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Abstract. We present a numerical method, based on the Dafermos regularization,
for computing a one-parameter family of Riemann solutions of a system of conser-
vation laws. The family is obtained by varying either the left or right state of the
Riemann problem. The Riemann solutions are required to have shock waves that
satisfy the viscous profile criterion prescribed by the physical model. The system is
not required to satisfy strict hyperbolicity or genuine nonlinearity; the left and right
states need not be close; and the Riemann solutions may contain an arbitrary num-
ber of waves, including composite waves and nonclassical shock waves. The method
uses standard continuation software to solve a boundary-value problem in which the
left and right states of the Riemann problem appear as parameters. Because the
continuation method can proceed around limit point bifurcations, it can sucessfully
compute multiple solutions of a particular Riemann problem, including ones that
correspond to unstable asymptotic states of the viscous conservation laws.

1. Introduction.

1.1. Conservation laws. A system of conservation laws

ut + f(u)x = 0, (1.1)

where u(x, t) ∈ R
n and f : R

n → R
n, admits solutions with jump discontinuities

called shock waves. The simplest take the form

u(x, t) =

{

u− for x < st,

u+ for x > st.
(1.2)

For the shock wave (1.2) to be a weak solution of system (1.1), the triple (u−, s, u+)
must satisfy the Rankine-Hugoniot condition

f(u+)− f(u−)− s(u+ − u−) = 0. (1.3)
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However, too many discontinuities of the form (1.2) satisfy condition (1.3). The
meaningful discontinuities must be selected based on physical modeling.

A viscous regularization of system (1.1) is a partial differential equation of the
form

ut + f(u)x = ε(B(u)ux)x, (1.4)

where ε > 0 and B(u) is an n × n matrix for which all eigenvalues have positive
real part. A system of conservation laws (1.1) is an approximation of a viscous
system (1.4) obtained by setting ε = 0 in a situation where ε is small. Courant
and Friedrichs [4] and Gelfand [8] therefore proposed that, if system (1.1) arises in
this way, then a shock wave (1.2) should be admitted as a solution of system (1.1)
provided that Eq. (1.4) has a traveling wave solution

uε(x, t) = û

(

x− st

ε

)

(1.5)

that satisfies the boundary conditions

û(−∞) = u−, û(+∞) = u+. (1.6)

Such a solution uε converges to the shock wave (1.2) as ε → 0+. If a traveling
wave solution of Eq. (1.4) exists, then the shock wave (1.2) is said to satisfy the
viscous profile criterion for B(u). A traveling wave solution of Eq. (1.4) satisfying
the boundary conditions (1.6) exists if and only if the traveling wave ODE

u̇ = B(u)−1 [f(u)− f(u−)− s(u− u−)] (1.7)

has an equilibrium at u+ (it automatically has one at u−) and a connecting orbit
from u− to u+.

Suppose that Df(u−) is strictly hyperbolic (i.e., its eigenvalues are real and
distinct) and the genuine nonlinearity condition [21] is satisfied at u−. Then for
each eigenvalue λ of Df(u−), there exists a curve u+(s), defined for s near λ, with
u+(λ) = u−, and tangent at u− to the corresponding eigendirection of Df(u−),
such that each triple (u−, s, u+(s)) satisfies the Rankine-Hugoniot condition (1.3)
(see, e.g., Ref. [21]). If, in addition, B(u−) is strictly stable with respect to Df(u−),
then for s sufficiently close to λ, there is a connecting orbit of the traveling wave
ODE (1.7) joining u− to u+(s) if and only if s < λ [16]. Thus, for u+ close to u−,
existence of the connecting orbit is rather insensitive to the viscosity matrix that is
used. However, for a solution (u−, s, u+) of the Rankine-Hugoniot condition (1.3)
with u+ farther from u−, existence of a connecting orbit depends strongly on B(u).

