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Abstract. In contrast to a viscous regularization of a system of n conservation laws, a Dafermos
regularization admits many self-similar solutions of the form u = u(X

T
). In particular, it is known

in many cases that Riemann solutions of a system of conservation laws have nearby self-similar
smooth solutions of an associated Dafermos regularization. We refer to these smooth solutions as
Riemann–Dafermos solutions. In the coordinates x = X

T
, t = lnT , Riemann–Dafermos solutions

become stationary, and their time-asymptotic stability as solutions of the Dafermos regularization can
be studied by linearization. We study the stability of Riemann–Dafermos solutions near Riemann
solutions consisting of n Lax shock waves. We show, by studying the essential spectrum of the
linearized system in a weighted function space, that stability is determined by eigenvalues only. We
then use asymptotic methods to study the eigenvalues and eigenfunctions. We find there are fast
eigenvalues of order 1

ε
and slow eigenvalues of order 1. The fast eigenvalues correspond to eigenvalues

of the viscous profiles for the individual shock waves in the Riemann solution; these have been studied
by other authors using Evans function methods. The slow eigenvalues are related to inviscid stability
conditions that have been obtained by various authors for the underlying Riemann solution.
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1. Introduction. Consider a system of viscous conservation laws in one space
dimension, i.e., a partial differential equation of the form

uT + f(u)X = (B(u)uX)X ,(1.1)

where X ∈ R, T ∈ [0,∞), u ∈ R
n, f : R

n → R
n, and B(u) is an n × n matrix for

which all eigenvalues have positive real part. We are interested in the behavior, as
T → ∞, of solutions of (1.1) that satisfy the constant boundary conditions

u(−∞, T ) = u�, u(+∞, T ) = ur, 0 ≤ T < ∞,(1.2)

and some initial condition u(X, 0) = u0(X). Our interest is not in the solution for
any particular initial condition, but in the possible asymptotic behavior of solutions
as T → ∞.

It is believed that as T → ∞, solutions of such initial-boundary-value problems
typically approach Riemann solutions for the system of conservation laws

uT + f(u)X = 0(1.3)

obtained from (1.1) by dropping the viscous term. In numerical simulations, the
convergence is seen when the solution is viewed in the rescaled spatial variable x = X

T ;
the rescaling counteracts the tendency of the solution to spread as time increases. The
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shock waves in the observed Riemann solution satisfy the viscous profile criterion for
the viscosity B(u). Speaking very roughly, Riemann solutions are believed to play
the same role for (1.1)–(1.2) that constant solutions (equilibria) play for ordinary
differential equations (ODEs): they are the simplest asymptotic states. An important
difference, however, is that Riemann solutions are not solutions of (1.1) but only of
the related equation (1.3). We recall that a shock wave is a weak solution with a jump
discontinuity of the system of conservation laws (1.3). The simplest such solutions
are

u(X,T ) =

{
u− for X < sT ,

u+ for X > sT .
(1.4)

For (1.4) to be a weak solution of (1.3), the triple (u−, s, u+) must satisfy the Rankine–
Hugoniot condition

f(u+)− f(u−)− s(u+ − u−) = 0.(1.5)

A shock wave (1.4) satisfies the viscous profile criterion for the viscosity B(u), pro-
vided (1.1) has a traveling wave solution u(X − sT ) that satisfies the boundary con-
ditions

u(−∞) = u−, u(+∞) = u+.(1.6)

A traveling wave solution of (1.1) that satisfies these boundary conditions exists if
and only if the traveling wave ODE

u̇ = B(u)−1(f(u)− f(u−)− s(u− u−))(1.7)

has an equilibrium at u+ (it automatically has one at u−) and a connecting orbit from
u− to u+. The condition that (1.7) have an equilibrium at u+ is just the Rankine–
Hugoniot condition (1.5).

A Riemann problem for the system of conservation laws (1.3) is an initial value
problem of the form

u(X, 0) =

{
u� for X < 0,

ur for X > 0.
(1.8)

Since (1.3), (1.8) is invariant under the transformations (X,T ) → (aX, aT ), to avoid
one-parameter families of solutions, a solution u(X,T ) of (1.3), (1.8) should have the
form u(X,T ) = û(x), x = X

T . Then û(x) satisfies

(Df(u)− xI)ux = 0, −∞ < x < ∞; u(−∞) = u�, u(∞) = ur.(1.9)

Notice that even though a Riemann problem in the form (1.3), (1.8) is an initial value
problem, in the form (1.9) it is a boundary value problem.

Normally one looks for a solution of (1.9) consisting of constant parts, contin-
uously changing parts (rarefaction waves), and jump discontinuities (shock waves).
Shock waves occur when

lim
x→s− û(x) = u− �= u+ = lim

x→s+
û(x).
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We shall require that each such triple (u−, s, u+) satisfy the viscous profile criterion
for a given B(u).

It is known that even with the viscous profile criterion, Riemann problems can
have multiple solutions. This is disconcerting if the Riemann problem is regarded as
an initial value problem. There is no such difficulty, however, when Riemann prob-
lems are regarded as boundary value problems whose solutions represent asymptotic
states of (1.1)–(1.2). Indeed, in this context, multiple solutions of a Riemann problem
represent multiple asymptotic states of (1.1)–(1.2), which are approached for differ-
ent initial conditions u0(X). For a model initial-boundary-value problem (1.1)–(1.2)
whose associated Riemann problem has three solutions, Azevedo et al. [2] have done
careful numerical work that indicates that this is in fact the case. Two of the Riemann
solutions appear to be attractors, while the third appears to attract a codimension-one
set of initial conditions.

The study of the stability of Riemann solutions as asymptotic states of (1.1)–(1.2)
is not easy. If the Riemann solution is a single shock wave, then it corresponds to
a traveling wave solution of (1.1), and one can use a moving coordinate system to
convert the traveling wave solution to a steady state solution. One can then study
stability by studying the spectrum of the linearization at this solution. There is always
a zero eigenvalue, which corresponds to shifts of the traveling wave. An additional
difficulty is that the continuous spectrum touches the imaginary axis. For a single
conservation law, Sattinger [39] dealt with this difficulty by using an exponentially
weighted norm, which shifts the continuous spectrum to the left. For systems, the gap
lemma of Gardner and Zumbrun [14] (see also [19]) allows one to study eigenvalues of
the linearization near the origin despite the continuous spectrum. A series of papers
by Liu, Zumbrun, and Howard justifies the passage from linear to nonlinear stability
[28], [29], [27], [50].

Alternatively, one can study stability of viscous shock waves by energy methods
[34], [15]. A relation between the two approaches is that energy methods can be used
to verify that the spectrum of the linearization is contained in the left half plane.

Riemann solutions other than a single shock wave do not correspond to traveling
wave solutions of (1.1). Thus one cannot determine their stability by finding the
spectrum of a linear operator. In some situations one can construct an approximate
solution of (1.1)–(1.2) near the Riemann solution and show that solutions of (1.1)–
(1.2) that start near the approximate solution approach it. See [26] for Riemann
solutions consisting of weak Lax shock waves and [45] for Riemann solutions consisting
of a single rarefaction.

Riemann solutions are functions of X
T only, and it is in the variables (x, T ) with

x = X
T that the convergence of solutions of (1.1)–(1.2) to Riemann solutions is ob-

served. With this motivation, in (1.1) we make the change of variables

x =
X

T
, t = lnT.(1.10)

(The substitution t = lnT is simply for convenience. Decay that is algebraic in T
becomes exponential in t.) We obtain

ut + (Df(u)− xI)ux = e−t(B(u)ux)x.(1.11)

Thus in the (x, t) variables, which are natural for the study of the large-time behavior
of solutions of (1.1), (1.1) becomes a system that is both spatially dependent and
nonautonomous. In studying nonautonomous systems, it is natural to first freeze
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the time variable and study the resulting autonomous system. In this case one sets
ε = e−t; for large t, ε is small. One obtains

ut + (Df(u)− xI)ux = ε(B(u)ux)x.(1.12)

Returning to (X,T ) variables, (1.12) becomes

uT + f(u)X = εT (B(u)uX)X .(1.13)

Equation (1.13) is the Dafermos regularization of the system of conservation laws (1.3)
associated with the viscosity B(u) ([8]; see also [46], [47]). It is usually regarded as an
artificial, nonphysical equation because of the factor T in the viscous term. As we have
seen, however, if one is interested in the behavior of solutions of (1.1)–(1.2) for large
T and uses the appropriate variables (1.10) for large T , the Dafermos regularization is
actually a natural simplification of the physical equations. Like the Riemann problem,
but unlike (1.1), (1.13) has many solutions of the form u(X,T ) = û(x), x = X

T . (This
is why it was originally introduced.) They satisfy a Dafermos ODE

(Df(u)− xI)ux = ε(B(u)ux)x.(1.14)

Corresponding to the Riemann data (1.8) we have the boundary conditions

u(−∞) = u�, u(+∞) = ur.(1.15)

We shall refer to a solution uε(x) of (1.14)–(1.15) as a Riemann–Dafermos solution
of (1.13) for the boundary data (u�, ur). A Riemann–Dafermos solution of (1.13) is
just a stationary solution of (1.12). The boundary value problem (1.14)–(1.15) is a
viscous regularization of the Riemann boundary value problem (1.9).

Actually, Dafermos always used B(u) ≡ I. For this case, he conjectured that
Riemann–Dafermos solutions of the boundary value problem (1.14)–(1.15) converge
to a corresponding Riemann solution as ε → 0. This conjecture has been proved for ur

close to u� by Tzavaras [48]. His proof relies on showing that the Riemann–Dafermos
solutions are of uniformly bounded variation and oscillation.

Recently, Szmolyan [44] studied the boundary value problem (1.14)–(1.15) with
B(u) ≡ I using geometric singular perturbation theory [18]. The idea is to think
of a Riemann solution, with shock waves that satisfy the viscous profile criterion for
B(u) ≡ I, as a singular solution (ε = 0), and then show by geometric singular pertur-
bation theory that, for small ε > 0, there is a nearby Riemann–Dafermos solution.

A Riemann solution is structurally stable if the number and types of its waves do
not change when the flux function or boundary data are varied slightly [40]. (This
use of the term “structurally stable” is consistent with its use in dynamical systems
theory, but differs from Majda’s use of the term in [32].) For B(u) ≡ I, Szmolyan
proved that, for small ε > 0, structurally stable classical Riemann solutions, which
consist of n rarefactions and Lax shock waves, have Riemann–Dafermos solutions of
(1.14)–(1.15) nearby. There is no requirement that u� and ur be close.

A valuable feature of the Dafermos regularization is that it works equally well for
general B(u). Schecter [41] makes this point explicit and shows that any structurally
stable Riemann solution consisting entirely of shock waves that satisfy the viscous
profile criterion for a given B(u) has, for small ε > 0, a Riemann–Dafermos solution
of (1.14)–(1.15) nearby. Undercompressive shock waves, whose existence and location
are very dependent on B(u), are explicitly allowed.
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It is likely that any structurally stable Riemann solution whose shock waves satisfy
the viscous profile criterion for a given B(u) has Riemann–Dafermos solutions of the
corresponding Dafermos regularization nearby. Some nonstructurally stable Riemann
solutions are treated in [30].

In this paper we shall study the Dafermos system (1.13) in the transformed form
(1.12), with boundary conditions

u(−∞, t) = u�, u(∞, t) = ur, 0 ≤ t < ∞.(1.16)

Our goal is to begin the study of the asymptotic stability of Riemann–Dafermos
solutions (i.e., steady state solutions) of (1.12), (1.16). We will consider (1.12), (1.16)
on the time interval t ≥ 0, which corresponds to considering (1.13) on T ≥ 1.

The possible usefulness of this study for the study of the stability of Riemann
solutions as asymptotic states of (1.1)–(1.2) is as follows. Let

u(x, t) = uε(x) with ε = e−t,

where the uε(x) are Riemann–Dafermos solutions of (1.12) that converge, as ε → 0, to
a Riemann solution û(x) of (1.3), (1.8). Then for large t, u(x, t) is almost a solution
of (1.11) and converges as t → ∞ to û(x). With a good enough understanding of the
stability of the uε(x) as solutions of (1.12), one can perhaps show that near u(x, t) is
a true solution of (1.11) with the same stability that uε(x) has as a solution of (1.12)
for small ε.

Tzavaras [48] gives a different argument for the relevance of the Dafermos regu-
larization to understanding Riemann solutions as asymptotic states of (1.1). We now
preview the remainder of the paper. For simplicity, we shall take B(u) ≡ I. Then
(1.12) becomes

ut + (Df(u)− xI)ux = εuxx.(1.17)

We consider a structurally stable Riemann solution of (1.3) that consists of exactly
n Lax shock waves with speeds s̄1 < s̄2 < · · · < s̄n. We assume that each Lax shock
wave satisfies the viscous profile criterion for B(u) = I. Precise definitions are given
in section 2. We do not assume that u� and ur are close.

We write the Riemann solution as a piecewise constant function u0(x) that is
undefined at x = s̄i, i = 1, . . . , n, where u0(x) has jumps. From [44] or [41], near it
there is, for small ε > 0, a Riemann–Dafermos solution uε(x) of (1.17). It has sharp
transition layers near x = s̄i, i = 1, . . . , n.

