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This paper is the third in a series that undertakes a systematic investigation of
Riemann solutions of systems of two conservation laws in one spatial dimension.
Sixty-three codimension-one degeneracies of such solutions have been identified at
which strict hyperbolicity is maintained. In this paper, 18 of the degeneracies (9
pairs), constituting the most classical degeneracies, are studied in detail. Precise
conditions for a codimension-one degeneracy are identified in each case, as are con-
ditions for folding of the Riemann solution surface, which can occur in 4 of the
cases. Such folding gives rise to local multiplicity or nonexistence of Riemann
solutions. � 1999 Academic Press
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1. INTRODUCTION

We consider systems of two conservation laws in one space dimension,
partial differential equations of the form

Ut+F(U)x=0 (1.1)

with t>0, x # R, U(x, t) # R2, and F: R2 � R2 a smooth map. The most
basic initial-value problem for Eq. (1.1) is the Riemann problem, in which
the initial data are piecewise constant with a single jump at x=0:

U(x, 0)={UL

UR

for x<0,
for x>0.

(1.2)

This paper is the third in a series of papers in which we study the structure
of solutions of Riemann problems.
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We seek piecewise continuous weak solutions of Riemann problems in
the scale-invariant form U(x, t)=U� (x�t) consisting of a finite number of
constant parts, continuously changing parts (rarefaction waves), and jump
discontinuities (shock waves). Shock waves occur when

lim
! � s&

U� (!)=U& {U+= lim
! � s+

U� (!). (1.3)

They are required to satisfy the following viscous profile admissibility
criterion: a shock wave is admissible provided that the ordinary differential
equation

U4 =F(U)&F(U&)&s(U&U&) (1.4)

has a heteroclinic solution, or a finite sequence of such solutions, leading
from the equilibrium U& to a second equilibrium U+ .

By the term Riemann solution for Eqs. (1.1) and (1.2) we mean a weak
solution U of this kind (or, equivalently, the scale-invariant function U� , or
the sequence of waves in U, or the quadruple (U� , UL , UR , F )). There are
various types of rarefaction and shock waves (e.g., 1-family rarefaction
waves and classical 1-family shock waves); the type of a Riemann solution
is the sequence of types of its waves.

Our approach to understanding Riemann solutions is to investigate the
local structure of the set of Riemann solutions: we consider a particular
(U� *, UL* , UR* , F*) and construct nearby ones. More precisely, we define an
open neighborhood X of U� * in a Banach space of scale-invariant functions
U� , open neighborhoods UL and UR of UL* and U R* in R2, respectively, and
an open neighborhood B of F* in a Banach space of smooth flux functions
F. Then our goal is to construct a set R of Riemann solutions
(U� , UL , UR , F ) # X_UL_UR_B near (U� *, UL*, UR*, F*). To guide this
construction, we view R as organized into strata of successively higher
codimension.

The largest stratum of R, which has codimension zero within R, consists
of structurally stable Riemann solutions. For such solutions, U� changes
continuously, and its type remains unchanged, when (UL , UR , F ) varies in
certain open subsets of UL_UR_B. Moreover, the left and right states
and speeds of each wave in U� depend smoothly on (UL , UR , F ).

In Ref. [9], we identified a set of sufficient conditions for structural
stability of strictly hyperbolic Riemann solutions. Briefly, these conditions
have the following character.

(H0) There is a restriction on the sequence of wave types in the
solution.

(H1) Each wave satisfies certain nondegeneracy conditions.
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(H2) The ``wave group interaction condition'' is satisfied. In the simplest
case, the forward wave curve and the backward wave curve are transverse.

(H3) If a shock wave represented by a connection to a saddle is
followed by another represented by a connection from a saddle, the shock
speeds differ.

The methods by which these conditions were derived strongly suggest that
they are also necessary for structural stability.

In Ref. [10] we began an investigation of the Riemann solutions that
occur when one passes to the boundary of the set of structually stable
strictly hyperbolic Riemann solutions by violating a single condition on
this list, but the Riemann solution remains strictly hyperbolic. Under
appropriate nondegeneracy conditions, these Riemann solutions constitute
a graph over a codimension-one submanifold of UL_UR_B.

A point (U� *, UL*, UR*, F*) represents a codimension-one Riemann solu-
tion if there exists a codimension-one submanifold S of UL_UR_B

with the following properties. For each point (UL , UR , F ) # S near
(UL*, UR*, F*), there is a structurally unstable Riemann solution U� near U� *
such that (1) U� has the same type as U� * and (2) the endpoints and speeds
of each wave in U� depend smoothly on (UL , UR , F). Furthermore, (3) S

bounds a region in UL_UR_B that corresponds to structurally stable
solutions. In particular, we obtain a set R of Riemann solutions as a graph
of a function from a manifold-with-boundary in UL_UR_B to X. Finally,
(4) S is situated with a certain regularity in UL_UR_B: either S is in
general position relative to planes of constant (UL , F ) and planes of con-
stant (UR , F), so that (UL , F ) and (UR , F ) both serve as good coordinates
for S; or S is a cylinder over a hypersurface in (UL , F )-, (UR , F )-, or
F-space.