1.2. Riemann problems. The most basic initial-value problem for the system of
conservation laws (1.1) is the Riemann problem:

u(x, 0) =

{

uL for x < 0,

uR for x > 0.
(1.8)

In conformance with the scale-invariance of system (1.1) and the initial condi-
tions (1.8), a solution is expected to have the form u(x, t) = û(ξ), where ξ = x/t,
consisting of constant parts, continuously changing parts (rarefaction waves), and
jump discontinuities (shock waves). Shock waves occur when

lim
ξ→s−

û(ξ) = u− 6= u+ = lim
ξ→s+

û(ξ). (1.9)

One requires each such triple (u−, s, u+) to satisfy the viscous profile criterion for
B(u).
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It is known that, even when shock waves are required to satisfy the viscous profile
criterion, certain Riemann problems can have multiple solutions. At first sight, this
fact is disconcerting, because the Riemann problem is formally an initial-value prob-
lem. In fact, the Riemann initial data for the invicid conservation laws should be
regarded as an idealization of smooth initial data for the viscous conservation laws.
In this light, there are two competing length scales in the initial-value problem—the
viscous length scale and length scale of smoothing of initial data—and the limiting
solution obtained as these length scales vanish can depend on the manner in which
the limit is taken.

However, solutions of Riemann problems can also be regarded as asymptotic
solutions of system (1.4), and the occurrence of multiple asymptotic solutions is not
surprising. More precisely, let u be a solution of the initial/boundary-value problem
for system (1.4) with initial and boundary conditions

u(x, 0) = u0(x), (1.10)

lim
x→−∞

u(x, t) = uL, lim
x→∞

u(x, t) = uR, (1.11)

where the initial data u0 is required to satisfy

lim
x→−∞

u0(x) = uL, lim
x→∞

u0(x) = uR. (1.12)

Define ũ(ξ, t) = u(ξt, t). Then it is believed that, for each fixed ξ, ũ(ξ, t) typically
approaches a limit û(ξ) as t →∞, where û solves the Riemann problem (1.1), (1.8)
with shock waves that satisfy the viscous profile criterion for B(u). This has been
proved in some cases (see, e.g., Refs. [18, 12, 9, 14, 15, 23, 13, 25]) and is seen to
occur in numerical simulations.

From this perspective, multiple solutions of a Riemann problem represent multi-
ple asymptotic solutions of the initial/boundary-value problem (1.4), (1.10), (1.11),
which are approached for different initial conditions u0. For an example with three
Riemann solutions, Azevedo, Marchesin, Plohr, and Zumbrun [1] have performed
analysis and numerical calculations that confirm this picture. Two of the Riemann
solutions appear to be stable, in that they attract all nearby solutions; the third
appears to be the limit of a codimension-one set of initial conditions, which forms
the boundary between the domains of attraction of the first two solutions.

1.3. Numerical Riemann solvers. There are many numerical Riemann solvers
specialized for particular systems of conservation laws. However, for general sys-
tems, there are only a few numerical methods for finding Riemann solutions with
shock waves that satisfy a given viscous profile criterion:

(1) Solve the viscous regularization (1.4) for some choice of initial condition sat-
isfying conditions (1.11) and observe the time-asymptotic limit. This method
is limited to finding asymptotic solutions that are stable. A variant of this
method, which we mention below, is used in Ref. [1].

(2) Piece together wave curves. For n = 2, this can be done using the interactive
Riemann Problem Package of Isaacson, Marchesin, Plohr et al. This method
yields, in addition to Riemann solutions, a good understanding of the waves
that they comprise, but it is labor-intensive.

In this paper, we propose another numerical method for finding Riemann solutions.
This method finds one-parameter families of Riemann solutions, including unstable
ones, and is therefore especially useful for studying the bifurcations of Riemann
solutions.
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Remark . One could solve the inviscid conservation laws (1.1) with Riemann initial
data (1.8), but such an approach ignores the viscosity matrix B(u); in problems
where the shock waves depend sensitively on the viscosity, the computed solutions
are wrong.

An analogy to autonomous ordinary differential equations ẏ = g(y), where y(t) ∈
R

m, is perhaps helpful here. A solution of such an ODE often approaches an
equilibrium as t →∞. Therefore one way to find an equilibrium is to solve an initial-
value problem and observe the time-asymptotic limit. An equilibrium found this
way is usually asymptotically stable. This method of finding equilibria is analogous
to the method (1) above for finding Riemann solutions.