In section 3, we construct an asymptotic expansion of uε(x) in powers of ε. In
the regular layer, which is R with s̄i, i = 1, . . . , n, removed, uε(x) has an expansion
of the form

uR
ε (x) =

∞∑
j=0

εjuR
j (x),

in which uR
0 (x) is just the piecewise constant Riemann solution u0(x).

We shall refer to a small neighborhood of s̄i as the ith singular layer and denote
it Si, i = 1, . . . , n. The Riemann–Dafermos solution uε(x) has sharp transition layers
at

xi(ε) =

∞∑
j=0

εjxi
j , i = 1, . . . , n,
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with xi(0) = s̄i. Near xi(ε) we use the stretched variable ξ = x−xi(ε)
ε . In terms of this

variable, the solution has an expansion

ui
ε(ξ) =

∞∑
j=0

εjui
j(ξ) in the singular layer Si.

It turns out that ui
0(ξ) is a traveling wave of (1.1) with speed s̄i.

This description of uε(x) is consistent with its construction by geometric singular
perturbation theory.

Let C(γ,Rx), γ ≥ 0, be the Banach space of uniformly continuous functions U(x)
such that the weighted norm |U |γ := supx |U(x)|eγ|x| < ∞. Let

C2(γ,Rx) := {U : U,U ′, U ′′ ∈ C(γ,Rx)}.
On C2(γ,Rx) we will use the equivalent norms |U |2,γ,ε := |U |γ + ε|U ′|γ + ε2|U ′′|γ ,
where ε > 0 is the small parameter in (1.17). This family of norms was used by Fife

[12]; the ε scales out when the stretched variable ξ = x−xi(ε)
ε is used instead of x. An

advantage of this family of norms is that one can have a family of functions Uε(x) for
which supx |U ′

ε(x)| = O( 1
ε ) and supx |U ′′

ε (x)| = O( 1
ε2 ) but |Uε|2,γ,ε remains bounded

as ε → 0.
Let Xγ denote the affine space of functions u(x) = uε(x) + U(x) with U ∈

C2(γ,Rx). This function space includes the most important perturbations of uε(x).
We shall study (1.17) together with the boundary conditions (1.16) in the space Xγ .
In section 4 we show that for γ ≥ 0, (1.17), (1.16) is well-posed in a neighborhood of
uε(x) in Xγ . The size of the neighborhood is uniform in the norm | · |2,γ,ε as ε → 0.
Thus, for small ε > 0, perturbations with large derivatives are allowed.

An argument like that of Evans [10] shows that linearized stability of uε(x) in
Xγ implies nonlinear stability in Xγ . Therefore we consider the linearized stability of
uε(x) in Xγ .

In section 5 we show that for γ sufficiently large, using the exponentially weighted
norm moves the essential spectrum of the linearization of (1.17) about uε(x) to the
left of the imaginary axis, as in [39], [38]. Thus linearized stability of uε(x) in Xγ is
determined by the eigenvalues.

In sections 6 and 7 we study eigenvalues for γ > 0 using asymptotic expansions
in ε. We assume the eigenvalues have asymptotic expansions of the form

λ =

∞∑
j=−1

εjλj

and the corresponding eigenfunctions have similar expansions. Section 6 is devoted
to eigenvalues with λ−1 �= 0. The corresponding eigenfunctions are local ; i.e., their
expansions are nonzero only in singular layers. These eigenvalues reflect the fast
convergence of the solution to traveling waves in the singular layers. Section 7 is
devoted to eigenvalues with λ−1 = 0, which we discuss in more detail below. The fact
that there are both O( 1

ε ) and O(1) eigenvalues is consistent with the description of
solutions at the beginning of section 6.

The fast eigenvalues λ = λ−1

ε + O(1), with λ−1 �= 0, correspond to the nonzero
eigenvalues λ−1 of the individual traveling waves that are found by Evans function
methods [14], [3]. However, a nondegeneracy condition is needed to ensure that a

zero of the Evans function can be continued to a fast eigenvalue λ = λ−1

ε +O(1); see
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section 6. Thus, roughly speaking, a necessary condition for stability of the Riemann–
Dafermos solution is that the Evans function for each individual viscous shock wave
in the Riemann solution have no zero with positive real part. Slow eigenvalues have
the form λ = λ0 + O(ε). It turns out that λ0 = 0 is never an eigenvalue, while λ0 =
−1 is always among the O(1) eigenvalues. Its multiplicity is n. The corresponding
eigenfunctions are local. To lowest order they are just the derivatives of the individual
traveling waves in the n singular layers and correspond to shifts of the traveling waves.

Other O(1) eigenvalues are nonlocal: The corresponding eigenfunctions asymptot-
ically satisfy a piecewise continuous system of ODEs in x, along with jump conditions
at x = s̄i, i = 1, . . . , n. To lowest order, these O(1) eigenvalues and eigenfunctions can
be interpreted as eigenvalues and eigenfunctions for a system of first-order hyperbolic
equations. This system has been used by many authors to study perturbations of Rie-
mann solutions of the inviscid equation (1.3) that contain only shock waves. There are
two types of treatment of this equation of which we are aware: (1) One can show that
if a nondegeneracy condition (Majda’s stability condition) holds for each shock wave,
the system can be solved by characteristics for all time [32]. (2) Assuming the same
nondegeneracy condition, one can interpret the system as describing the scattering
of incoming small shock waves by the large shock waves that comprise the original
Riemann solution, and one can find sufficient conditions that guarantee that, in some
norm, the total weight of the scattered shocks is smaller than the total weight of the
incoming shocks [42], [4], [5], [49], [22], [21]. A condition of this type can then be used
in Glimm’s scheme to show the existence of solutions of (1.3) for initial data close to
the original Riemann data. For a Riemann solution with n = 2 that consists of two
Lax shocks, this approach yields a simple computable inviscid stability condition.

The system that determines the O(1) eigenvalues to lowest order is also related
to the SLEP system used by Nishiura and Fujii [35] for reaction-diffusion equations
to study the stability of solutions with several sharp layers.

In this paper we study only the possible values of λ0 for slow eigenvalues. The
study of conditions under which λ0 can actually be continued to a slow eigenvalue
λ = λ0 +O(ε) of the Riemann–Dafermos solution uε(x) is deferred to a later paper.

A necessary condition for stability of the Riemann–Dafermos solution is that no
slow eigenvalue have positive real part. For n = 2, we show that to lowest order in ε,
the O(1) eigenvalues, other than −1, of a Riemann–Dafermos solution with two Lax
shock waves all have the same real part. They are evenly spaced along a line in the
complex plane. We compute the real part of these eigenvalues; the condition that it
be negative turns out to be the n = 2 inviscid stability condition mentioned above.
For n > 2, the relationship between the O(1) eigenvalues and the known sufficient
conditions for inviscid stability remains to be determined.

In section 9 we calculate slow eigenvalues other than −1 for Riemann solutions of
the p-system that consist of two Lax shocks. They all have real part −2, independent
of the Riemann solution. The calculation is essentially the same as the calculation of
the inviscid stability criterion for these Riemann solutions in [4].

Thus, for Riemann–Dafermos solutions whose underlying Riemann solution con-
sists of n Lax shock waves, our analysis suggests that they should be asymptotically
stable if (1) each viscous shock wave is linearly stable, a matter that is determined
by the wave’s Evans function, and (2) the Riemann solution is stable in the inviscid
sense, sufficient conditions for which have been determined by studying the scatter-
ing of small shock waves by large ones. The stability analysis of Riemann–Dafermos
solutions thus unites two distinct lines of research. These relationships are explored
in a little more detail in section 8.
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A shortcoming of our analysis is that we do not address the possible existence of
eigenvalues intermediate between fast and slow. This issue is discussed at the end of
section 6. Its resolution may well involve Majda’s stability condition, which is known
to be related to the derivative of the Evans function at the origin [14], [3].

It should not be difficult to extend the results of this paper to more general
diffusion matrices B(u) or to general structurally stable Riemann solutions consisting
entirely of shock waves, including undercompressive shock waves. However, we do
not see how to deal with rarefactions, for which the asymptotic expansions are much
more difficult due to loss of normal hyperbolicity in the underlying geometric singular
perturbation problem [44].

2. Riemann solutions. In this section we define precisely the notion of a struc-
turally stable Riemann solution consisting of Lax shock waves. A Lax i-shock for (1.3)
that satisfies the viscous profile criterion for B(u) ≡ I is a function

u(x) =

{
u− for x < s,

u+ for x > s,
(2.1)

with x = X
T , together with a solution q(ξ) of the traveling wave ODE

u̇ = f(u)− f(u−)− s(u− u−),(2.2)

such that the following hold:
(L1) f(u+)− f(u−)− s(u+ − u−) = 0.
(L2) The eigenvalues ν−

1 < · · · < ν−
n of Df(u−) are real and distinct and satisfy

ν−
i−1 < s < ν−

i .

(L3) The eigenvalues ν+
1 < · · · < ν+

n of Df(u+) are real and distinct and satisfy
ν+

i < s < ν+
i+1.

(L4) q(ξ) approaches u− as ξ → −∞ and u+ as ξ → ∞.
Notice that (L1), (L2), and (L3) imply that for (2.2), u± are hyperbolic equilibria,
the unstable manifold of u− has dimension n − i + 1, and the stable manifold of u+

has dimension i. Assumption (L4) says that these manifolds intersect. Because of the
dimensions of the manifolds, generically, if they intersect, they do so in curves.

Remark 2.1. The function q(ξ) is also a solution of

(Df(u)− sI)uξ = uξξ(2.3)

and satisfies the boundary conditions (1.6).
A solution of the Riemann problem (1.3), (1.8) that consists of n Lax shock waves,

each satisfying the viscous profile criterion for B(u) ≡ I, is a piecewise constant
function

u0(x) =




ū0 for x < s̄1,

ūi for s̄i < x < s̄i+1, i = 1, . . . , n− 1,

ūn for x > s̄n,

(2.4)

with x = X
T , together with R

n-valued functions qi(ξ), i = 1, . . . , n, such that
(R1) ū0 = u� and ūn = ur;
(R2) for each i = 1, . . . , n, the triple (ūi−1, s̄i, ūi), together with the function qi(ξ),

defines a Lax i-shock.
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Define a mapping G : R
n2+2n → R

n2

by

G(u0, s1, u1, . . . , un−1, sn, un)

= (f(u1)− f(u0)− s1(u1 − u0), . . . , f(un)− f(un−1)− sn(un − un−1)).

Notice that

G(ū0, s̄1, ū1, . . . , ūn−1, s̄n, ūn) = 0.(2.5)

The Riemann solution just defined is structurally stable, provided
(S1) DG(ū0, s̄1, ū1, . . . , ūn−1, s̄n, ūn), restricted to the n2-dimensional space of vec-

tors (U0, S1, U1, . . . , Un−1, Sn, Un) with U0 = Un = 0, is invertible;
(S2) for each i = 1, . . . , n, the unstable manifold of ūi−1 and the stable manifold

of ūi for the traveling wave ODE u̇ = f(u) − f(ūi−1) − s̄i(u − ūi−1) meet
transversally along qi(ξ).

If (S1) and (S2) are satisfied, then for each set of Riemann data (u0, un) near (ū0, ūn),
there is a Riemann solution near the original one. Condition (S1) can be restated as
follows:
(S1′) If we set (U0, Un) = (0, 0), then the system of linear equations

(Df(ūi)− s̄iI)U i − (Df(ūi−1)− s̄iI)U i−1 −Si(ūi − ūi−1) = 0, i = 1, . . . , n,

has only the trivial solution

(S1, U1, . . . , Un−1, Sn) = (0, 0, . . . , 0, 0).

A condition equivalent to (S2) is the following:
(S2′) For each i = 1, . . . , n, the linear differential equation

(Df(qi(ξ))− s̄iI)Uξ = Uξξ

has, up to scalar multiplication, a unique solution that approaches zero as
ξ → ±∞. It is qi

ξ(ξ).

3. Stationary solutions. Consider the Riemann problem (1.3), (1.8). Assume
that it has a solution (2.4) that consists of n Lax shock waves and is structurally
stable. We shall study (1.17) together with the boundary conditions

u(−∞, t) = u�, u(∞, t) = ur, 0 ≤ t < ∞.(3.1)

Stationary solutions uε(x) of (1.17), (3.1) satisfy

(Df(u)− xI)ux = εuxx(3.2)

and the boundary conditions

u(−∞) = u�, u(∞) = ur.(3.3)

We shall look for uε(x) that lie near the given structurally stable Riemann solution
(2.4). Such stationary solutions are known to exist, and to approach 0 exponentially
as x → ±∞, from the geometric singular perturbation arguments of [44].

In the regular layer, which is R with s̄i, i = 1, . . . , n, removed, uε(x) has an
expansion of the form

uR
ε (x) ∼

∑
εjuR

j (x),(3.4)
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in which uR
0 (x) is just the piecewise constant Riemann solution (2.4). The regular

layer is divided by the points s̄i into n+ 1 connected sublayers

R0 = (−∞, s̄1),

Ri = (s̄i, s̄i+1), i = 1, . . . , n− 1,

Rn = (s̄n,∞).

Each uR
j (x) is defined and piecewise C∞ in the regular layer. At the jump points

s̄i, we assume that each uR
j (x) has one-sided limits uR

j (x
i
0±) := limx→xi

0± uR
j (x). We

assume that the same is true for all derivatives of the uR
j (x).