The codimension-one submanifolds of structurally unstable solutions in
R that arise in this manner can be classified in several ways.

(A) The codimension-one submanifolds of R can be classified with
respect to how they are situated in R.

We distinguish:

(1) Joins. R is formed from two manifolds-with-boundary joined
along their common boundary. As the boundary is crossed, a structurally
stable Riemann solution becomes degenerate and then turns into a struc-
turally stable solution of a different type.

(2) Folds. R is a manifold homeomorphic to R4_B, and there is
no change in type of the Riemann solution upon crossing the codimension-
one submanifold, but there is a fold in the projection to UL_UR_B. Thus
R fails to be a graph over (UL , UR , F )-space.
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(3) Frontiers. R is a manifold-with-boundary homeomorphic to
R3_R+_B. Riemann solutions exist only on one side of the codimension-
one submanifold.

(B) The codimension-one submanifolds of R can be classified with
respect to how S is situated in R4_B. Let (UL*, UR*, F*) # S. Four
possibilities occur:

(1) Intermediate boundary. The submanifold S is transverse to
both of the two-dimensional planes [(UL , UR , F ): (UL , F )=(U L* , F*)]
and [(UL , UR , F ): (UR , F )=(UR*, F*)]. Thus for each (UL , F ) near
(UL*, F*), S meets the corresponding copy of the UR-plane in a curve; and
for each (UR , F ) near (UR* , F*), S meets the corresponding copy of the
UL -plane in a curve. In other words, if UL and F are fixed, codimension-
one Riemann solutions correspond to a curve in the UR -plane; and if UR

and F are fixed, they correspond to a curve in the UL-plane.

(2) UL -boundary. There is a codimension-one submanifold S� in
(UL , F)-space, transverse to the two-dimensional plane [(UL , F ): F=F*],
such that (UL , UR , F ) # S if and only if (UL , F ) # S� . Thus for each F near
F* there is a curve C(F ) in the UL-plane such that (UL , UR , F ) # S if and
only if UL # C(F ). That is, for a specific system of conservation laws,
codimension-one Riemann solutions occur when UL lies on a fixed curve.
Another type of boundary is obtained through duality by reversing the
roles of UL and UR in this definition.

(3) F-boundary. There is a codimension-one submanifold S� in B

such that (UL , UR , F ) # S if and only if F # S� .

(C) The codimension-one Riemann solutions can be classified with
respect to the number of solutions of nearby Riemann problems. In the
case of a fold, for data (UL , UR , F ) on one side of S, there are two nearby
structurally stable Riemann solutions; for data in S, there is a locally
unique codimension-one solution; and for data on the other side of S,
there is no nearby Riemann solution. The same situation can occur along
some of the Riemann solution joins. In classical examples, the two
manifolds-with-boundary, which meet along their common boundary, pro-
ject to different sides of S, so that there is local existence and uniqueness
of Riemann solutions. It is possible, however, for the two manifolds-with-
boundary to project to the same side of S, so that for nearby data there
are two, one, or zero nearby Riemann solutions, as in the case of a fold.
For a frontier, there is a locally unique solution on S and on one side of
S, but no solution on the other side.

In Ref. [9] we noted that violations of (H0) that occur when one passes
to the boundary of the set of structurally stable strictly hyperbolic Riemann
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solutions can be identified with violations of (H1). We then amalgamated
all violations of hypothesis (H2) into a single case; we amalgamated viola-
tions of (H1) and (H3) that are analogous under a duality between slow
and fast waves; we dropped from consideration violations of (H1) that lead
to failure of strict hyperbolicity, or that have codimension higher than one.
We found that there were 63 remaining violations of (H0)�(H3), each of
which appears to give rise, under appropriate nondegeneracy conditions, to
codimension-one Riemann solutions. Indeed, most occur in the literature.
We noted that of these 63 degeneracies, four are folds; five are frontiers;
and 54 form 27 pairs of related degeneracies that give rise to 27 joins.

We did not give detailed proofs of any of these facts.
In this paper we begin to study in detail the 15 ``missing slow rarefac-

tion'' degeneracies, together with the 15 degeneracies that pair with them
to produce Riemann solution joins. These degeneracies constitute 30 of the
63 degeneracies of Ref. [10]. The 15 pairs are listed in Table 5.1 of
Ref. [10]. A missing rarefaction solution is a Riemann solution in which
(H0) is violated because a rarefaction wave is missing; alternatively, (H1)
is violated because the length of a rarefaction has shrunk to zero. (There
are fifteen dual cases of missing fast rarefactions, which are completely
analagous.) Nine of the 15 missing slow rarefaction cases are classical, in
that the shocks adjacent to the missing rarefactions almost satisfy the Lax
criterion. We shall study these cases here, together with the nine
degeneracies that pair with them.