A second numerical approach to finding equilibria of autonomous ODEs applies
to one-parameter families ẏ = g(y, λ), where y(t) ∈ R

m and λ ∈ R. The equilibria
satisfy g(y, λ) = 0 and typically form a curve in (y, λ)-space. Suppose that, for some
λ0, an equilibrium y0 of ẏ = g(y, λ0) is known, so that g(y0, λ0) = 0. (The solution
(y0, λ0) might be available because the equation g(y, λ0) = 0 is simple enough to be
solved analytically, or because it has been solved numerically by Newton’s method,
or because a stable equilibrium has been found by solving an initial-value problem
and observing the time-asymptotic limit.) Then the branch of the curve g(y, λ) = 0
through (y0, λ0) can be computed by a continuation method. Continuation methods
work by approximating the tangent vector to the curve, moving a little distance
along the tangent vector, and then using Newton’s method to return to the curve.
They can be designed to accurately compute solutions even near limit points of the
curve g(y, λ) = 0. Thus, if the starting point (y0, λ0) is a stable equilibrium, they
can follow the curve g(y, λ) = 0 around a limit point to a portion of the curve that
consists of unstable equilibria.

Continuation methods can also be used to solve ODE boundary-value problems
that depend on a parameter. The reason is that a BVP can be regarded as an
equation of the form G(y, λ) = 0, where y lies in a function space. The function
space can be approximated by a finite-dimensional one (for example, by discretizing
the ODE), and a known solution (y0, λ0) can be continued as before.

The numerical method described in this paper is analogous to the continuation
method for computing equilibria of a one-parameter family of ODEs. Indeed, an
approximate Riemann solution can be regarded as a solution of a boundary-value
problem for an ODE, and a standard continuation software package for continuing
solutions of BVPs can then used.

1.4. Dafermos regularization. The ODE that we solve comes from Dafermos

regularization. Given a viscous regularization (1.4) of a system of conservation
laws (1.1), the associated Dafermos regularization is

ut + f(u)x = εt(B(u)ux)x. (1.13)

Like the Riemann problem, but unlike the viscous regularization (1.4), system (1.13)
is scale-invariant and therefore has many solutions of the form u(x, t) = û(ξ) with
ξ = x/t. Such a solution satisfies the Dafermos ODE

[Df(u)− ξI ] u′ = ε [B(u)u′]
′

, (1.14)

where the prime denotes differentiation with respect to ξ. Corresponding to the
Riemann data (1.8), we impose the boundary conditions

u(−∞) = uL, u(+∞) = uR. (1.15)
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For the case B(u) ≡ I , Dafermos conjectured that solutions of the boundary-
value problem (1.14)–(1.15) converge to the corresponding Riemann solution as
ε → 0+. This conjecture has been proved for uR close to uL by Tzavaras [24], who
takes a sequence of solutions as ε → 0+, shows that a subsequence converges, and
demonstrates that the limit is a Riemann solution.

Recently, Szmolyan [22] studied the boundary-value problem (1.14)–(1.15) for the
case B(u) ≡ I using geometric singular perturbation theory. His idea is to regard
a Riemann solution as a singular solution (ε = 0) and then show that, for small
ε > 0, there is a nearby solution. Szmolyan proved that for small ε > 0, a classical
Riemann solution consisting of n waves, each being a rarefaction or compressive
shock wave, has a solution of (1.14)–(1.15) nearby. There is no requirement that
uL and uR be close.

In our view, a key advantage of the Dafermos regularization is that it applies
to general B(u). Schecter [20] makes this point explicit and shows that any struc-
turally stable Riemann solution [19] consisting entirely of shock waves that satisfy
the viscous profile criterion for a given B(u) has, for small ε > 0, a solution of
Eqs. (1.14)–(1.15) nearby. Transitional, or undercompressive, shock waves, which
are sensitively dependent on B(u), are explicitly allowed. It is likely that, by ana-
lyzing rarefaction and composite waves, one can prove that any structurally stable
Riemann solution whose shock waves satisfy the viscous profile criterion has solu-
tions of the corresponding Dafermos regularization nearby.