As explained in the introduction, we shall refer to a small neighborhood of s̄i

as the ith singular layer and denote it by Si, i = 1, . . . , n. The Riemann–Dafermos
solution uε(x) has sharp transition layers at

xi(ε) =
∑

εjxi
j , i = 1, . . . , n,(3.5)

with xi(0) = s̄i. Near xi(ε) we use the stretched variable ξ = x−xi(ε)
ε . In terms of this

variable, the solution has an expansion

ui
ε(ξ) =

∑
εjui

j(ξ) in the singular layer Si.(3.6)

The expansions uR
ε (x) and ui

ε(ξ) satisfy, respectively,

(Df(uR)− xI)uR
x = εuR

xx,(3.7)

(Df(ui)− xI)ui
ξ = ui

ξξ, x = xi(ε) + εξ.(3.8)

We first consider the regular layer. We substitute (3.4) into (3.7) and expand in
powers of ε. At order ε0 we obtain

(Df(uR
0 (x))− xI)uR

0x = 0.

We shall set uR
0 (x) equal to the Riemann solution (2.4), which satisfies this equation.

In the regular layer, at order ε1,

(Df(uR
0 (x))− xI)uR

1x = uR
0xx = 0.

Thus uR
1 (x) is constant on each regular sublayer. By induction, we can show that

uR
j (x) is constant on each regular sublayer for all j.

We denote the constant value of uR
j (x) in Ri by ūi

j . Thus

ūi
0 = ūi, i = 0, . . . , n.

From the boundary condition (3.3),

ū0
j = 0 for j = 1, . . . ,∞, ūn

j = 0 for j = 1, . . . ,∞.(3.9)

Next, we consider the ith singular layer Si. We substitute (3.6) and (3.5) into
(3.8) and expand in powers of ε. At order ε0, we obtain

(Df(ui
0)− xi

0I)u
i
0ξ = ui

0ξξ.(3.10)
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To match the solutions at order ε0 in regular and singular layers, we must have

ui
0(−∞) = ūi−1

0 = ūi−1 and ui
0(∞) = ūi

0 = ūi.(3.11)

We set

xi
0 = s̄i, i = 1, . . . , n.

Then by (S2′) in section 2, (3.10), (3.11) has the solution ui
0(ξ) = qi(ξ). As ξ → ±∞,

qi(ξ) approaches the limits exponentially fast. By (S2), the solution qi is locally
unique up to a shift in ξ.

In Si, at order ε1, we have

ui
1ξξ − ((Df(qi)− s̄iI)ui

1)ξ = −(xi
1 + ξ)qi

ξ.(3.12)

We look for ui
1 that satisfies the matching conditions

ui
1(−∞) = ūi−1

1 and ui
1(∞) = ūi

1.(3.13)

By (3.9), ū0
1 = ūn

1 = 0. The other ūi
1 and the xi

1 are to be determined.
Integrating (3.12) from ξ = −∞ to ξ = ∞, we obtain

(3.14) (Df(ūi
0)− s̄iI)ūi

1 − (Df(ūi−1
0 )− s̄iI)ūi−1

1 − xi
1(ū

i
0 − ūi−1

0 )

=

∫ ∞

−∞
ξqi

ξdξ, i = 1, . . . , n.

After making the substitutions ū0
1 = ūn

1 = 0, (3.14) becomes a system of n2 linear
equations in the n2 unknowns xi

1, i = 1, . . . , n, and ūi
1, i = 1, . . . , n−1. By (S1) there

is a unique solution.
The space of bounded solutions of the adjoint system to the homogeneous part of

(3.12), ψξξ+(Df(qi)− s̄iI)ψξ = 0, is n-dimensional and consists of constant solutions.
Therefore, using lemmas from [6], [24], condition (3.14) is necessary and sufficient for
the existence of solutions ui

1(ξ) to (3.12) that satisfy the boundary conditions (3.13).
For completeness, we state this fact as a lemma and present a simpler proof, taking
advantage of the fact that (3.12) is in conservation form.

Lemma 3.1. Consider the system

Uξξ − ((Df(qi(ξ))− s̄iI)U)ξ = g(ξ),(3.15)

where g(ξ) approaches zero exponentially as ξ → ±∞. There is a solution U such
that U(ξ) → U± exponentially as ξ → ±∞ if and only if

(Df(qi(∞))− s̄iI)U+ − (Df(qi(−∞))− s̄iI)U− +

∫ ∞

−∞
g(s)ds = 0.(3.16)

Proof. It is easy to see that the condition is necessary. We prove only that the
condition is sufficient. The system (3.15) is equivalent to the system

Uξ − (Df(qi(ξ))− s̄iI)U(ξ) + (Df(qi(−∞))− s̄iI)U− = G(ξ),(3.17)

where G(ξ) :=
∫ ξ

−∞ g(s)ds is bounded, G(ξ) → 0 exponentially as ξ → −∞, and

G(ξ) → ∫∞
−∞ g(s)ds exponentially as ξ → ∞.
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From the definition of a Lax i-shock, Df(qi(±∞)) − s̄iI is hyperpolic, so sys-
tem (3.17) has exponential dichotomies [7] on R

±. Therefore there exist nonunique
bounded solutions UL(ξ) and UR(ξ) that solve (3.17) on R

− and R
+, respectively.

For the dichotomy on R
−, let Pu(0−) denote projection onto the unstable sub-

space at x = 0, with kernel the stable subspace. Similarly, for the dichotomy on R
+, let

Ps(0+) denote projection onto the stable subspace at x = 0, with kernel the unstable
subspace. Then the definition of a Lax i-shock implies thatRPu(0−)+RPs(0+) = R

n.
Therefore there exists a (nonunique) pair (φu, φs) such that

UL(0−) + φu = UR(0+) + φs,

φu ∈ RPu(0−), φs ∈ RPs(0+).

Let Φ(ξ, ζ) be the principle matrix solution to (3.17). The solution U(ξ), ξ ∈ R,
can be obtained by letting

U(ξ) = UL(ξ) + Φ(ξ, 0)φu, ξ ≤ 0,

U(ξ) = UR(ξ) + Φ(ξ, 0)φs, ξ ≥ 0.

From (3.17) and (3.16), using the limits of G(ξ) as ξ → ±∞, it is easy to show
that U(ξ) → U− as ξ → −∞ and U(ξ) → U+ as ξ → ∞.

Proceeding inductively, we can solve for all xi
j and ūi

j .
Our asymptotic expansions are justified by the fact that uε(x) is known to exist

from the geometric singular perturbation theory arguments of [44]. Alternatively, a
proof of existence of the exact stationary solutions uε(x) can be based on the exis-
tence of the formal asymptotic expansions (3.4)–(3.5). For this approach to singular
perturbation theory, see [25]. The same assumptions (S1) and (S2) are used in both
types of arguments.

We summarize the results about stationary solutions in the following.
Proposition 3.2. In the regular layer, to all orders of ε, uR

ε (x) is piecewise con-
stant with jumps at xi

0(ε), i = 1, . . . , n, only. At lowest order, uR
0 (x) is the Riemann

solution (2.4). In the ith singular layer, at lowest order, ui
0(ξ) = qi(ξ), a heteroclinic

solution connecting the states ūi−1
0 and ūi

0. Higher order terms uR
j (x), ui

j(ξ), and

xi
j can be obtained recursively, using the matching of regular and singular layers and

Lemma 3.1.

4. Well-posedness. To show the well-posedness of initial value problems with
initial conditions near a Riemann–Dafermos solution, it is convenient to use the
stretched variables ξ = x

ε and τ = t
ε . We shall translate the results back to (x, t)

variables at the end of the section.
Using the stretched variables, (1.17) becomes

uτ + (Df(u)− εξI)uξ = uξξ.(4.1)

Let uε(x) be a stationary solution of (1.17), (3.1). Then uε(εξ) is a stationary solution
of (4.1). A solution of (4.1) near uε(εξ) can be expressed as uε(εξ) + U(ξ, τ) with U
satisfying

Uτ + (Df(uε + U)− εξI)Uξ + (Df(uε + U)−Df(uε))uε ξ = Uξξ.(4.2)

For any ρ ≥ 0, let C(ρ,Rξ) be the Banach space of uniformly continuous functions
U(ξ), ξ ∈ R, such that the weighted norm |U |ρ := supξ |U(ξ)|eρ|ξ| < ∞. Let Ck(ρ,Rξ)
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be the space of functions U(ξ) such that U,U ′, . . . , U (k) ∈ C(ρ,Rξ). On Ck(ρ,Rξ)
we use the norm |U |k,ρ := |U |ρ + |U ′|ρ + · · ·+ |U (k)|ρ. One can define C(ρ,R±

ξ ) and

Ck(ρ,R±
ξ ) similarly.

We shall show that for any ρ ≥ 0, (4.2) is well-posed for small initial data in
C2(ρ,Rξ). The intuitive reason is that for the underlying Riemann problem, the
characteristics on the two unbounded regular layers head inward. This keeps a space
of exponentially decaying profiles invariant.

Stronger results can be obtained using fractional powers of Banach spaces or
intermediate spaces [13], [17], [36], [9], [31], [23]. We choose to use C2(ρ,Rξ) for
simplicity.

We rewrite (4.2) as

Uτ + (Df(uε)− εξI)Uξ +D2f(uε)uε ξU + gε(U,Uξ, ξ) = Uξξ,(4.3)

with

(4.4) gε(U,Uξ, ξ)

= (Df(uε + U)−Df(uε))Uξ + (Df(uε + U)−Df(uε)−D2f(uε)U)uε ξ.

Note that because of the dependence on Uξ in (4.4), if U ∈ C2(ρ,Rξ), then gε ∈
C1(ρ,Rξ). Moreover, we have

|gε(U)|1,ρ ≤ C|U |22,ρ,

|gε(U1)− gε(U2)|1,ρ ≤ C max{|U1|2,ρ, |U2|2,ρ}|U1 − U2|2,ρ.
(4.5)

We first consider the inhomogeneous linear system

Uτ + (Df(uε)− εξI)Uξ +D2f(uε)uε ξU + hε(ξ, τ) = Uξξ.(4.6)

The hypotheses on h in the following lemma are motivated by the observations
just made about g.

Proposition 4.1. Let τ0 > 0, ε0 > 0, and ρ ≥ 0. Assume that
(1) for each 0 < ε ≤ ε0, hε(·, τ) is a continuous mapping from 0 ≤ τ ≤ τ0 to

C1(ρ,Rξ);
(2) there is a constant M such that |hε(·, τ)|1,ρ ≤ M on {(τ, ε) : 0 ≤ τ ≤ τ0, 0 <

ε ≤ ε0}.
Let

U(ξ, 0) = φ(ξ),(4.7)

with φ ∈ C2(ρ,Rξ). Then there exists τ1, 0 < τ1 ≤ τ0, such that for each 0 < ε ≤ ε0,
the initial value problem (4.6), (4.7) has a solution U(ξ, τ), 0 ≤ τ ≤ τ1. The mapping
τ → U(·, τ) is continuous from [0, τ1] to C2(ρ,Rξ), and there is a constant C such
that, for each (τ, ε),

|U |2,ρ ≤ C(|φ|ρ + |h|1,ρ).

The numbers τ1 and C depend on ε0 but are independent of ρ and M .
Proof. Let y = eετξ and define v(y, τ) := U(e−ετy, τ). Then

vτ + eετ (Df(uε)vy +D2f(uε)uε yv) + h = e2ετvyy.
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Let s = e2ετ−1
2ε , so that τ = τ(s) = (1 + 2εs)

1
2ετ . Let w(y, s) := v(y, τ(s)). Then

ws +
1√

2εs+ 1
(Df(uε)wy +D2f(uε)uε yw) +

1

2εs+ 1
h = wyy,

w(y, 0) = φ(y).

(4.8)

Moreover, if τ1 is sufficiently small, then for each 0 < ε ≤ ε0, hε defines a continuous

function from 0 ≤ s ≤ s1(ε) to C1(ρ,Rξ), where s1(ε) =
e2ετ1−1

2ε ≈ τ1. In (4.8) the
coefficients of w and wy, and the inhomogeneous term, are bounded on

{(y, s, ε) : y ∈ R, 0 ≤ s ≤ s1(ε), 0 < ε ≤ ε0}.

Let Φ(y, s) := 1
2
√

πs
e−y2/4s be the fundamental solution of the heat equation

ws = wyy. The solution of (4.8) is the fixed point of the integral equation

w̄(y0, s0) =

∫ ∞

−∞
Φ(y0 −y, s0)φ(y)dy−

∫ s

0

∫ ∞

−∞
Φ(y0 −y, s0 − s)

1

2εs+ 1
hε(y, s)dyds

−
∫ s

0

∫ ∞

−∞
Φ(y0 − y, s0 − s)

1√
2εs+ 1

(Df(uε)wy(y, s) +D2f(uε)uε yw(y, s))dyds.

If w(y, s) defines a continuous function from 0 ≤ s ≤ s1(ε) to C2(ρ,Rξ), then it is
easy to show that w̄ defines a continuous function from 0 ≤ s ≤ s1(ε) to C2(ρ,Rξ).
Moreover, if τ1 is sufficiently small, then, independent of ρ, the mapping w → w̄ is
a contraction mapping in the space of continuous functions from 0 ≤ s ≤ s1(ε) to
C2(ρ,Rξ). Therefore, there exists a unique fixed point w(y, s) in C2(ρ,Rξ), which is
the solution of (4.8).