Six of the nine missing rarefaction degeneracies studied in this paper can
give rise to intermediate boundaries. For each of them, we give the precise
conditions under which the degeneracy gives rise to a codimension-one
Riemann solution that lies in an intermediate boundary. Each of these six
degeneracies can give rise to other types of boundaries when followed by
a 1-rarefaction somewhere later in the wave sequence, but we do not study
these possibilities here. The other three missing rarefaction degeneracies
studied in this paper cannot give rise to intermediate boundaries, but can
give rise to UL-boundaries. For each of them, we give the precise condi-
tions under which the degeneracy gives rise to a codimension-one Riemann
solution that lies in a UL -boundary. One of these degeneracies can give rise
to an F-boundary when it is preceded somewhere in the wave sequence by
a 2-rarefaction, but we do not study this possibility here.

The question of folding at Riemann solution joins was not addressed in
Ref. [10]. In this paper we show that for four of the nine missing rarefac-
tion cases under study, under atypical but open conditions, such folding
occurs.

The degeneracies studied in this paper can all arise in the slow wave
group of the Riemann solution; most can also arise in later wave groups.
(Their duals can all arise in the fast wave group of the Riemann solution.)
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Complicated Riemann solutions were constructed in the context of scalar
conservation laws by Ole@$ nik [7]. These complications are analagous to
those that can occur in the slow or fast wave group of a Riemann solution
for two conservation laws. In [12], Wendroff showed the smoothness of
slow and fast composite wave curves at certain junction points. In [1],
Dafermos related these complicated Riemann solutions to similarity solu-
tions of conservation laws with a certain time-dependent viscosity term.
Furtado [3] gave a general discussion of the construction of slow and fast
wave curves in the context of the Lax admissibility criterion, which unfor-
tunately allows splitting of wave curves. Composite slow and fast waves
were used by Liu [6] to study Riemann solutions near curves where
genuine nonlinearity fails, and by Isaacson et al. [4], Shearer et al. [11],
and Schaeffer and Shearer [8] to study Riemann solutions near an umbilic
point. Reference [11] includes a bifurcation theory approach to shock
waves, which had been initiated by Foy [2]; Ref. [8] discusses UL- and
intermediate boundaries (there called UR -boundaries). Despite the exten-
sive literature on the complications that can arise in slow and fast wave
groups (of which we have cited only a representative part), there does not
seem to be a systematic study of the type presented in this paper.

The remainder of the paper is organized as follows. In Sections 2 and 3
we review terminology and results about structurally stable Riemann solu-
tions and codimension-one Riemann solutions from Refs. [9, 10]. In
Section 4 we explain the general approach we will take to analyzing the
various degeneracies, and we summarize the results. In Sections 5�13 we
treat in detail the nine classical missing rarefaction cases. These sections
can be read independently. Each of Sections 6�13 includes vector field
bifurcation diagrams that contain the essence of the degeneracy. Some final
remarks are in Section 14.

2. BACKGROUND ON STRUCTURALLY STABLE RIEMANN
PROBLEM SOLUTIONS

We consider the system (1.1) with t # R+, x # R, U(x, t) # R2, and
F: R2 � R2 a C2 map. Let

UF=[U # R2 : DF(U) has distinct real eigenvalues] (2.1)

be the strictly hyperbolic region in state-space. We shall call a Riemann
solution U� strictly hyperbolic if U� (!) # UF for all ! # R. In this paper, all
Riemann solutions are assumed to be strictly hyperbolic. For U # UF ,
let *1 (U)<*2 (U) denote the eigenvalues of DF(U), and let li (U) and
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ri (U), i=1, 2, denote corresponding left and right eigenvectors with
li (U) rj (U)=$ij .

A rarefaction wave of type Ri is a differentiable map U� : [a, b] � UF ,
where a<b, such that U� $(!) is a multiple of ri (U� (!)) and !=*i (U� (!)) for
each ! # [a, b]. The states U=U� (!) with ! # [a, b] comprise the rarefac-
tion curve 1� . The definition of rarefaction wave implies that if U # 1� , then

D*i (U) ri (U)=li (U) D2F(U)(ri (U), r i (U)){0. (2.2)

Condition (2.2) is genuine nonlinearity of the ith characteristic line field at
U. Assuming (2.2), we can choose ri (U) such that

D*i (U) ri (U)=1. (2.3)

In this paper we shall assume this has been done wherever (2.2) is satisfied.
The definition also implies that *i (U&)<*i (U+), where U&=U(a) and
U+=U(b) are the left and right states of the rarefaction wave, respectively.
We will find it convenient to associate a specific speed s to a rarefaction
wave: for a rarefaction wave of type R1 , s=*1 (U+); for a rarefaction wave
of type R2 , s=*2 (U&).