1.5. Continuation method. The preceding discussion motivates trying to ap-
proximate Riemann solutions by numerically solving Eqs. (1.14)–(1.15) for small
ε > 0. We have implemented this idea using AUTO [6], which has been successfully
used for many years to conduct continuation and bifurcation studies of ODEs.

We first convert the second-order ODE (1.14) to a first-order ODE by defining
v = εB(u)u′:

εu′ = B(u)−1v, (1.16)

εv′ = [Df(u)− ξI ] B(u)−1v. (1.17)

To use AUTO, we make the ξ-interval finite, namely −T ≤ ξ ≤ T , and adopt the
boundary conditions

u(−T ) = uL, u(T ) = uR. (1.18)

The interval −T ≤ ξ ≤ T must be large enough so that the true solutions for
ξ ∈ R are close enough to being constant for |ξ| ≥ T . Since AUTO requires that
boundary-value problems be defined on the interval [0, 1], we let ζ = (ξ + T )/(2T ).
Then the system (1.16)–(1.17) becomes

du

dζ
=

2T

ε
B(u)−1v, (1.19)

dv

dζ
=

2T

ε
[Df(u)− ξI ] B(u)−1v, (1.20)

where ξ = −T + 2Tζ, and the boundary conditions (1.18) become

u(0) = uL, u(1) = uR. (1.21)

We take (ε, T, uL, uR) to be the vector of parameters, so that AUTO can perform
continuation in ε, T , or any component of uL or uR. We initialize the parameters
by choosing ε, T , and uL and setting uR = uL. One corresponding solution of the



970 SCHECTER, PLOHR, AND MARCHESIN

boundary-value problem (1.19)–(1.21) is u(ζ) ≡ uL, v(ζ) ≡ 0. The continuation
proceeds from this exact solution.

AUTO discretizes ODE boundary-value problems by the method of orthogonal
collocation using piecewise polynomials with 2 to 7 collocation points per mesh
interval. The mesh automatically adapts to equidistribute the local discretization
error. In the context of the Dafermos ODE, this means that mesh points automat-
ically concentrate near shock waves.

An important feature of AUTO is that continuation proceeds around limit point
bifurcations without difficulty. This sometimes allows AUTO to locate multiple
solutions of a single Riemann problem, including solutions that are unstable for the
corresponding viscous regularization.

2. Computations. In this section we describe some numerical experiments on
the system studied in [1]. This system was chosen because (1) it has Riemann
data with multiple solutions; (2) for such data there are published numerically
computed multiple Riemann solutions, as well as published numerical experiments
indicating that they are of different stability; and (3) the system’s Riemann solutions
include, in addition to classical shock waves and rarefactions, both homoclinic and
heteroclinic transitional shock waves, composite waves, and shock waves with an
end state in an elliptic region.

Let u = (u1, u2), v = (v1, v2), uL = (u1L, u2L), and uR = (u1R, u2R). As in [1],
let

f(u) = f(u1, u2) =

(

− 1
2u2

1 + 1
2u2

2 − 0.12u1 + 0.23u2

u1u2 − 0.23u1 − 0.12u2

)

(2.1)

and

B(u) = B(u1, u2) =

(

1 0.7
0.7 1

)

−1

. (2.2)

We are interested in Riemann solutions of (1.1) for which the shock waves satisfy
the viscous profile criterion for the viscous regularization (1.4). We approximate
these Riemann solutions by solving the truncated Dafermos BVP (1.19)–(1.21) with
ε = .0002 and T = 1.5. In all of our numerical experiments, we fix

uL = (u1L, u2L) = (0.366078, 0.308156). (2.3)

2.1. Experiment 1. We begin by setting uR equal to uL, so that the Riemann
problem, and our truncated boundary value problem, have a constant solution. Next
we use AUTO to continue the solution as u2R is decreased to u2R = 0.1. Then we
continue the solution by decreasing u1R down to −0.6. Fig. 2.1 shows the resulting
bifurcation diagram. A single number is chosen to represent the computed Riemann
solution; specifically, we choose the maximum value of v1 over the solution (recall
that v = εB(u)u′). In the bifurcation diagram, this number is plotted vs. u1R.