Then

|U(ξ, τ)| = |v(y, τ(s))| = |w(y, s)| ≤ C(|φ|ρ + |h|1,ρ)e
−ρ|y| ≤ C1(|φ|ρ + |h|1,ρ)e

−ρ|ξ|.

Similar estimates for |Uξ| and |Uξξ| can also be obtained from the integral equation for
w. The proof that w : [0, τ1] → C2(ρ,Rξ) is continuous uses a well-known technique
from the theory of evolution equations in abstract Banach spaces [17] and will be
omitted.

Using Proposition 4.1, the estimates (4.5), and the contraction mapping theorem
in C2(ρ,Rξ), we can easily prove the following proposition.

Proposition 4.2. Consider the initial value problem (4.2), (4.7), with φ ∈
C2(ρ,Rξ) and ρ ≥ 0. There exist positive constants τ1, ε1, and δ1, all independent of
ρ, such that if |φ|2,ρ ≤ δ1, then for each 0 < ε ≤ ε1, the initial value problem has a
unique solution U(ξ, τ), 0 ≤ τ ≤ τ1, such that τ → U(·, τ) is a continuous mapping
from [0, τ1] to C2(ρ,Rξ).

We can apply Proposition 4.2 repeatedly until the maximal time interval of exis-
tence is reached.

We recall from the introduction that for a Ck function ψ(x), we define

|ψ|k,γ,ε := |ψ|γ + ε|ψ′|γ + · · ·+ εk|ψ(k)|γ .

Lemma 4.3. Let k be a nonnegative integer. Let ψ ∈ Ck(γ,Rx). Define φ(ξ) =
ψ(εξ). Then φ ∈ Ck(εγ,Rξ), and |φ|k,εγ = |ψ|k,γ,ε.
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Proof. We have

|ψ(x)|eγ|x| = |ψ(εξ)|eγε|ξ| = |φ(ξ)|εγ|ξ|,
ε|ψx(x)|eγ|x| = ε|ψx(εξ)|eγε|ξ| = |φξ(ξ)|eεγ|ξ|,(4.9)

etc. The result follows.
In the original variables x = εξ and t = ετ , (4.2) becomes

Vt + (Df(uε + V )− xI)Vx + (Df(uε + V )−Df(uε))uε x = Vxx,(4.10)

and the initial condition (4.7) becomes

V (x, 0) = ψ(x).(4.11)

Corollary 4.4. Consider the initial value problem (4.10), (4.11), with ψ ∈
C2(γ,Rx) and γ ≥ 0. There exist positive constants τ1, ε1, and δ1, all independent
of γ, such that if |ψ|2,γ,ε ≤ δ1, then for each 0 < ε ≤ ε1, there is a unique solution
V (x, t), 0 ≤ t ≤ ετ1, such that t → V (·, t) is a continuous mapping from [0, ετ1] to
C2(γ,Rx).

Proof. The constants τ1, ε1, and δ1 are those of Proposition 4.2. Suppose
|ψ|2,γ,ε ≤ δ1. Let φ(ξ) = ψ(εξ). By Lemma 4.3, |φ|2,εγ = |ψ|2,γ,ε. By Proposi-
tion 4.2, the initial value problem (4.2), (4.7) has a solution U(ξ, τ), 0 ≤ τ ≤ τ1. Let
V (x, t) = U(x

ε ,
t
ε ).

As noted in the introduction, the condition |ψ|2,γ,ε ≤ δ1 allows, for small ε > 0,
initial perturbations of the Riemann–Dafermos solution uε(x) with very large deriva-
tives.

5. Essential spectrum. In the space of uniformly bounded functions, a travel-
ing wave (viscous shock) solution of (1.1) has an essential spectrum that touches the
imaginary axis. This is the main difficulty in proving stability of the traveling wave.
The same difficulty occurs for a Riemann–Dafermos solution uε of the Dafermos reg-
ularization. Following an idea of Sattinger [39], we use weighted function spaces to
move the essential spectrum to the left.

Let δ̃ > 0 be given. For sufficiently large γ > 0, we shall show that, for small
ε > 0, in the space C2(γ,Rx), the essential spectrum of the linearization of (1.17)
about a Riemann–Dafermos solution uε(x) lies in the region Reλ̃ ≤ −δ̃. Therefore
the stability of the Riemann–Dafermos solution is determined by the eigenvalues.

Let T (ξ, ζ) be the fundamental matrix solution for a first-order system

Wξ = B(ξ)W, ξ ∈ J.(5.1)

Definition 5.1. Let β < α be real numbers. System (5.1) has a pseudoexponen-
tial dichotomy on J with spectral gap β < α if there is a real number C ≥ 0 and
projections P (ξ), ξ ∈ J , such that

(1) T (ξ, ζ)P (ζ) = P (ξ)T (ξ, ζ);
(2) if ws ∈ RP (ζ), and ξ > ζ in J , then

|T (ξ, ζ)ws| ≤ Ceβ(ξ−ζ)|ws|;
(3) if wu ∈ R(I − P (ζ)), and ξ < ζ in J , then

|T (ξ, ζ)wu| ≤ Ceα(ξ−ζ)|wu|;
(4) P (ξ) is continuous with respect to ξ.
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Notice that P (ξ) is not assumed to be uniformly bounded.
The linearization of (1.17) about uε(x) is

Ut + (Df(uε)− xI)Ux +D2f(uε)uε xU = εUxx.(5.2)

The complex number λ̃ is in the resolvent set of (5.2), provided the spectral equation

λ̃U + (Df(uε)− xI)Ux +D2f(uε)uε xU + h̃ = εUxx(5.3)

can be solved for U in terms of h̃, and the mapping h̃ → U is bounded.
In (5.3) let λ = ελ̃, ξ = x

ε , and h = εh̃. Then (5.3) becomes

λU + (Df(uε)− εξI)Uξ +D2f(uε)uε ξU + h = Uξξ.(5.4)

Let δ̃ > 0 be given. We shall show that for ε > 0 sufficiently small and Reλ ≥ −εδ̃,
(5.4) with h = 0 has, for an appropriate a > 0, pseudoexponential dichotomies on
the intervals ξ ≤ −a

ε and ξ ≥ a
ε . Although the projection operators P (λ, ε, ξ) of the

pseudoexponential dichotomies are not uniformly bounded, even for fixed (λ, ε), we
will show that the restriction of P (λ, ε, ξ) to the subspace of R

2n defined by setting
the first n coordinates equal to zero is uniformly bounded. Based on these results we
will show that for ε > 0 sufficiently small, the essential spectrum of (5.3) is in the
region Reλ̃ ≤ −δ̃.

Let W = (U, V ) and let

B̃(λ, ε, x) :=

(
0 I

λ+ εD2f(uε)uε x Df(uε)− xI

)
.(5.5)

Let

B(λ, ε, ξ) := B̃(λ, ε, εξ) =

(
0 I

λ+D2f(uε)uε ξ Df(uε)− εξI

)
.(5.6)

Then (5.4) can be recast as

Wξ = B(λ, ε, ξ)W + (0, h)
.(5.7)

Our proof that Wξ = BW has pseudoexponential dichotomies on the intervals
ξ ≤ −a

ε and ξ ≥ a
ε is motivated by the proof of Coppel’s Proposition 1 [7, p. 50]. This

result says, roughly speaking, that if the matrices B(ξ), ξ ∈ J , are uniformly bounded
and uniformly hyperbolic, and vary slowly with ξ, then (5.1) has an exponential
dichotomy on J . Our case differs in that the matrices B(λ, ε, ξ) are not uniformly
bounded, even for fixed (λ, ε). In addition, they have eigenvalues near 0 for small
ε, so we are interested in pseudoexponential dichotomies rather than exponential
dichotomies.

Let

Ã(λ, x) :=

(
0 I

λ Df(ur)− xI

)
.

Lemma 5.1. For δ > 0 sufficiently small, there are numbers β(δ) < α(δ) < 0 such
that if Reλ ≥ −δ and xn

0 ≤ x, then Ã(λ, x) has n eigenvalues with real parts less than
β(δ) and n eigenvalues with real parts between α(δ) and 0. As δ → 0, β(δ) approaches
a negative limit, and α(δ) is O(δ).
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Proof. Since (1.3) is strictly hyperbolic, the eigenvalues of Df(ur) are real and
distinct. Denote them by ν1 < · · · < νn and denote the corresponding eigenvectors
by r1, . . . , rn.

Let µ be an eigenvalue of Ã(λ, x). It is easily verified that

det(λ+ µ(Df(ur)− (x+ µ)I)) = 0.

Therefore one of the following equations must hold:

µ2 + (x− νj)µ− λ = 0, j = 1, . . . , n.

Thus there are two eigenvalues of Ã(λ, x) for each j,

µ±
j = −−x− νj

2
±
√(

x− νj

2

)2

+ λ,

with corresponding eigenvectors

(rj , µ
±
j rj)


.

For each x with xn
0 ≤ x, we have νn < x. Let p = 1

2 (x
n
0 − νn) > 0. Let δ be such

that 0 < δ < p2. Let

β(δ) = −p−
√

p2 − δ, α(δ) = −p+
√

p2 − δ =
−δ

p+
√

p2 − δ
.

Notice that β(δ) < α(δ) < 0, limδ→0 β(δ) = −2p < 0, and α(δ) is O(δ).
Let 1 ≤ j ≤ n, let Reλ ≥ −δ, and let xn

0 ≤ x. From Corollary 5.6 at the end of
this section, with r = pj =

1
2 (x− νj), µ

±
j must satisfy

Reµ−
j ≤ −pj −

√
p2

j − δ ≤ β(δ)

and

Reµ+
j ≥ −pj +

√
p2

j − δ =
−δ

pj +
√

p2
j − δ

≥ α(δ).(5.8)

We shall refer to the µ−
j , j = 1, . . . , n, as pseudostable eigenvalues and the µ+

j ,
j = 1, . . . , n, as pseudounstable eigenvalues.

We now construct projections associated to the pseudostable and pseudounstable
eigenvalues.

Let R = (r1 . . . rn) and M±(λ, x) = diag(µ±
1 . . . µ±

n ) be n × n matrices. The
eigenvectors of Ã(λ, x) form a 2n× 2n matrix

H(λ, x) :=

(
R 0

0 R

)(
In In

M− M+

)
.

The first n columns of H are eigenvectors (rj , µ
−
j rj)


 for the corresponding µ−
j ,

and the last n columns are eigenvectors (rj , µ
+
j rj)


 for the corresponding µ+
j . Let

D(λ, x) = M+ −M− = diag(µ+
j − µ−

j ). Then

H−1 =

( M+D−1 −D−1

−M−D−1 D−1

)(
R−1 0

0 R−1

)
.
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Let P̃ =
(

In 0
0 0

)
. The projection to the space spanned by the pseudostable

eigenvectors is

P (λ, x) = HP̃H−1 =

(
R 0

0 R

)(M+D−1 −D−1

−λD−1 −M−D−1

)(
R−1 0

0 R−1

)
.

Here we have used M−M+ = −λIn.
Proposition 5.2. Let δ̃ > 0. Let a > maxi=1,...,n |xi

0|. Then for ε > 0 suf-

ficiently small and Reλ ≥ −εδ̃, Wξ = BW has pseudoexponential dichotomies with
n-dimensional pseudostable and pseudounstable spaces on ξ ≤ −a

ε and on ξ ≥ a
ε .

The spectral gaps are 0 < β1ε < α1 for ξ ≤ −a
ε and β2 < α2ε < 0 for ξ ≥ a

ε . The
numbers αj and βj, j = 1, 2, are independent of λ. The constant C in the definition
of pseudoexponential dichotomy is independent of (λ, ε).

Proof. We will consider only the interval ξ ≥ a
ε , since the interval ξ ≤ −a

ε can be
handled similarly.

From section 3, on the interval x ≥ a, uε(x)−ur is 0 to any finite order in ε. Thus
on the interval ξ ≥ a

ε , Wξ = BW is approximately Wξ = AW , with W = (U, V ) and

A(λ, ε, ξ) := Ã(λ, εξ) =

(
0 I
λ Df(ur)− εξI

)
.

Let δ = δ(ε) = εδ̃. Choose ε̃ > 0 such that ε̃δ̃ is small enough that Lemma 5.1
applies. In the following we consider only ε with 0 < ε < ε̃.

Let M(λ, x) := diag(M−,M+). Then Ã = HMH−1. Consider the (λ, x)-
dependent change of variables W = HZ. After making the substitution x = εξ,
Wξ = AW becomes

Zξ = MZ −H−1HξZ.(5.9)

The differential equation (5.9) is a perturbation of the diagonalized system

Zξ = MZ.(5.10)

That is, z′j = µ−
j zj if 1 ≤ j ≤ n and z′j = µ+

j−nzj if n + 1 ≤ j ≤ 2n. For 0 < ε < ε̃,

system (5.10) has a pseudoexponential dichotomy with projection P̃ and spectral gap
β(δ) < α(δ) < 0, with δ = εδ̃.