A shock wave consists of a left state U& # UF , a right state U+ # UF , a
speed s, and a connecting orbit 1, i.e., an orbit of the ordinary differential
equation (1.4). For any equilibrium U # UF of Eq. 1.4, the eigenvalues of the
linearization at U are *i (U)&s, i=1, 2. We shall use the terminology
defined in Table I for such an equilibrium. The type of a shock wave is
determined by the equilibrium types of its left and right states. (For
example, w is of type R } S if its connecting orbit joins a repeller to a
saddle.)

An elementary wave w is either a rarefaction wave or a shock wave. We
write

w : U& w�s U+

if w has left state U& , right state U+ , and speed s. Note that an elementary
wave also has a type T, as defined above.

TABLE I

Types of Equilibria

Name Symbol Eigenvalues

Repeller R + +
Repeller-saddle RS 0 +

Saddle S & +
Saddle-attractor SA & 0

Attractor A & &
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Associated with each elementary wave is a speed interval _: for a rarefac-
tion wave of type Ri , _=[*i (U&), *i (U+)], whereas for a shock wave of
speed s, _=[s, s]. If _1 and _2 are speed intervals, we write _1�_2 if
s1�s2 for every s1 # _1 and s2 # _2 . Also associated with each elementary
wave is the set 1� : if w is a rarefaction wave, 1� denotes its rarefaction curve;
if w is a shock wave, then 1� denotes the closure of its connecting orbit. We
shall say that an open set N�R2 is a neighborhood of the elementary wave
w: U& w�s U+ if 1� /N.

Sequences of elementary waves can be used to construct solutions of
Riemann problems. A wave sequence (w1 , w2 , ..., wn) is said to be allowed if:

(W1) for each i=1, ..., n&1, the right state of wi coincides with the
left state of wi+1 ;

(W2) the speed intervals _i for wi satisfy

_1�_2� } } } �_n ; (2.4)

(W3) no two successive waves are rarefaction waves of the same
type.

For such a wave sequence we write

(w1 , w2 , ..., wn): U0 w�
s1 U1 w�

s2 } } } w�
sn Un . (2.5)

The type of (w1 , w2 , ..., wn) is (T1 , T2 , ..., Tn) if wi has type Ti . If
U0=UL and Un=UR , then associated with an allowed wave sequence
(w1 , w2 , ..., wn) is a solution U(x, t)=U� (x�t) of the Riemann problem
(1.1)�(1.2). Therefore we shall often refer to an allowed wave sequence as
a Riemann solution.

Let

(w1*, w2* , ..., wn*): U 0* w�
s*1 U 1* w�

s*2 } } } w�
s*n Un* (2.6)

be a Riemann solution for Ut+F*(U)x=0. Fix a compact set K/R2 such
that Int K is a neighborhood of wi* for i=1, ..., n. Let B denote the Banach
space of C2 functions F: K � R2, equipped with the C2 norm. Also, let
H(Int K) denote the set of nonempty, closed subsets of Int K, which we
equip with the Hausdorff metric.

Definition 2.1. We shall say that the Riemann solution (2.6) is struc-
turally stable if there are neighborhoods Ui of U i*, Ii of si*, and F of F*
and a C1 map

G: U0_I1_U1_I2 _ } } } _In _Un _F � R3n&2
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with G(U0* , s1*, U 1* , s2*, ..., sn*, Un*, F*)=0 such that:

(P1) G(U0 , s1 , U1 , s2 , ..., sn , Un , F )=0 implies that there exists a
Riemann solution

(w1 , w2 , ..., wn): U0 w�
s1 U1 w�

s2 } } } w�
sn Un

for Ut+F(U)x=0 with successive waves of the same types as those of the
wave sequence (2.6) and with each wi contained in Int K;

(P2) DG(U0* , s1*, U 1*, s2* , ..., sn* , Un* , F*), restricted to the (3n&2)-
dimensional space of vectors [(U4 0 , s* 1 , U4 1 , s* 2 , ..., s* n , U4 n , F4 ) : U4 0=0=U4 n ,
F4 =0], is an isomorphism onto R3n&2.

Condition (P2) implies, by the implicit function theorem, that G&1 (0)
is a graph over U0_Un_F; (s1 , U1 , ..., Un&1 , sn) is determined by
(U0 , Un , F ). Therefore for each wave wi we can define a map
1� i : U0_Un _F � H(Int K); namely, 1� i (U0 , Un , F ) is the rarefaction
curve or the closure of the connecting orbit of the wave wi . We further
require that

(P3) (w1 , w2 , ..., wn) can be chosen so that each map 1� i is
continuous.

