, c0)∥∥ � P|l|n||eλs+μ(s−τ)+|l1|βs .

We obtain the same result.
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The term ‖Dkh(s, c0, η(s, τ, x0, y1, c0))‖ is dealt similarly, using Proposition 3.6(4) and sep-
arately considering the cases (1) no ni is less than or equal to k + l; (2) at least one ni is less than
or equal to k, but none is greater than k and less than or equal to k + l; (3) no ni is less than or
equal to k, but at least one is greater than k and less than or equal to k + l; (4) at least one ni is
less than or equal to k, and at least one is greater than k and less than or equal to k + l.
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