It is easily verified that there is a constant C, independent of δ for δ sufficiently
small, such that

1 + |µ−
j |+ |µ+

j |
|√(x− νj)2 + 4λ| ≤ C

for all (j, λ, x), with j = 1, . . . , n, Reλ ≥ −δ and xn
0 ≤ x. Therefore |H−1| ≤ C

uniformly with respect to (λ, x). Moreover, using x = εξ, we have

∂µ±
j /∂ξ =

−ε± ε(x− νj)((x− νj)
2 + 4λ)−

1
2

2
= O(ε)

for all (j, λ, x). Therefore H−1Hξ = O(ε). From this, one can show by an argument
similar to the proof of roughness of exponential dichotomies that for sufficiently small
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ε, (5.9) also has a pseudoexponential dichotomy on ξ ≥ a
ε . The projection, which

we denote by Q̃(λ, ε, ξ), is O(ε) close to P̃ . For appropriate negative constants α2

and β2, the spectral gap is β2 < α2ε < 0. The constant C in the definition of
pseudoexponential dichotomy is independent of (λ, ε).

Because the system Wξ = AW is just (5.9) after a linear change of variables, it
also has a pseudoexponential dichotomy on ξ ≥ a

ε with spectral gap β2 < α2ε < 0.
The matrices A and B differ by O(ε) terms that are in the last n rows only.

Existence of a pseudoexponential dichotomy on ξ ≥ a
ε for Wξ = BW then follows by

an argument similar to the proof of roughness of exponential dichotomies.
The pseudoexponential dichotomy forWξ = AW has the projection Q̄ := HQ̃H−1

= H(P̃ +O(ε))H−1 = O(1 + ε|x|+√|λ|), which can be large for large ξ and |λ|.
Lemma 5.3. Let Q(λ, ξ) be the projection for the pseudoexponential dichotomy for

Wξ = BW . Then |Q(λ, ξ)(I − P̃ )| is uniformly bounded for all (λ, ξ) with Reλ ≥ −δ
and |ξ| ≥ a

ε .
Proof. We will show the result for Wξ = AW . The result for Wξ = BW then

follows by an argument similar to the proof of roughness of exponential dichotomies.
Observe that

Q̄(I − P̃ ) = HQ̃H−1(I − P̃ ),

|Q̄(I − P̃ )| ≤ |H||Q̃||H−1(I − P̃ )|.

Using the facts

|H| ≤ C(1 + |M−|+ |M+|),
|Q̃| ≤ C,

|H−1(I − P̃ )| ≤ C|(M+ −M−)−1|,

we obtain that |Q̄(I− P̃ )| is uniformly bounded with respect to (λ, ε, ξ) in the domain
of consideration.

Let γ be a constant such that γ > max{−α2, β1}. We now show that in the
function space C(γ,Rx), the region Reλ̃ ≥ −δ̃ consists of normal points only. Observe
that in the ξ-coordinate, the space is C(εγ,Rξ).

Without loss of generality, assume that x = 0 is between x1
0 and xn

0 . Consider
the nonhomogeneous equation (5.4), where h ∈ C(εγ,Rξ). This is equivalent to the
first-order system

Wξ = BW + (0, h)
.(5.11)

By Proposition 5.2, the associated homogeneous system of (5.11) has pseudoexponen-
tial dichotomies on ξ ≤ −a

ε and ξ ≥ a
ε . These dichotomies can be extended from

(−∞,−a
ε ] to R

− and from [aε ,∞) to R
+. The constants of the extended dichotomies

are ε dependent and may approach ∞ as ε → 0, but the exponents remain the same.
If, for certain λ, the n-dimensional pseudounstable space at ξ = 0− has a nontrivial
intersection with the n-dimensional pseudostable space at ξ = 0+, then λ is obviously
an eigenvalue.

Next assume that for some λ, the n-dimensional pseudounstable space at ξ = 0−
has trivial intersection with the n-dimensional pseudostable space at ξ = 0+, so that

RQ(0+)⊕R(I −Q(0−)) = R
n.(5.12)
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Let ws ∈ RQ(0+) and wu ∈ R(I − Q(0−)). Then the solution of (5.11) can be
expressed as

w(ξ) = T (ξ, 0)ws +

∫ ξ

0

T (ξ, ζ)Q(ζ)(0, h(ζ))
dζ

+

∫ ξ

∞
T (ξ, ζ)(I −Q(ζ))(0, h(ζ))
dζ, ξ > 0,

w(ξ) = T (ξ, 0)wu +

∫ ξ

0

T (ξ, ζ)(I −Q(ζ))(0, h(ζ))
dζ

+

∫ ξ

−∞
T (ξ, ζ)Q(ζ)(0, h(ζ))
dζ, ξ < 0.

(5.13)

Using Lemma 5.3 and the fact that (0, h(ζ))
 = (I− P̃ )(0, h(ζ))
, it is easy to show
that the integrals in (5.13) are convergent and define functions in C(εγ,R+

ξ ) for ξ > 0

and in C(εγ,R−
ξ ) for ξ < 0.

It remains to find ws ∈ RQ(0+) and wu ∈ R(I−Q(0−)) such that w(0−) = w(0+).
From (5.13),

wu − ws =

∫ 0

∞
T (0, ζ)(I −Q(ζ))(0, h(ζ))
dζ −

∫ 0

−∞
T (0, ζ)Q(ζ)(0, h(ζ))
dζ.(5.14)

By (5.12), there exist unique ws ∈ RQ(0+) and wu ∈ R(I −Q(0−)) such that (5.14)
holds.

Thus the spectral equation (5.4) has a unique solution U for each h. From (5.13),
we see that |U |εγ ≤ Cε|h|εγ . This shows that λ is in the resolvent of the linear partial
differential equation (5.4).

We have proved the following.
Theorem 5.4. Let δ̃ be a positive constant. Let γ > max{−α2, β1}. Then for

ε > 0 sufficiently small, system (5.3) on the space C2(γ,Rx) (resp., system (5.4) on
the space C2(εγ,Rξ)) has only normal points in the region Reλ̃ ≥ −δ̃ (resp., in the

region Reλ ≥ −δ := −εδ̃).
We end this section by stating a lemma that will also be used in the next section

and a corollary that was used in the proof of Lemma 5.1.
Lemma 5.5. Let λ = σ+ωi and z = x+yi be complex variables, with σ, ω, x, y ∈ R.

For a given real r �= 0, consider the mapping

z =
√

r2 + λ

and its inverse

λ = z2 − r2.

(1) For any a > 0, the mapping λ = z2 − r2 takes each vertical line Rez = ±a
bijectively onto the parabola

σ = a2 − r2 − ω2

4a2
.

The regions Rez ≥ a and Rez ≤ −a are each mapped bijectively onto the closure of
the region to the right of the parabola, i.e., onto

σ ≥ a2 − r2 − ω2

4a2
.
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Fig. 5.1. The mapping λ = z2 − r2 takes each vertical line Rez = ±a bijectively onto the
parabola C(η).

(2) For any η > −r2, let

C(η) :=
{
(σ, ω) : σ = η − ω2

4(r2 + η)

}
,

a parabola with vertex at (η, 0) that opens to the left. Then the mapping z =
√

r2 + λ

takes C(η) onto the vertical lines Rez = ±a = ±
√

r2 + η. The closure of the region

to the right of C(η), denoted R(η), is mapped onto |z| ≥ a =
√

r2 + η.
(3) If η > 0, then a > |r|; if −r2 < η < 0, then 0 < a < |r|.
See Figure 5.1.
Corollary 5.6. For any 0 < δ < r2, let η = −δ. Then the region Reλ ≥ −η is

in R(−δ) and is mapped by z =
√

r2 + λ into |Rez| ≥
√

r2 + η =
√

r2 − δ.

6. O(1
ε
) Eigenvalues. Let us first consider a time-dependent solution uε(x, t) of

(1.17) with initial data uε(x, 0) = φε(x) near the Riemann–Dafermos solution uε(x).
Thus, φε(x) has n sharp transition layers at x̄i

ε, with x̄i
ε near s̄i. Then we expect

that uε(x, t) has n sharp jumps near curves x̄i
ε(t), with x̄i

ε(0) = x̄i
ε. (If the Riemann–

Dafermos solution is stable, we expect that x̄i
ε(t) → xi(ε) as t → ∞.) Near the curve

x̄i
ε(t) we use the fast spatial variable ξ =

x−x̄i
ε(t)

ε . Then (1.17) becomes

εut = uξξ −
(
Df(u)− x̄i

ε(t)−
d

dt
x̄i

ε(t)− εξ

)
uξ.

Unless φε is a stationary solution of (1.17), we have ut = O( 1
ε ) near x̄i

ε; i.e., the system
exhibits very fast motion near x̄i

ε. It is common in singular perturbation problems to
have an initial layer in which there is motion with speed of order 1

ε for time of order
ε. Thus we expect the existence of eigenvalues of order 1

ε , with the support of the
eigenfunctions concentrated near the points x̄i

ε.
Assume now that in the singular layers, the solution quickly converges to traveling-

wave-like solutions. Then after the initial time layer, the solution behaves like convec-
tion in the regular layer coupled with traveling waves in singular layers. This motion
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occurs for t > O(ε) and has ut = O(1). Thus we expect to find eigenvalues of order 1
and related eigenfunctions.

We discuss fast eigenvalues of order 1
ε in this section. Slow eigenvalues of order 1

will be studied in the next section.
We recall that the linear variational system at a Riemann–Dafermos solution

uε(x) is

Ut + (Df(uε)− xI)Ux +D2f(uε)uε xU = εUxx.

We shall study this equation in the space C2(γ,Rx), γ > 0.
Eigenvalues λ̃ and corresponding eigenfunctions U(x) satisfy

λ̃U + (Df(uε)− xI)Ux +D2f(uε)uε xU = εUxx.(6.1)

In section 3 we found an expansion for uε(x) in the regular layer. We also found
expansions for the jump positions xi(ε), and for ui

ε(ξ) in singular layers centered

around xi(ε), in the stretched coordinate ξ = x−xi(ε)
ε . We shall use these expansions

in what follows.
We shall look for eigenvalues

λ̃ =

∞∑
j=−1

εjλj .(6.2)

Fast eigenvalues have λ−1 �= 0; slow eigenvalues have λ−1 = 0. We shall look for
corresponding eigenfunctions with expansions

UR
ε (x) =

∞∑
j=0

εjUR
j (x) in the regular layer,(6.3)

U i
ε(ξ) =

∞∑
j=0

εjU i
j(ξ) in the singular layer Si.(6.4)

In this section we look for fast eigenvalues, which have the form (6.2) with λ−1 �= 0.
We shall show that under certain conditions, fast eigenvalues have eigenfunctions

that are localized in a single singular layer. These eigenvalues correspond to zeros of
Evans functions on each singular layer.

We first consider the regular layer. We substitute (3.4), (6.2), and (6.3) into (6.1)
and expand in powers of ε. At order ε−1 (the lowest order) we obtain

λ−1U
R
0 = 0.(6.5)

Since λ−1 �= 0, UR
0 = 0.

At order ε0 we obtain

λ−1U
R
1 = terms involving UR

0 = 0.

Since λ−1 �= 0, UR
1 = 0. Similarly, higher-order expansions of eigenvalues and the

corresponding eigenfunctions are determined by a system of algebraic equations. In
particular, we find that UR

j = 0 for all j.
In the ith singular layer, we rewrite (6.1) as

ε(λ̃+ 1)U + ((Df(uε)− xI)U i)ξ = U i
ξξ, with x = xi(ε) + εξ.(6.6)
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We substitute (3.6), (6.2), and (6.4) into (6.6) and expand in powers of ε. At order
ε0 (the lowest order) we obtain

λ−1U
i
0 + ((Df(qi)− xi

0I)U
i
0)ξ = U i

0ξξ.(6.7)

Since UR
0 = 0, we must have U i

0(ξ) → 0 as ξ → ±∞. We note that (6.7) also arises
in the study of the stability of the traveling wave solution u(X,T ) = qi(X − xi

0T )
of the system of viscous conservation laws (1.1); it determines the eigenvalues and
eigenfunctions of the linearization of (1.1) at the traveling wave. Let us assume the
following:

(H1) For the complex number λ−1 �= 0, there is exactly one i, 1 ≤ i ≤ n, such that
(6.7) has a nontrivial solution U i

0(ξ) that satisfies the boundary conditions
U i

0(ξ) → 0 as ξ → ±∞.
(H2) For that i, λ−1 is a semisimple eigenvalue [20, p. 41] of the linear differential

operator

U i
0ξξ − ((Df(qi)− xi

0I)U
i
0)ξ(6.8)

on the Banach space of uniformly continuous functions that approach 0 as
ξ → ±∞, with the sup norm.

Consider first the index i of assumption (H1). Let λi
−1 := λ−1. Let the multiplic-

ity of λi
−1 as an eigenvalue of (6.8) be mi. Let φi

j(ξ), j = 1, . . . ,mi, be a basis for the

eigenspace. Then to lowest order, an eigenfunction associated to λ̃ =
∑∞

j=−1 λi
jε

j has

the form U i
0(ξ) =

∑mi

j=1 ci
jφ

i
j(ξ) in the ith singular layer for some constants {ci

j}mi
j=1

and is zero in the regular layer and other singular layers.
We now show how to determine the possible values of λi

0 and {ci
j}mi

j=1 using the

expansions to order ε1.
Later, we will show that in certain regions of λ-space, the limiting systems of

(6.7) at ξ = ±∞ have exponential dichotomies with n-dimensional unstable and
stable subspaces. The eigenfunction U i

0 corresponds to a nontrivial intersection of the
unstable subspace at ξ = −∞ and the stable subspace at ξ = ∞.