The bifurcation diagram has several interesting features. Evidently, it has two
limit points, labeled 5 and 8 (with u1R approximately −0.1 and 0.32, respectively).
As a result, for each u1R in the interval defined by the abscissae of points 5 and 8,
there are three Riemann solutions. As we discuss in more detail below, this three-
fold nonuniqueness of solutions of a Riemann problem is the same as investigated
in [1]: a Riemann solution on the lower branch has the classical structure consisting
of two waves; one on the middle branch involves three waves, the third wave being
a shock wave with a homoclinic connection; and one on the upper branch contains
four waves, two being transitional shock waves. Also notice the rather angular
bends near point 12 and between points 14 and 15.
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Figure 2.1. Bifurcation diagram with u2R = 0.1

Figures 2.2–2.17 show (ζ, u1)- and (u1, u2)-plots of the Riemann solutions corre-
sponding to the points labeled 1 to 17 in the bifurcation diagram. The structure of
each labeled Riemann solution is as follows.

1: This solution has a classical structure: a 1-shock is on the left and a 2-shock
is on the right. These shocks have a nonzero width because ε > 0. (See
Fig. 2.2(a).)

2: This solution has the same structure as does 1, but the 1-shock is weaker.
(See Fig. 2.2(b).)

3: This solution has a 1-rarefaction on the left and a 2-shock on the right; see
Fig. 2.3(a). In the (u1, u2)-plane, shown in Fig. 2.3(b), the 1-rarefaction is
a short, nearly horizontal, segment leading from uL to a middle state uM ,
and the viscous orbit for the 2-shock leads from uM to uR. Also, this plot
indicates that uR is an attracting spiral, i.e., the corresponding eigenvalues
have become complex.

4: The solution has the same structure as does 3, but the eigenvalues at uR have
larger imaginary part. (See Fig. 2.4.)

5: The solution has the same structure as does 4, with a very weak 1-rarefaction.
(See Fig. 2.5.) This solution is the limit point 5 in Fig. 2.1. By contrasting
with solutions 4 and 6, we see that solution 5 is a point of bifurcation where
a 2-shock splits into a homoclinic transitional shock and a 2-shock.

6: This solution contains three waves with distinct speeds: a 1-rarefaction, a
homoclinic transitional shock, and a 2-shock. (See Fig. 2.6.) The orbit for the
homoclinic shock is the broad loop that (approximately) closes at uM .

7: The solution has the same structure as does 6, but the eigenvalues at uR are
real and the 1-rarefaction is very weak. (See Fig. 2.7.)

8: The solution has the same structure as does 7, except that the first wave is
a 1-shock. (See Fig. 2.8.) This solution is the limit point 8 in Fig. 2.1. By
comparing solutions 7 and 9, we see that solution 8 is a point of bifurcation
where the homoclinic transitional shock splits into two heteroclinic transitional
shocks.

9: This solution contains four waves with distinct speeds: a 1-shock, two hete-
roclinic transitional shocks, and a 2-shock. (See Fig. 2.9.) The orbit of the
slower transitional shock is curved and leads from uM to uM ′ ; the orbit of the
faster one is straight and leads from uM ′ to uM ′′ .
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10: The solution has the same structure as does 9, except that the first wave is
a 1-rarefaction. Also, the eigenvalues at uR have just become complex. (See
Fig. 2.10.)

11: The solution has the same structure as does 10, but the eigenvalues at uR

have larger imaginary part. (See Fig. 2.11.)
12: This solution consists of a very weak 1-shock, a transitional shock with a

a curved orbit, and a 2-shock wave for which uR has complex eigenvalues.
(See Fig. 2.12.) This 2-shock is the result of the coalescence of two waves
in solution 11, namely, the transitional shock with a straight orbit and the
2-shock. The intermediate state uM ′′ has disappeared.

13: Just as solution 12, this solution has three waves with distinct speeds: a
1-shock, a transitional shock, and a 2-shock. (See Fig. 2.13.)

14: This solution again has a three-wave structure, with the eigenvalues at uR

being real. o(See Fig. 2.14.)
15: This solution again has a four-wave structure: the heteroclinic transitional

shock in solution 14 has split into two heteroclinic transitional shocks with
almost identical speeds. Also, the 2-shock is very weak. (See Fig. 2.15.)