The map G will be said to exhibit the structural stability of the Riemann
solution (2.6).

Associated with each type of elementary wave is a local defining map,
which we use to construct maps G that exhibit structural stability. Let
w*: U*& w�s* U*+ be an elementary wave of type T for Ut+F*(U)x=0.
The local defining map GT has as its domain a set of the form
U& _ I _ U+ _ F (with U\ being neighborhoods of U*\ , I a
neighborhood of s*, and F a neighborhood of F*). The range is some Re;
the number e depends only on the wave type T. The local defining map is
such that GT (U*& , s*, U*+ , F*)=0. Moreover, if certain wave non-
degeneracy conditions are satisfied at (U*& , s*, U*+ , F*), then there is a
neighborhood N of w* such that:

(D1) GT (U& , s, U+ , F )=0 if and only if there exists an elementary
wave w: U& w�s U+ of type T for Ut+F(U)x=0 contained in N;

(D2) DGT (U*& , s*, U*+ , F*), restricted to the space [(U4 & , s* , U4 + , F4 ) :
F4 =0 ], is surjective.
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Condition (D2) implies, by the implicit function theorem, that G&1
T (0) is a

manifold of codimension e. Therefore we can define a map 1� from this
manifold to H(Int K) (just as above). In fact,

(D3) w can be chosen so that 1� is continuous.

We now discuss local defining maps and nondegeneracy conditions for
the types of elementary waves that occur in this paper.

Let

U1=[U # U : D*1 (U) r1 (U){0].

In U1 we can assume that Eq. (2.3) holds with i=1. For each U& # U1 ,
define � to be the solution of

��
�s

(U& , s)=r1 (�(U& , s)),

�(U& , *1 (U&))=U& .

By (2.3), if �(U& , s)=U, then s=*1 (U). Thus there is a rarefaction wave
of type R1 for Ut+F(U)x=0 from U& to U+ with speed s if and only if

U+&�(U& , s)=0 (2.7)

s=*1 (U+)>*1 (U&). (2.8)

Equations (2.7) are defining equations for rarefaction waves of types R1 .
The nondegeneracy conditions for rarefaction waves of type R1 , which are
implicit in our definition of rarefaction, are the speed inequality (2.8), and
the genuine nonlinearity condition (2.2).

For future reference we state:

Lemma 2.2.

D�(U& , *1(U&))(ar1 (U&)+br2 (U&), s* )

=(s* &bD*1 (U&) r2 (U&)) r1 (U&)+br2 (U&).

Proof. Let /(U& , t) be the flow of U4 =r1 (U), so that

/(U& , 0)=U&

�/
�t

(U& , t)=r1 (/(U& , t)).
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Then

�(U& , s)=/(U& , s&*1 (U&)).

Therefore

D1�(U& , *1 (U&))U4 &=D1/(U& , 0)U4 &&
�/
�s

(U& , 0) D*1 (U&)U4 &

=(I&r1 (U&) D*1 (U&))U4 & , (2.9)

��
�s

(U& , *1 (U&))=
�/
�s

(U& , 0)=r1 (U&).

Using Eq. (2.3), we have

D�(U& , *1 (U&))(ar1 (U&)+br2 (U&), s* )

=(I&r1 (U&) D*1 (U&))(ar1 (U&)+br2 (U&))+s* r1 (U&)

=(s* &b D*1 (U&) r2 (U&)) r1 (U&)+br2 (U&). K

Next we consider shock waves. If there is to be a shock wave solution
of Ut+F(U)x=0 from U& to U+ with speed s, we must have that

F(U+)&F(U&)&s(U+&U&)=0; (E0)

U4 =F(U)&F(U&)&s(U&U&) has an orbit from U& to U+. (C0)

The two-component equation (E0) is a defining equation. In the context of
structurally stable Riemann solutions, condition (C0) is an open condition,
and therefore is regarded as a nondegeneracy condition, for all but trans-
itional shock waves, which do not occur in this paper.

In Table II we list additional defining equations and nondegeneracy con-
ditions for the types of shock waves that occur in this paper. The wave
nondegeneracy conditions are open conditions. Conditions (C1)�(C2) are
that the connection 1 is not distinguished; for RS } S and RS } RS shock
waves, this means that the connection 1 should not lie in the unstable
manifold of U& (i.e., the unique invariant curve tangent to an eigenvector
with positive eigenvalue).