By [33], the adjoint system to (6.7) must also have an mi-dimensional space of
bounded solutions. Let {ψi

�}mi

�=1 be a basis for this space.
In the ith singular layer, at order ε1, we have

(6.9) (λi
0 + 1)U i

0 + ((D2f(qi)ui
1 − (xi

1 + ξ)I)U i
0)ξ

+ λi
−1U

i
1 + ((Df(qi)− xi

0I)U
i
1)ξ = U i

1ξξ.

The solvability condition of (6.9) can be obtained from Fredholm’s alternative [33]:

〈ψi
�, (λ

i
0 + 1)U i

0 + ((D2f(qi)ui
1 − (xi

1 + ξ)I)U i
0)ξ〉 = 0, C = 1, . . . ,mi.(6.10)

Recall that U i
0 =

∑mi

j=1 ci
jφ

i
j(ξ). Since λi

−1 is semisimple, without loss of generality,

we assume that 〈ψi
�, φ

i
j〉 = δ�

j .

Let Bi = {bi
�,j} be the mi ×mi matrix whose entries are

bi
�,j := 〈ψi

�, ((D
2f(qi)ui

1 − (xi
1 + ξ)I)φi

j)ξ〉.
The solvability condition (6.10) becomes

((λi
0 + 1)I − Bi)ci = 0,(6.11)
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Fig. 6.1. Eigenvalues to the right of C(η) and C(0).

where ci = (ci
1, . . . , c

i
mi

), and I is the mi × mi identity matrix. Therefore λi
0 + 1 is

an eigenvalue of the matrix B and (ci
1, . . . , c

i
mi

) is the corresponding eigenvector. The
algebraic system (6.11) determines the possible values of λi

0 and the corresponding ci.
We assume the following:

(H3) The eigenvalues of the matrix Bi are distinct.
Of course, (H3) holds automatically in the most common case, mi = 1.
From (H3), we have mi distinct eigenvalues λi

0 + 1, each with an eigenvector ci

corresponding to an eigenfunction U i
0 =

∑
ci
jφ

i
j . Thus, for ε > 0, λi

1 splits into mi

distinct eigenvalues.
Assuming (H3), higher-order expansions of eigenvalues and the corresponding

eigenfunctions in singular layers can be obtained by a straightforward formal proce-
dure, which will not be presented here.

Next, we consider i other than the one specified in assumption (H1). It is clear
that U i

0 = 0. From (6.9) we find that U i
1 = 0. Similarly, all U i

j = 0.

We refer to the O( 1
ε ) eigenvalues as local eigenvalues since the asymptotic expan-

sions of their associated eigenfunctions are localized in a single singular layer.
Our next object is to define, for the ith singular layer, an Evans function Ei(λ)

[11] whose zeros are complex numbers λi
−1 for which (6.7) has solutions that approach

0 as ξ → ±∞. For an arbitrary η > 0, we will define a parabola C(η) that opens to
the left and has its vertex at (η, 0), η > 0, in the complex plane. The parabolas C(η)
do not intersect. As η → 0+, they approach a parabola C(0) with vertex at (0, 0).
See Figure 6.1 Let the region to the right of C(η) be R(η). The Evans function Ei(λ)
can be defined on R(0). For each small η > 0, if λi

−1 is a zero of the Evans function

defined in R(η), then (6.7) has a nontrivial solution that satisfies U i
0(ξ) = O(e−η|ξ|).

As in section 5, let xi
0 = s̄i, i = 1, . . . , n. Let N > max{|x1

0|, |xn
0 |}. Thus the

compact interval [−N,N ] contains all the points xi
0, i = 1, . . . , n. Let x0

0 = −N and
xn+1

0 = N . For λ ∈ C and i = 0, . . . , n, define

Ãi(λ, x) =

(
0 I
λI Df(ūi

0)− xI

)
, x ∈ [xi

0, x
i+1
0 ],

where ūi
0 was defined in section 5.
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Lemma 6.1. For each η > 0, there exist β(η) < 0 < α(η) such that, for all
λ ∈ R(η), for all i = 0, . . . , n, and for all x in [xi

0, x
i+1
0 ], Ãi(λ, x) has n eigenvalues

less than β(η) and n eigenvalues greater than α(η). As η → 0, α and β are O(η).
Proof. Fix an index i between 0 and n. Let νi

1 < · · · < νi
n denote the eigenvalues

of Df(ūi
0). Let µ be an eigenvalue of Ãi(λ, x). Then one of the following equations

must hold:

µ2 + (x− νi
j)µ− λ = 0, j = 1, . . . , n.(6.12)

Let pi
j(x) :=

1
2 (x− νi

j), x ∈ [xi
0, x

i+1
0 ]. The solutions of (6.12) are

µi±
j (λ, x) := −pi

j ±
√

pi 2
j + λ.

The main branch of the square root is used.
Define

Ci
j(η) :=

{
(σ, ω) : σ = η − ω2

4(pi 2
j + η)

}
,

Ri
j(η) :=

{
(σ, ω) : σ ≥ η − ω2

4(pi 2
j + η)

}
,

αi
j := −pi

j +
√

pi 2
j + η,

βi
j := −pi

j −
√

pi 2
j + η.

The vertex of the parabola Ci
j(η) is at (σ, ω) = (η, 0). The parabola opens to the left.

Using Lemma 5.5 with p = pi
j , we have that if λ ∈ Ri

j(η), then

Reµi−
j ≤ βi

j < 0 < αi
j ≤ Reµi+

j , j = 1, . . . , n.

Define

p := max |pi
j(x)|, α := minαi

j , β := maxβi
j ,

C(η) := {(σ, ω)|σ = η − ω2

4(p2 + η)
,(6.13)

R(η) := ∩i,jRi
j(η) = {(σ, ω)|σ ≥ η − ω2

4(p2 + η)
.(6.14)

If λ ∈ R(η), then µi−
j < β < 0 < α < µi+

j for all i and j and for all x ∈ [xi
0, x

i+1
0 ].

From their definitions, αi
j = O(η) if pi

j > 0 and βi
j = O(η) if pi

j < 0. Notice that pi
j

can be both positive and negative. It follows that α and β are O(η).
Let x = εξ, and let Ai(λ, ε, ξ) := Ãi(λ, εξ). From the roughness theory of expo-

nential dichotomies [7] and Lemma 6.1, we derive the following proposition.
Proposition 6.2. For each i = 0, . . . , n and for each λ ∈ R(η), the slowly varying

system

Wξ = Ai(λ, ε, ξ)W, ξ ∈
[
−xi

0

ε
,
xi+1

0

ε

]
,
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has an exponential dichotomy with exponents β(η) < 0 < α(η). The unstable subspace
of the exponential dichotomy in each subinterval is n-dimensional. As η → 0, α and
β are O(η).

Using the information from Lemma 6.1, for each internal layer Si and for each
η > 0, we can define an Evans function Ei(λ) for λ ∈ R(η). More precisely, rewrite
(6.7) as

(
Uξ

Vξ

)
= B(λ, ξ)

(
U

V

)
, where B(λ, ξ) :=

(
0 I

λI +D2f(qi(ξ))qi
ξ Df(qi(ξ))− xi

0I

)
.

(6.15)

The coefficient matrix approaches Ã(λ, xi
0±) as ξ → ±∞ exponentially. By Lemma 6.1,

the limiting matrices Ã(λ, xi
0±) have n eigenvalues with real parts less than β(η) < 0

and the other n eigenvalues with real parts greater than α(η) > 0. We conclude
that for the system (6.15), there exist n linearly independent solutions {φ+

j (λ, ξ)}n
j=1

such that each approaches zero as ξ → ∞ and n linearly independent solutions
{φ−

j (λ, ξ)}n
j=1 such that each approaches zero as ξ → −∞.

The Evans function for the internal layer Si is defined as

Ei(λ) := e
−
∫ ξ

0
trB(λ,ζ)dζ

a(λ, ξ) ∧ b(λ, ξ) = a(λ, 0) ∧ b(λ, 0).(6.16)

Here a(λ, ξ) and b(λ, ξ) are n-forms associated to {φ−
j : i = 1, . . . , n} and {φ+

j : i =
1, . . . , n}, respectively [11], [1], [14].

Since formula (6.16) is independent of η, the Evans function is actually defined
on R(0). A zero of the Evans function corresponds to a complex number λi

−1 for
which (6.7) admits a nontrivial solution U i

0 that approaches zero as ξ → ±∞. The
same Evans function arises in the study of the stability of the traveling wave solution
u(X,T ) = qi(X − xi

0T ) of the system of viscous conservation laws (1.1).
According to [14], the Evans function extends analytically to a neighborhood of

the origin. We always have Ei(0) = 0; an eigenfunction is qi
ξ. By analyticity, there

are no other zeros of Ei(λ) near λ = 0. Therefore for any sufficiently small η > 0 and
δ > 0, all zeros of Ei(λ) in {λ : Reλ ≥ −δ} are contained in R(η) ∩ {λ : Reλ ≥ −δ}.

Theorem 6.3. Let η > 0 be given and let λi
−1 be a zero of Ei in the region

R(η) ∩ {λ : Reλ ≥ −δ}. Assume that conditions (H1)–(H3) are satisfied. Then there
exists ε0(η) > 0 such that if 0 < ε < ε0(η), then the root λi

−1 of Ei is associated to a
finite number of curves of fast eigenvalues (6.2).

To all orders in ε, the corresponding eigenfunction is zero in the regular layer
and in singular layers other than the ith. The pair (λi

−1, U
i
0) satisfies (6.7) and

the boundary condition U i
0 → 0 as ξ → ±∞. If the eigenspace of λi

−1 for (6.7) is
mi-dimensional, then U i

0 =
∑mi

j=1 ci
jφ

i
j , where {φi

j}mi
j=1 is a basis for the eigenspace.

The mi possible values of λi
0 and the corresponding vectors ci are determined by the

eigenvalue-eigenvector problem (6.11).
Proof. Sketch of the proof: The procedure for finding the correction terms ∆λ

and ∆U i is similar to that for finding λi
0 and ci, followed by a contraction mapping

argument. The necessary dichotomies in regular sublayers and singular layers come
from Lemma 6.1 and Proposition 6.2.

Remark 6.1. (1) We emphasize that Theorem 6.3 does not apply to λ−1 = 0.
Indeed, by Proposition 6.2, as η decreases, the exponential dichotomy weakens, so
the ε-interval on which the contraction mapping argument is valid shrinks. Thus,
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as η → 0, ε0(η) → 0. Moreover, as we shall see in the next section, there can be an
infinite number of curves of eigenvalues (6.2) whose asymptotic expansion begins with
λ−1 = 0; in the case n = 2, at least, this is typical.

(2) We also emphasize that we have not shown that for a fixed small ε > 0, all
eigenvalues near λ−1 = 0 are given by expansions of the form (6.2) with λ−1 = 0. We
note, however, that E′(0) is the product of two terms, one of which is nonzero if and
only if Majda’s inviscid stability condition holds [14], [3]. We expect that in the case
E′(0) �= 0, all eigenvalues near λ−1 = 0 are in fact given by such expansions.

7. O(1) Eigenvalues. We look for eigenvalues of (6.1) of the form

λ̃ =

∞∑
j=0

εjλj(7.1)

and the corresponding eigenfunctions U(x). We continue to work in the space C2(γ,Rx),
γ > 0. We rewrite (6.1) as

(λ̃+ 1)UR + ((Df(uε)− xI)UR)x = εUR
xx in the regular layer,(7.2)

ε(λ̃+ 1)U i + ((Df(uε)− xi(ε)− εξI)U i)ξ = U i
ξξ in the singular layer Si.(7.3)

Proposition 7.1. To any order of ε, λ̃ = −1 is an eigenvalue of (7.2) and (7.3).
The corresponding eigenfunctions form an n-dimensional eigenspace. The ith basis
vector is a homoclinic solution to 0 that, to lowest order in ε, equals qi

ξ in the ith
singular layer and is zero in other singular layers and in the regular layer.

Proof. We need to find expansions of UR
ε (x) and U i

ε(ξ) to the following system:

((Df(uε)− xI)UR)x = εUR
xx in the regular layer,(7.4)

((Df(uε)− xi(ε)− εξI)U i)ξ = U i
ξξ in the singular layer Si.(7.5)

By Lemma 7.2, proved below, for any j ≥ 0, UR
j (x) = 0 in the regular sublayer R0.