16: The solution has the same structure as does 15, except that the 2-shock has
been replaced by a 2-rarefaction. (See Fig. 2.16.)

17: The solution has three waves: the second transitional shock and the 2-rarefaction
have coalesced into a composite 2-wave (in this case, a 2-shock adjacent to a
2-rarefaction). (See Fig. 2.17.) The nearly coincident pairs of shock waves in
solutions 15 and 16 have clearly distinct speeds.

Let us make several remarks on these figures.

A. In Riemann solution 2 (see Fig. 2.2(b)), and in several others, shocks are
not very sharp. Shocks becomes sharper when ε is decreased. For example,
starting from Riemann solution 2, we can use AUTO to reduce ε from 2×10−4

to 10−6. The result is Fig. 2.18, in which the shocks are much sharper.
B. The rather sharp bends in the bifurcation diagram of Fig. 2.1 near points 5, 8,

12 and 15 correspond to the following transitions in the structure of the Rie-
mann solution: (i) splitting of a 2-shock into a homoclinic transitional shock
followed by a 2-shock; (ii) splitting of a homoclinic transitional shock into two
heteroclinic transitional shocks; (iii) coalescence of a heteroclinic transitional
shock and a 2-shock into a 2-shock; (iv) splitting of a heteroclinic transitional
shock into two heteroclinic transitional shocks. These transitions can produce
corners in the underlying Riemann solution bifurcation diagram [17].

C. In the numerical experiments of Ref. [1], Riemann solutions with homoclinic
shock waves are unstable. Moreover, in the authors’ experience with numerical
simulations, shock waves with complex eigenvalues at one end are sometimes
unstable. Nonetheless it is useful to consider Riemann solutions that are un-
stable. For example, in the bifurcation diagram of Fig. 2.1, there are three
Riemann solutions for u1R between approximately −0.09 and 0.32. For Rie-
mann solutions 1–3 and 7–9 (u1R between approximately 0.17 and 0.32), the
2-shock has real eigenvalues at both ends, and only solution 7 (on the “mid-
dle” solution branch) contains a homoclinic shock. However, our use of a
continuation method to find the solutions that are likely to be stable (solu-
tions 1–3, 8, and 9) involved passing through Riemann solutions with complex
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Figure 2.2. Riemann solutions 1 and 2: u1 vs. ζ.
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Figure 2.3. Riemann solution 3.
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Figure 2.4. Riemann solution 4.
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Figure 2.5. Riemann solution 5.
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Figure 2.6. Riemann solution 6.



COMPUTATION OF RIEMANN SOLUTIONS 975

0 0.2 0.4 0.6 0.8 1

ζ

-0.2

0

0.2

0.4

u
1

(a) u1 vs. ζ.

-0.2 0 0.2 0.4

u
1

-0.4

-0.2

0

0.2

0.4

u
2

(b) (u1, u2)-plane.

Figure 2.7. Riemann solution 7.
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Figure 2.8. Riemann solution 8.
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Figure 2.9. Riemann solution 9.
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Figure 2.10. Riemann solution 10.
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Figure 2.11. Riemann solution 11.
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Figure 2.12. Riemann solution 12.
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Figure 2.13. Riemann solution 13.
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Figure 2.14. Riemann solution 14.
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Figure 2.15. Riemann solution 15.



978 SCHECTER, PLOHR, AND MARCHESIN

0 0.2 0.4 0.6 0.8 1

ζ

-0.2

0

0.2

0.4

u
1

(a) u1 vs. ζ.

-0.2 0 0.2 0.4

u
1

-0.4

-0.2

0

0.2

0.4

u
2

(b) (u1, u2)-plane.

Figure 2.16. Riemann solution 16.
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Figure 2.17. Riemann solution 17.
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Figure 2.18. Riemann solution 2 (calculated with ε = 10−6): u1 vs. ζ.
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2-shocks (solutions 4–6 and 10–13) and homoclinic transitional shocks (solu-
tions 6 and 7). Thus it is useful to allow such possibly unstable solutions to
arise during continuation even if one is only interested in stable solutions.