For the Riemann solution (2.6), let wi* have type Ti and local defining
map GTi

, with range Rei. For appropriate neighborhoods Ui of U i*, Ii of
si*, F of F*, and Ni of wi*, we can define a map G: U0_I1_ } } } _
In_Un_F � Re1+ } } } +en by G=(G1 , ..., Gn), where

Gi (U0 , s1 , ..., sn , Un , F )=GTi
(Ui&1 , si , Ui , F ).
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TABLE II

Additional Defining Equations and Nondegeneracy Conditions for Slow Shock Waves

Type of shock Additional defining equations Nondegeneracy conditions

R } S None None
R } RS *1 (U+)&s=0 (E1) D*1 (U+) r1 (U+){0 (G1)

l1 (U+)(U+&U&){0 (B1)
RS } S *1 (U&)&s=0 (E2) D*1 (U&) r1 (U&){0 (G2)

not distinguished connection (C1)
RS } RS *1 (U&)&s=0 (E3) D*1 (U&) r1 (U&){0 (G3)

*1 (U+)&s=0 (E4) D*1 (U+) r1 (U+){0 (G4)
l1 (U+)(U+&U&){0 (B2)

not distinguished connection (C2)

The map G is called the local defining map of the wave sequence (2.6).
Assuming the wave nondegeneracy conditions, if G(U0 , s1 , ..., sn , Un , F )
=0, then for each i=1, ..., n, there is an elementary wave wi : Ui&1 w�

si U i

of type Ti for Ut+F(U)x=0 contained in Ni , for which 1� i is continuous.
In view of the requirement that the local defining map have range R3n&2,

a necessary condition for G=(G1 , ..., Gn) to exhibit the structural stability
of the wave sequence (2.6) is that

:
n

i=1

ei=3n&2, (2.10)

i.e.,

:
n

i=1

(3&ei)=2. (2.11)

We are therefore led to define the Riemann number of an elementary wave
type T to be

\(T )=3&e(T ),

where e(T ) is the number of defining equations for a wave of type T. For
convenience, if w is an elementary wave of type T, we shall write \(w)
instead of \(T ). Because of (2.11) we concentrate our attention on allowed
sequences of elementary waves (w1 , ..., wn) with �n

i=1 \(wi)=2.
To describe the results of Ref. [9], we need the following definitions.
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A 1-wave group is either a single R } S wave or an allowed sequence of
elementary waves of the form

(R } RS)(R1RS } RS) } } } (R1RS } RS) R1(RS } S), (2.12)

where the terms in parentheses are optional. If any of the terms in
parentheses are present, the group is termed composite.

A transitional wave group is either a single S } S wave or an allowed
sequence of elementary waves of the form

(R } RS)(R1RS } RS) } } } (R1RS } RS) R1 (RS } S), (2.13)

or

(S } SA) R2(SA } SAR2) } } } (SA } SAR2) SA } S, (2.14)

the terms in parentheses being optional. In cases (2.13) and (2.14), the
group is termed composite.

A 2-wave group is either a single S } A wave or an allowed sequence of
elementary waves of the form

(S } SA) R2 (SA } SAR2) } } } (SA } SAR2)(SA } A), (2.15)

where again the terms in parentheses are optional. If any of the terms in
parentheses are present, the group is termed composite.

In Ref. [9] the following are proved.

Theorem 2.3 (Wave Structure). Let (2.6) be an allowed sequence of
elementary waves. Then

1. �n
i=1 \(wi*)�2;

2. �n
i=1 \(wi*)=2 if and only if the following conditions are satisfied.

(1) Suppose that the wave sequence (2.6) includes no SA } RS waves.
Then it consists of one 1-wave group, followed by an arbitrary number of
transitional wave groups (in any order), followed by one 2-wave group.

(2) Suppose that the wave sequence (2.6) includes m�1 waves of type
SA } RS. Then these waves separate m+1 wave sequences g0 , ..., gm . Each gi

is exactly as in (1) with the restrictions that:

(a) if i<m, the last wave in the group has type R2 ;

(b) if i>0, the first wave in the group has type R1 .

259CODIMENSION-ONE RIEMANN SOLUTIONS



Theorem 2.4 (Structural Stability). Suppose that the allowed sequence
of elementary waves (2.6) has �n

i=1 \(wi*)=2. Assume that:

(H1) each wave satisfies the appropriate wave nondegeneracy conditions;
(H2) the wave group interaction conditions, as stated precisely in

Ref. [9], are satisfied;

(H3) if wi* is a V } S wave and w*i+1 is an S } V wave, then si* <s*i+1 .

Then the wave sequence (2.6) is structurally stable.

In fact, more can be concluded: not only can the connecting orbit 1i of
the perturbed shock wave wi be chosen to vary continuously, but also there
is a neighborhood Ni of wi* in which 1i is unique.