Let 1 ≤ i ≤ n. Assume that for all j ≥ 0, UR
j (x) = 0 in the regular sublayer

Ri−1. We shall show that U i
0(ξ) is a constant multiple of qi

ξ and that for every j ≥ 0,

UR
j (x) = 0 in the regular sublayer Ri. Then, by induction on i, the proposition is

proved.
In the singular layer Si, in order to match the solution in Ri−1, we look for a

bounded solution of (7.5) that approaches 0 as ξ → −∞. Integrating (7.5) from −∞
to ξ, we have

Uξ − (Df(uε)− xi(ε)− εξI)U = 0.(7.6)

By the definition of a Lax i-shock, at order ε0, this system has exponential dichotomies
for ξ ∈ R

±. By the definition of a structurally stable Riemann solution, the unstable
space of the dichotomy on R

− intersects the stable space of the dichotomy on R
+

transversely at ξ = 0. The intersection is a one-dimensional space spanned by qi
ξ. To

have a bounded solution, we must set U i
0(ξ) equal to a constant multiple of qi

ξ. Then

U i
0(ξ) approaches zero exponentially as ξ → ±∞.

At order ε1, (7.6) becomes

U i
1ξ − (Df(ui

0(ξ))− xi
0)U

i
1 = (D2f(ui

0(ξ))u
i
1 − (xi

1 + ξ)I)U i
0.(7.7)
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Since U i
0(ξ) = O(e−α|ξ|), the nonhomogeneous term of (7.7) is O((|ξ| + 1)e−α|ξ|),

which approaches zero as ξ → ±∞. Observe that the homogeneous part of (7.7)
has exponential dichotomies in R

±, and the unstable space of the dichotomy on R
−

intersects the stable space of the dichotomy on R
+ transversely at ξ = 0. Thus, if

we assume that U i
1(0) ⊥ U i

0(0), a unique solution U i
1 = O((|ξ| + 1)e−α|ξ|) can be

constructed using integral equations on R
± and the matching at ξ = 0. See [33], [25].

Proceeding inductively, at order εj , j > 1, we solve a nonhomogeneous system
for U i

j , with a nonhomogeneous term that is O((1 + |ξ|)je−α|ξ|). The solution U i
j =

O((1 + |ξ|)je−α|ξ|) approaches zero as ξ → ±∞.
We now consider the solution in the regular sublayer Ri. By matching, for all

j ≥ 0, UR
j (xi

0+) = U i
j(∞) = 0.

We show inductively that for all j ≥ 0, UR
j (x) = 0 in Ri. At order ε0, from (7.4),

(Df(u0)−xI)UR
0 (x) is constant in Ri. Since it is zero at xi

0+, (Df(u0)−xI)UR
0 (x) = 0

in Ri. Since Df(u0)−xI is nonsingular in each regular sublayer, we see that UR
0 = 0

in Ri.
Next, at order ε1, because UR

0 = 0, we can show similarly (Df(u0)−xI)UR
1 (x) is

constant in Ri, and hence that UR
1 = 0 in this sublayer. Proceeding inductively, we

see that for all j ≥ 0, UR
j = 0 in Ri.

We remark that in the viscous regularization (1.1) of a system of conservation
laws (1.3), traveling wave solutions always have a zero eigenvalue with eigenfunctions
U i

0 = ci
0q

i
ξ. Such an eigenfunction corresponds to a shift of the shock position from

Xi
0 to Xi

0 + ci
0. Using the self-similar variable x = X/T , the shock position is at

(Xi
0 + ci

0)/T , which differs from Xi
0/T by a decay term ci

0/T . Changing to the new
time t = lnT , the deviation of the shock position is ci

0e
−t. This explains why (6.1)

always has an eigenvalue (7.1) with λ0 = −1, and why the eigenspace is as stated in
Proposition 7.1.

To look for other slow eigenvalues, in the regular layer we substitute (3.4), (7.1),
and (6.3) into (6.1) and expand in powers of ε. In singular layers, we substitute (3.6),
(3.5), (7.1), and (6.4) into (6.6) and expand in powers of ε. For a fixed γ > 0, we shall
look for solutions such that

|U(x)| ≤ Ce−γ|x| in the sublayers R0 = (−∞, x1
0) and Rn = (xn

0 ,∞)(7.8)

for some constant C.
At order ε0 (the lowest order) we obtain

(λ0 + 1)UR
0 + ((Df(ūi

0)− xI)UR
0 )x = 0 in the sublayer Ri,(7.9)

((Df(qi)− xi
0I)U

i
0)ξ = U i

0ξξ in the singular layer Si.(7.10)

Lemma 7.2. To all orders of ε, eigenfunctions U(x) that satisfy (7.8) are zero in
the regular sublayers R0 = (−∞, x1

0) and Rn = (xn
0 ,∞).

Proof. First consider the lowest order ε0. UR
0 satisfies (7.9). We consider only R0.

Let νj , j = 1, . . . , n, be the eigenvalues of Df(ū0
0). Notice that for each j = 1, . . . , n,

νj − x > 0 in R0. Let lj , j = 1, . . . , n, be corresponding left eigenvectors. Let
vj(x) = 〈lj , U0(x)〉, x ∈ R0. Equation (7.9) becomes

λ0vj + (νj − x)vjx = 0, j = 1, . . . , n.

The general solution is vj = Cj(νj −x)λ0 . Since vj = O(e−γ|x|), γ > 0, we must have
Cj = 0 for all j. Therefore UR

0 (x) = 0 for all x ∈ R0.
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By an easy induction argument, we can show that UR
j = 0 for all j on

R0 ∪Rn.
In the ith singular layer, we look for a solution U i

0 of (7.10) connecting the adjacent
sublayers. Integration from ξ = −∞ to ξ = ∞, together with matching, yields jump
conditions that must be satisfied by UR

0 :

(Df(ūi
0)− xi

0I)U
R
0 (xi

0+)− (Df(ūi−1
0 )− xi

0I)U
R
0 (xi

0−) = 0, i = 1, . . . , n.(7.11)

By Lemma 7.2, UR
0 (x1

0−) = 0. Then setting i = 1 in (7.11) yields

UR
0 (x1

0+) = 0.(7.12)

Solving the ODE (7.9) on the sublayer R1 with the initial condition (7.12) yields
UR

0 (x) = 0 for all x ∈ R1. By induction, we have the following.
Proposition 7.3. Any solution of (7.9)–(7.10) that satisfies (7.8) has UR

0 (x) = 0
for all x in the regular layer.

Proposition 7.3 implies that U i
0(ξ) approaches 0 as ξ → ±∞ for all i = 1, . . . , n.

Then assumption (S2′) implies the following proposition.
Proposition 7.4. Any solution of (7.9)–(7.10) that satisfies (7.8) has, for i =

1, . . . , n, U i
0(ξ) = ci

0q
i
ξ(ξ), i = 1, . . . , n, for some constants ci

0.

The possible values of λ0, along with the corresponding values of ci
0, are deter-

mined at the ε1-order expansion.
At order ε1, we have

λ0U1 + (Df(ūi
0)− xI)U1x = 0 in the regular layer,(7.13)

UR
1 (x) = 0 for x ∈ R0 ∪Rn,(7.14)

(λ0 + 1)U i
0 + ((D2f(qi)ui

1 − (xi
1 + ξ)I)U i

0)ξ

+ ((Df(qi)− xi
0I)U

i
1)ξ = U i

1ξξ in the singular layer Si.
(7.15)

In (7.15), U i
0(ξ) = ci

0q
i
ξ(ξ), i = 1, . . . , n, for some constants ci

0 by Proposition 7.4.

In order to match with UR
1 (x) in the regular layer, U i

1(ξ) must satisfy the following
boundary conditions: U i

1(ξ) → UR
1 (xi

0−) exponentially as ξ → −∞ and U i
1(ξ) →

UR
1 (xi

0+) exponentially as ξ → ∞. Then, integrating (7.15) from ξ = −∞ to ξ = ∞
and using U i

0 = ci
0q

i
ξ, we have the jump condition

(7.16) (λ0 + 1)ci
0(ū

i
0 − ūi−1

0 ) + (Df(ūi
0)− xi

0I)U
R
1 (xi

0+)

− (Df(ūi−1
0 )− xi

0I)U
R
1 (xi

0−) = 0, i = 1, . . . , n.

By Lemma 3.1, condition (7.16) is sufficient for the existence of a solution U i
1(ξ) of

(7.15) that approaches the desired limits exponentially as ξ → ±∞. Thus if

(λ0, c
1
0, . . . , c

n
0 , U

R
1 (x))(7.17)

satisfies (7.13) with auxiliary conditions (7.14) and (7.16), then there exist U i
1(ξ),

1 ≤ i ≤ n, that satisfy (7.15). More precisely, if we write

U i
1(ξ) = U i⊥

1 (ξ) + ci
1q

i
ξ(ξ),

where U i⊥
1 (0) is orthogonal to qi

ξ(0), then (7.15) uniquely determines U i⊥
1 (ξ), but the

values of ci
1 are determined at the ε2-order expansion. In general, for each j ≥ 1, we
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write U i
j(ξ) = U i⊥

j (ξ) + ci
jq

i
ξ(ξ) with U i⊥

j (0) orthogonal to qi
ξ(0). Then the εj-order

expansion determines

(λj−1, c
1
j−1, . . . , c

n
j−1, U

1⊥
j (ξ), . . . , Un⊥

j (ξ)),

leaving (λj , c
1
j , . . . , c

n
j ) to be determined at the εj+1-order expansion. In order to

continue the expansion past the determination of (7.17), it is necessary to assume
that λ0 +1 is a semisimple eigenvalue of a certain operator. This will be described in
a later paper. See [25], [16] for related work on reaction-diffusion systems.

Proposition 7.5. For λ0 = 0 there is no nontrivial solution of (7.13) with
auxiliary conditions (7.14) and (7.16).

Proof. If λ0 = 0, then from (7.13), UR
1 is constant in each regular sublayer Ri,

i = 1, . . . , n− 1. Then (7.14) and assumption (S1) imply that the only solution of the
system (7.16) is UR

1 (x) ≡ 0 for x ∈ Ri, i = 1, . . . , n− 1, and ci
0 = 0 for all i.

Let V i(x) = (Df(ūi
0) − xI)UR

1 (x), x ∈ Ri for i = 0, . . . , n. Let si := (λ0 + 1)ci
0

and ∆i = ūi
0 − ūi−1

0 for i = 1, . . . , n. Each ∆i is nonzero. Equations (7.13), (7.16),
and (7.14) become

V i
x + (λ0 + 1)(Df(ūi

0)− xI)−1V i = 0, i = 1, . . . , n− 1,(7.18)

V i(xi
0)− V i−1(xi

0) = −si∆i, i = 1, . . . , n,(7.19)

V 0(x) ≡ 0 and V n(x) ≡ 0.(7.20)

Proposition 7.6. For λ0 �= −1, there is a nontrivial solution (7.17) of (7.13),
(7.14), (7.16) if and only if there is a nontrivial solution

(s1, . . . , sn, V 1, . . . , V n−1)

of the system (7.18)–(7.20).
In contrast to the O( 1

ε ) eigenvalues, which reflect the dynamics in a single internal
layer, the O(1) eigenvalues reflect the dynamics of the first-order linear ODE (7.18)
in the regular layer. Equations (7.19) and (7.20) provide boundary and interface
conditions for (7.18).

We remark that the system (7.18)–(7.20) is similar to the SLEP system introduced
by Nishiura and Fujii [35] to study the stability of internal layer solutions of reaction-
diffusion systems. We now derive the analogue of the SLEP matrix of Nishiura and
Fujii.

LetX(x, y, λ0) be the principal matrix solution of (7.18). Although the differential
equation (7.18) has jumps at xi

0, i = 1, . . . , n, the principal matrix solution X(x, y, λ0)
does not have jumps. If, for example, y < xj

0 < xj+1
0 < · · · < xi

0 < x, then

X(x, y, λ0) = X(x, xi
0, λ0) ·X(xi

0, x
i−1
0 , λ0) · · · · ·X(xj

0, y, λ0).

If we integrate (7.18) from x1
0− to xn

0+ and use the jump conditions (7.19) and the
initial and terminal conditions (7.20), we obtain

n∑
j=1

X(xn
0 , x

j
0, λ0)s

j∆j = 0.(7.21)

Let M(λ0) be the n×n matrix whose jth column is the n-vector X(xn
0 , x

j
0, λ0)∆

j , and
let s = (s1, . . . , sn). The matrix M(λ0) is the analogue of the SLEP matrix. Finding
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the lowest order expansion of slow eigenvalues is equivalent to finding solutions of

M(λ0)s = 0.(7.22)

Note that Proposition 7.5 implies that M(0) is nonsingular.
We shall consider the existence of slow eigenvalues λ0 other than −1 and 0 in

more detail only for the case n = 2. In this case system (7.18)–(7.20) becomes

Vx + (λ0 + 1)(Df(ū1
0)− xI)−1V = 0, x1

0 ≤ x ≤ x2
0,(7.23)

V (x1
0) = −s1∆1,(7.24)

V (x2
0) = −s2∆2.(7.25)

Since (7.23) is linear and ∆1 and ∆2 are nonzero, the system (7.23)–(7.25) has a
nontrivial solution if and only if the following boundary value problem has a solution:

Vx + (λ0 + 1)(Df(ū1
0)− xI)−1V = 0, x1

0 ≤ x ≤ x2
0,(7.26)

V (x1
0) = ∆1,(7.27)

V (x2
0) = a nonzero multiple of ∆2.(7.28)

Let the eigenvalues of Df(ū1
0) be ν1 < ν2, with corresponding eigenvectors r1 and

r2. Let

V (x) =
2∑

j=1

aj(x)rj ,

where aj(x) is a scalar function. The function aj(x) satisfies

a′j(x) +
λ0 + 1

νj − x
aj(x) = 0.(7.29)

Therefore the subspaces of R
2 spanned by r1 and r2 are invariant under (7.26).