D. One can ask how closely the computed bifurcation diagram of Fig. 2.1 cor-
responds to the underlying Riemann solution bifurcation diagram near tran-
sition points from one structurally stable Riemann solution to another (for
example, the two fold points). At present there is no theory about this ques-
tion.

2.2. Experiment 2. Next, starting from uR = uL, we increase u2R to 0.3998 and
then vary u1R. The bifurcation diagram is shown in Fig. 19(a). The point in this
bifurcation diagram with u1R = 0.362832 is labeled 18; Figs. 20(a) and 20(b) show
the (ζ, u1)- and (u1, u2)-plots of this Riemann solution. In fact, no limit points occur
during this continuation; the Riemann solution remains classical, throughout, just
like solution 18. Note, however, that in [1], three different Riemann solutions occur
for uR = (0.362832, 0.3998). The additional two solutions, which are labeled 25
and 26 in Fig. 19(b), are found via Experiments 3 and 4.

2.3. Experiment 3. To see better how the multiple solutions occur, we start at
the limit point 8 in Fig. 2.1 and use AUTO to plot a curve of limit points in the
uR-plane. The resulting curve L is shown in Fig. 2.21. Note that the line u2R = 0.1
meets L in two points. These points correspond to points 5 and 8 in Fig. 2.1; they
are also labeled 5 and 8 here. Also note the occurrence of two cusps. Cusps occur
generically along curves of limit points; this is the well-known “cusp catastrophe.”

The points of L correspond approximately to certain Riemann solutions that
are not structurally stable, having codimension two at the cusps and otherwise
codimension one. The type of codimension-one Riemann solution changes at each
cusp:

A. Points on the upper and lower parts of L correspond approximately to Rie-
mann solutions consisting of a 1-wave (shock or rarefaction), two heteroclinic
transitional shocks (one curved, one straight), and a 2-wave (shock or rarefac-
tion). The two heteroclinic transitional shocks have the same speed; this is
what makes the Riemann solution fail to be structurally stable.

Figures 2.22–2.24 show phase portraits for points 19, 20, and 21 on the
upper part of L. The corresponding Riemann solutions differ only in that
the last wave is a 2-rarefaction for point 19, a 2-shock with real eigenvalues
for point 20, and a 2-shock with complex eigenvalues for point 21. All three
Riemann solutions (indeed, all Riemann solutions on the top part of L) begin
with the same three waves. The top part of L is, in fact, approximately a
portion of the 2-wave curve of the right-most state of the third of these waves.

Figure 2.25 shows superimposed (ζ, u1)-plots for these three solutions. At
the right in this figure, the highest curve is solution 19, the middle one is
solution 20, and the lowest is solution 21. One sees clearly that the three
solutions have the same first three waves. One also sees that as one moves
to the left along L, the speed of the last wave approaches the common speed
of the two heteroclinic shocks. The cusp point is close to a codimension-two
Riemann solution in which the two heteroclinic shocks and the 2-shock all
have the same speed.

B. Figures 2.26, 2.8, and 2.27 show phase portraits for points 23, 8, and 24 on
the lower part of L, and Fig. 2.28 shows superimposed (ζ, u1)-plots for these
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(a) Classical Riemann solutions.
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(b) Nonclassical Riemann solutions.

Figure 2.19. Bifurcation diagram with u2R = 0.3998. The two
pictures should be superimposed.

solutions. At the right in the last figure, the lowest curve is solution 23, the
middle one is solution 8, and the highest is solution 24. These figures are
analogous to those for the upper part of L. Thus the lower part of L is also
approximately a portion of the 2-wave curve of a certain point.

C. For a point on L between the cusps, such as point 5 (see Fig. 2.5), the Riemann
solution consists of a 1-wave (shock or rarefaction), a homoclinic transitional
shock, and a 2-shock, with the homoclinic transitional shock and the 2-shock
having the same speed (Because of this coincidence of speeds, the solution has
codimension one.) This part of L is approximately the curve of right states
of Riemann solutions of this type with left state UL.