Let us briefly elucidate (H2). In the absence of SA } RS waves, we impose
one wave group interaction condition on how the different wave groups are
related. If there are m�1 waves of type SA } RS, we impose m+1 wave
group interaction conditions, one on each of the m+1 wave sequences
g0 , ..., gm . Roughly speaking, these conditions say that certain wave curves
are transverse.

In the remainder of the paper, by a structurally stable Riemann solution
we shall mean a sequence of elementary waves that satisfies the hypotheses
of Theorem 2.2.

3. CODIMENSION-ONE RIEMANN SOLUTIONS

In order to consider conveniently codimension-one Riemann solutions,
the definitions of rarefaction and shock waves in Section 2 must be
generalized somewhat.

A generalized rarefaction wave of type Ri is a continuous map
U� : [a, b] � UF , where a�b, such that (i) the rarefaction curve
1� =[U� (!): ! # [a, b]] is an integral curve for the line field asociated to
family i and (ii) !=*i (U� (!)) for all ! # [a, b].

A generalized shock wave consists of a left state U& , a right state U+

(possibly equal to U&), a speed s, and a sequence of connecting orbits 1� 1 ,
1� 2 , ..., 1� k of Eq. (1.4) from U&=U� 0 to U� 1 , U� 1 to U� 2 , ..., U� k&1 to
U� k=U+ . Note that U� 0 , U� 1 , ..., U� k must be equilibria of Eq. (1.4). We
allow for the possibility that U� j&1=U� j , in which case we assume that 1� j

is the trivial orbit [U� j].
Associated with each generalized rarefaction or generalized shock is a

speed s, defined as before, and a curve 1� : the rarefaction curve or the
closure of 1� 1 _ } } } _ 1� k .

A generalized allowed wave sequence is a sequence of generalized rarefac-
tion and shock waves that satisfies conditions (W1)�(W3). If U0=UL and
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Un=UR , then associated with a generalized allowed wave sequence
(w1 , w2 , ..., wn) is a solution U(x, t)=U� (x�t) of the Riemann problem
(1.1)�(1.2). Therefore we shall often refer to a generalized allowed wave
sequence as a Riemann solution.

A generalized allowed wave sequence (2.6) is a codimension-one Riemann
solution provided that there is a sequence of wave types (T1*, ..., Tn* ) with
�n

i=1 \(Ti*)=2, neighborhoods Ui �U of U i*, Ii �I of s i*, and F �B of
F*, and a C1 map

(G, H): U0_I1 _ } } } _In_Un _F � R3n&2_R, (3.1)

with G(U0*, s1*, ..., sn*, Un*, F*)=0 and H(U 0*, s1*, ..., sn*, Un*, F*)=0 such
that the following conditions, (Q1)�(Q7), are satisfied.

(Q1) If G(U0 , s1 , ..., sn , Un , F )=0 and H(U0 , s1 , ..., sn , Un , F )�0
then there is a generalized allowed wave sequence

(w1 , w2 , ..., wn): U0 w�
s1 U1 w�

s2 } } } w�
sn Un

for Ut+F(U)x=0 with each wi contained in Int K.

(Q2) If G(U0 , s1 , ..., sn , Un , F )=0 and H(U0 , s1 , ..., sn , Un , F )>0,
then (w1 , w2 , ..., wn) is a structurally stable Riemann solution of type
(T1*, ..., Tn* ) and G exhibits its structural stability.

(Q3) If G(U0 , s1 , ..., sn , Un , F )=0 and H(U0 , s1 , ..., sn , Un , F )=0
then (w1 , w2 , ..., wn) is not a structurally stable Riemann solution.

(Q4) D(G, H)(U0*, s1*, ..., sn*, U n*, F*), restricted to some (3n&1)-
dimensional space of vectors that contains [(U4 0 , s* 1 , U4 1 , s* 2 , ..., s* n , U4 n , F4 ) :
U4 0=0=U4 n , F4 =0 ], is an isomorphism.

Condition (Q4) implies, by the implicit function theorem, that (G, H)&1 (0)
is a graph over a codimension-one manifold S in U0_Un_F, and
M :=(G, H)&1 ([0]_R+) is a manifold-with-boundary of codimension
3n&2. We can define maps 1� i : M � H(Int K). We require that

(Q5) (w1 , w2 , ..., wn) can be chosen so that each map 1� i is con-
tinuous.