Proposition 7.7. For n = 2, if ∆1 or ∆2 is a multiple of one of the rj, then
there is no λ0 such that the system (7.26)–(7.28) has a solution.

Proof. Without loss of generality, suppose ∆1 is a multiple of one of the rj . Then
∆2 cannot be a multiple of the same rj , since it is easy to check that in the case
n = 2, the Riemann solution u0(x) satisfies condition (S1) for structural stability if
and only if ∆1 and ∆2 are linearly independent. Therefore, since the subspaces of
R

2 spanned by r1 and r2 are invariant under (7.26), the system (7.26)–(7.28) cannot
have a solution.

The case in which neither ∆1 nor ∆2 is a multiple of one of the rj is covered by
the following result.

Proposition 7.8. For n = 2, let

∆i =

2∑
j=1

di
jrj , i = 1, 2,

with all di
j nonzero. Then there is a countably infinite set of λ0 for which (7.26)–

(7.28) has a solution. All such λ0 have the same real part and have nontrivial UR
1

(hence they are nonlocal). Explicit formulas for λ0 are given in (7.36).
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Proof. The solution of the initial value problem (7.23), (7.24) is

aj(x) =

(
x− νj

x1
0 − νj

)λ0+1

d1
j , j = 1, 2.(7.30)

Notice that x− νj and x1
0 − νj have the same sign in the interval x1

0 ≤ x ≤ x2
0, so the

number being raised to a power is positive. The function tλ0+1 used in (7.30) is in
general multivalued. Since we must have aj(x

1
0) = d1

j , j = 1, 2, the branch used must

be the one for which 1λ0+1 = 1.
The boundary condition (7.28) implies that

det

(
a1(x) d2

1

a2(x) d2
2

)
= 0 when x = x2

0,(7.31)

which reduces to (
(x− ν1)(x

1
0 − ν2)

(x1
0 − ν1)(x− ν2)

)λ0+1

=
d1
2d

2
1

d1
1d

2
2

when x = x2
0.(7.32)

Again, the branch of tλ0+1 used in (7.32) is the one for which 1λ0+1 = 1. In fact, let
us define a change of variables by

t =
(x− ν1)(x

1
0 − ν2)

(x1
0 − ν1)(x− ν2)

, x1
0 ≤ x ≤ x2

0.(7.33)

Then t is an increasing function of x on the interval x1
0 ≤ x ≤ x2

0, and t(x1
0) = 1. Let

b = t(x2
0) =

(x2
0 − ν1)(x

1
0 − ν2)

(x1
0 − ν1)(x2

0 − ν2)
> 1, d =

d1
2d

2
1

d1
1d

2
2

�= 0.(7.34)

Then (7.32) reduces to bλ0+1 = d or

(λ0 + 1) log b = log d.(7.35)

Let the main branch of logarithm for which log 1 = 0 be denoted lnx. We must use
the main branch log b = ln b in order to have 1λ0+1 = 1 for all complex λ0 . However,
in calculating log d, we may use any branch of the natural logarithm.

Since b > 1 is real and d is real and nonzero, there are two cases.
1. d > 0. Then log d = ln d+ 2nπi, n ∈ Z.
2. d < 0. Then log d = ln |c|+ (2n+ 1)πi, n ∈ Z.
Substituting log d into (7.35), we find

Reλ0 = −1 + ln |d|
ln b

for d �= 0,

Imλ0 =

{
2nπ
ln b if d > 0,

(2n+1)π
ln b if d < 0.

(7.36)

Remark 7.1. With n = 2, consider a Riemann solution that consists of two weak
Lax shocks connecting the states ū1

0, ū2
0, and ū3

0. For the corresponding Riemann–
Dafermos solution, Proposition 7.8 implies that the nonlocal slow eigenvalues are
stable. In fact, for i = 1, 2, ūi

0 − ūi−1
0 is approximately parallel to ri. Therefore

|d1
2| << |d1

1| and |d2
1| << |d2

2|, so |d| << 1. Hence Reλ0 < −1.
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8. Slow eigenvalues and inviscid stability conditions. Let us consider the
inviscid system (1.3) and its Riemann solution (2.4). In studying the linearized sta-
bility of (2.4) as a solution of (1.3), one considers the following system [22]:

UT +




Df(ū0)UX = 0 for X < s̄1T ,

Df(ūi)UX = 0 for s̄iT < X < s̄i+1T , i = 1, . . . , n− 1,

Df(ūn)UX = 0 for s̄nT < X,

(8.1)

(8.2) (Df(ūi)− s̄iI)U(s̄iT+, T )− (Df(ūi−1)− s̄iI)U(s̄iT−, T )

− Si(T )(ūi − ūi−1) = 0, i = 1, . . . , n,

where

U(s̄iT+, T ) = lim
X→s̄iT+

U(X,T ), U(s̄iT−, T ) = lim
X→s̄iT−

U(X,T ).(8.3)

In each sector, the matrix Df(ūi) is constant, so solutions (which may include
discontinuities) propagate along straight-line characteristics. Along the linesX = s̄iT ,
data arrive from both sides along incoming characteristics, and one uses (8.2) to solve
for Si and for the continuation of the solution along outgoing characteristics. Majda’s
stability condition—which is that for each i = 1, . . . , n, the eigenvectors for the largest
i − 1 eigenvalues at ūi−1, the eigenvectors for the smallest n − i eigenvalues at ūi,
and the vector ūi − ūi−1 should constitute a basis for R

n—is just the condition upon
which one can do this.

In (8.1) and (8.2), let us make the change of variables x = X
T , t = lnT . We obtain

Ut +



(Df(ū0)− xI)Ux = 0 for x < s̄1,

(Df(ūi)− xI)Ux = 0 for s̄i < x < s̄i+1, i = 1, . . . , n− 1,

(Df(ūn)− xI)Ux = 0 for s̄n < x,

(8.4)

(8.5) (Df(ūi)− s̄iI)U(s̄i+, t)− (Df(ūi−1)− s̄iI)U(s̄i−, t)

− Si(t)(ūi − ūi−1) = 0, i = 1, . . . , n,

where

U(s̄i+, t) = lim
x→s̄i+

U(x, t), U(s̄i−, t) = lim
x→s̄i−

U(x, t).(8.6)

The characteristics are no longer straight lines, but the lines X = s̄iT become x = s̄i,
so it is reasonable to look for eigenvalues and eigenfunctions. A solution of (8.4), (8.5)
of the form U(x, t) = eλtU(x), Si(t) = eλtSi satisfies

λU +



(Df(ū0)− xI)Ux = 0 for x < s̄1,

(Df(ūi)− xI)Ux = 0 for s̄i < x < s̄i+1, i = 1, . . . , n− 1,

(Df(ūn)− xI)Ux = 0 for s̄n < x,

(8.7)

(8.8) (Df(ūi)− s̄iI)U(s̄i+)− (Df(ūi−1)− s̄iI)U(s̄i−)
− Si(ūi − ūi−1) = 0, i = 1, . . . , n,
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where

U(s̄i+) = lim
x→s̄i+

U(x), U(s̄i−) = lim
x→s̄i−

U(x).(8.9)

If we add the conditions U(x) = 0 for x < s̄1 and s̄n < x, then (8.7)–(8.8) is equivalent
to the system (7.13)–(7.14), (7.16) that was studied in section 7.

Assuming Majda’s stability condition, one can interpret (8.1)–(8.2) or (8.4)–(8.5)
as describing the scattering of incoming small shock waves by the large shock waves
that comprise the original Riemann solution. Several authors have found sufficient
conditions that guarantee that, in some norm, the total weight of the scattered shocks
is smaller than the total weight of the incoming shocks [42], [4], [5], [49], [22], [21]. For
the case n = 2, the BV stability condition reads as follows in the notation of section
7 [49], [21]. Recall that xi

0 = s̄i and ūi
0 = ūi. Let

(ν1I −Df(ū1))−1(ū1 − ū0) = a1
1r1 + a1

2r2,(8.10)

(Df(ū1)− ν2I)
−1(ū2 − ū1) = a2

1r1 + a2
2r2.(8.11)

Then ∣∣∣∣a2
1a

1
2

a1
1a

2
2

∣∣∣∣ < 1.(8.12)

As in section 7, for i = 1, 2 let ∆i = ūi − ūi−1 = di
1r1 + di

2r2, and define b and d by
(7.34). Elementary computations show that

a2
1a

1
2

a1
1a

2
2

=
d2
1d

1
2(s̄

1 − ν1)(ν2 − s̄2)

d1
1d

2
2(s̄

1 − ν2)(ν1 − s̄2)
=

d

b
,(8.13)

and, since b > 1,

|d|
b

< 1 if and only if − 1 +
ln |d|
ln b

< 0.(8.14)

Thus the n = 2 BV inviscid stability condition holds if and only if all slow eigenvalues
have negative real part.

9. Two Lax shocks in the p-system: An example. We consider the p-
system

ut − vx = 0,

vt + p(u)x = 0,

with p a smooth function, p′(u) < 0 for all u, and p′′(u) �= 0 for all u.
The p-system has been used as a model for isentropic gas dynamics with p(u) =

ku−γ , k > 0, γ ≥ 1 [37], [43]. The p-system is strictly hyperbolic with eigenvalues
and eigenvectors

ν1(u, v) = −
√
−p′(u) < 0, r1(u, v) = (1,

√
−p′(u)),

ν2(u, v) =
√
−p′(u) > 0, r2(u, v) = (1,−

√
−p′(u)).

Consider a Riemann solution (u0, v0)(x) that consists of two Lax shocks:

(u0, v0)(x) =



(ū0, v̄0) for x < s̄1,

(ū1, v̄1) for s̄1 < x < s̄2,

(ū2, v̄2) for s̄2 < x.
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Theorem 9.1. To lowest order in ε, the corresponding Riemann–Dafermos solu-
tion has exactly the following slow eigenvalues: (1) a local eigenvalue with λ0 = −1;
(2) a family of nonlocal eigenvalues with λ0 = −2 + nω0i, n ∈ Z, ω0 > 0.

Proof. We fix the middle state (ū1, v̄1) and look for (u, v) and s such that the
Rankine–Hugoniot condition

−(v̄1 − v)− s(ū1 − u) = 0, p(ū1)− p(u)− s(v̄1 − v) = 0

is satisfied. The solution set is two curves: Γ1 given by

v = φ(u) = v̄1 − sgn(u− ū1)
√
(u− ū1)(p(ū1)− p(u)),

s = s1(u) = −
√

p(ū1)− p(u)

u− ū1
,

and Γ2 given by

v = ψ(u) = v̄1 + sgn(u− ū1)
√
(u− ū1)(p(ū1)− p(u)),

s = s2(u) =

√
p(ū1)− p(u)

u− ū1
.

Γ1 is a curve of 1-shocks, Γ2 a curve of 2-shocks. Using Lax’s condition for an i-shock,
we easily check the following:

(1) If (u, v, s1) ∈ Γ1, then there is a 1-shock from (u, v) to (ū1, v̄1) with speed s1

if and only if u− ū1 > 0.
(2) If (u, v, s2) ∈ Γ2, then there is a 2-shock from (ū1, v̄1) to (u, v) with speed s2

if and only if u− ū1 > 0.
Therefore we have, in the notation of section 7,

∆1 = (ū1 − ū0, v̄1 − v̄0) = (ū1 − ū0, v̄1 − φ(ū0)), ū0 − ū1 > 0,

∆2 = (ū2 − ū1, v̄2 − v̄1) = (ū2 − ū1, ψ(ū2)− ū1), ū2 − ū1 > 0.

Let

q(u) =

√
(u− ū1)(p(ū1)− p(u))

−p′(ū1)
.

Then

∆i =

2∑
j=1

di
jrj , i = 1, 2,

with

d1
1 =

1

2
(−(ū0 − ū1)− q(ū0)), d1

2 =
1

2
(−(ū0 − ū1) + q(ū0)),

d2
1 =

1

2
(ū2 − ū1 − q(ū2)), d2

2 =
1

2
(ū2 − ū1 + q(ū2)).

Therefore

d =
d1
2d

2
1

d1
1d

2
2

=
(ū0 − ū1 − q(ū0))(ū2 − ū1 − q(ū2))

(ū0 − ū1 + q(ū0))(ū2 − ū1 + q(ū2))
.

By Lemma 9.2 below, the numerator of this fraction is positive. Therefore d > 0.
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Let νi = νi(ū
1, v̄1), i = 1, 2. Then

b =
(s̄2 − ν1)(s̄

1 − ν2)

(s̄1 − ν1)(s̄2 − ν2)
> 1.

An easy computation shows that b = 1
d . The result now follows from Proposi-

tion 7.8.
Lemma 9.2. For u > ū1, the sign of u− ū1 − q(u) is independent of u.
Proof. We shall assume p′′(u) > 0 for all u. The case p′′(u) < 0 for all u is similar.
Let u > ū1. Since p′′ > 0 everywhere,

p′(ū1) <
p(ū1)− p(u)

ū1 − u
.

Therefore

(u− ū1)2 >
(u− ū1)(p(ū1)− p(u))

−p′(ū1)
,

so u− ū1 > q(u).
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