D. At the both the upper and lower cusp, the homoclinic transitional shock ap-
proximately becomes a curved transitional shock followed by a straight tran-
sitional shock with the same speed. For example, see Riemann solution 22 in
Fig. 2.29.
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Figure 2.20. Riemann solution 18.
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Figure 2.22. Riemann solution 19: (u1, u2)-plane.

Thus L, with the cusps eliminated, comprises three component curves, each being
approximately a curve of right states of Riemann solutions with left state UL and
having a certain codimension-one type. If they were exactly curves of Riemann
solutions, these component curves would be expected to meet transversally in the
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Figure 2.23. Riemann solution 20: (u1, u2)-plane.
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Figure 2.24. Riemann solution 21: (u1, u2)-plane.
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Figure 2.25. Riemann solutions 19, 20, and 21: ζ vs. u1.

space of Riemann solutions [17]. Instead, because they are curves in the space of
Dafermos-regularized solutions, they intersect in cusps, as is appropriate for generic
fold curves. This difference is illustrated in Fig. 2.30. Thus near the cusps of
Fig. 2.1, the solutions computed via Dafermos regularization are quite different
from the underlying Riemann solution. At present there is no theory about this
issue.

2.4. Experiment 4. Finally, we set uR to correspond to point 19 in Fig. 2.21,
which has second component being 0.3998, and vary u1R. The resulting bifurcation
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Figure 2.26. Riemann solution 23: (u1, u2)-plane.
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Figure 2.27. Riemann solution 24: (u1, u2)-plane.
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Figure 2.28. Riemann solutions 8, 23, and 24: ζ vs. u1.

diagram is shown in Fig. 19(b). The points with u1R = 0.362832 (which is the u1R

component for point 18 in Fig. 19(a)) are labeled 25 and 26.
Figures 2.20, 2.31, and 2.32 show (ζ, u1)- and (u1, u2)-plots of the Riemann

solutions corresponding to points 18, 25, and 26. They should be compared to
Figs. 2.1–2.3 of [1]. As in Ref. [1], these Riemann solutions can be understood as
follows:

18: Classical Riemann solution: 1-rarefaction followed by 2-rarefaction.
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Figure 2.29. Riemann solution 22.

Figure 2.30. The space of Riemann solutions and the space of
Dafermos-regularized solutions near a cusp point of the latter. Fold
curves, as projected onto UR-space, are shown below the spaces of
solutions.

25: Three waves with distinct speeds: 1-rarefaction, homoclinic transitional shock,
2-rarefaction.

26: Four waves with distinct speeds: 1-rarefaction, two heteroclinic transitional
shocks, 2-rarefaction.

The superposition of Figs. 19(a) and 19(b) is to be contrasted with Fig. 2.1.
The superposition corresponds to a slice of Fig. 2.21 with u2R = 0.3998, whereas
Fig. 2.1 corresponds to a slice with u2R = 0.1. Therefore, as u2R is increased
from 0.1 to 0.3998, the bifurcation diagram for fixed u2R evolves from Fig. 2.1 to
the superposition of Figs. 19(a) and 19(b). A natural expectation is that points 5
and 12 pinch together when the slice approaches the upper cusp point of Fig. 2.21
from below, at which stage a bifurcation occurs to two disconnected branches, a
branch of “classical” solutions and a loop of “nonclassical” solutions.

3. Conclusion. In this paper we have demonstrated a practical numerical method
for constructing Riemann solutions such that all shock waves obey the viscous profile
admissibility criterion for a specified viscosity. This method is based continuation
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Figure 2.31. Riemann solution 25.
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Figure 2.32. Riemann solution 26.

of solutions for the Dafermos regularization of the viscous form of the conserva-
tion laws. The advantages of this method include its ability to compute solutions
containing transitional waves and solutions that are unstable. By devising appro-
priate paths in the space of Riemann solutions, phenomena such as bifurcation and
nonuniqueness can be explored.

REFERENCES

[1] A. Azevedo, D. Marchesin, B. J. Plohr, and K. Zumbrun, Nonuniqueness of solutions of
Riemann problems, Zeit. angew. Math. Phys., 47 (1996), 977–998.

[2] A. L. Bertozzi, A. Munch, and M. Shearer, Undercompressive shocks in thin film flows,
Physica D 134 (1999), 431-464.
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