(G, H) is again called a local defining map.
The surface S is required to be regularly situated with respect to the

foliation of U0UnF-space into planes of constant (U0 , F ) and planes of
constant (Un , F ). More precisely, let

70=[(U4 0 , s* 1 , ..., s* n , U4 n , F4 ) : U4 n=0 and F4 =0],

7n=[(U4 0 , s* 1 , ..., s* n , U4 n , F4 ) : U4 0=0 and F4 =0].
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Then we require that one of the following four conditions hold:

(Q61) D(G, H)(U0* , s1*, ..., sn*, Un*, F*) restricted to 70 and to 7n ,
respectively, are surjective,

(Q62) D(G, H)(U0* , s1*, ..., sn*, Un*, F*) restricted to 7n is surjective,
and there is a codimension-one manifold S� through (U0*, F*) in (U0 , F )-
space such that S=Un_S� ;

(Q63) D(G, H)(U0* , s1*, ..., sn*, Un*, F*) restricted to 70 is surjective,
and there is a codimension-one manifold S� through (Un*, F*) in (Un , F )-
space such that S=U0_S� ;

(Q64) there is a codimension-one manifold S� through F* in F-space
such that S=U0_Un _S� .

When (Q61), (Q62) or (Q63), or (Q64) holds, then the codimension-one
Riemann solution is termed an intermediate boundary, a UL -boundary or
dual, or an F-boundary, respectively.

Finally, we require one of the following conditions to hold:

(Q71) The linear map

DG(U0* , s1* , ..., s*n , U*n , F*) restricted to 70 & 7n (3.2)

is an isomorphism. (In this case, M is a smooth graph over a manifold-
with-boundary in U0_Un _F with boundary S.)

(Q72) the linear map (3.4) is not surjective, but the projection of
G&1 (0) to U0 _Un_F has a fold along (G, H)&1 (0, 0).

This case does not arise in the present paper.
A rarefaction of zero strength is one whose domain has zero length.

A shock of zero strength is one with UL=UR (and hence 1=[UL].
A generalized allowed wave sequence is minimal if

(1) there are no rarefactions or shocks of zero strength;

(2) no two successive shocks have the same speed.

Among the minimal generalized allowed wave sequences we include
sequences of no waves; these are given by a single U0 # R2, and represent
constant solutions of Eq. (1.1).

We shorten a generalized allowed wave sequence by dropping a rarefac-
tion or shock of zero strength, or by amalgamating adjacent shocks of
positive strength with the same speed. Every generalized allowed wave
sequence can be shortened to a unique minimal generalized allowed wave
sequence. Two generalized allowed wave sequences are equivalent if their
minimal shortenings are the same. Equivalent generalized allowed wave
sequences represent the same solution U(x, t)=U� (x�t) of Eq. (1.1).
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Let (U0*, s1* , U1*, s2*, ..., sn*, U n*, F*) be a generalized allowed wave
sequence that is a codimension-one Riemann solution of type (T1* , ..., Tn*).
Let M denote the associated manifold-with-boundary, M being a graph
over the manifold S. Suppose there is an equivalent generalized allowed
wave sequence (U >

0 , s>
1 , U >

1 , s>
2 , ..., s>

m , U >
m , F*) that is a codimension-one

Riemann solution in �N, N=(G>, H>)&1 ([0]_R+), where Int N con-
sists of structurally stable Riemann solutions of some type (T >

1 , ..., T >
m).

Suppose in addition that �N is also a graph over S, and the points in �M

and �N above the same point in S are equivalent. Then the codimension-
one Riemann solution (2.6) (or its equivalent generalized wave sequence)
is said to lie in a join.

M and N are each graphs over the union of one side of S and S itself.
If M and N are graphs over different sides of S, we have a regular join;
if M and N are graphs over the same side of S, we have a folded join.

Riemann solution frontiers and folds are defined in Ref. [10], but do not
occur in this paper.

Let us consider a wave sequence that satisfies (H0)�(H4) except for a
degeneracy in some wave. As explained in Ref. [10], we expect:

(1) If the degeneracy follows all waves of type R1 and precedes all
waves of type R2 , it is an intermediate boundary.

(2) If the degeneracy precedes a wave of type R1 and precedes all
waves of type R2 , it is a UL -boundary; the case where the degeneracy
follows all waves of type R1 and follows at least one wave of type R2 is
dual.

(3) If the degeneracy precedes a wave of type R1 and follows a wave
of type R2 , it is an F-boundary.

4. MISSING RAREFACTION SOLUTIONS:
GENERAL APPROACH AND RESULTS

We wish to study Riemann solution (2.6) such that

(MR) Solution (2.6) satisfies all hypotheses of the Structural
Stability Theorem, except that some rarefaction of type R1 has zero
strength.

If the rarefaction of zero strength is wj : Uj&1 w�
sj U j , then of course

Uj=Uj&1 , and the speed is sj=*1 (Uj&1). The rarefaction of zero strength
may have a predecessor of type R } RS, RS } RS, S } RS, or SA } RS, or it
may fail to have a predecessor with the same speed. Its successor may be
of type RS } S or RS } RS, or it may be a wave with greater speed. There
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are thus fifteen cases. In this paper we shall study the nine ``classical'' cases:
there is no predecessor with the same speed, or one of type R } RS or
RS } RS, and the successor is one of the three given types.

Under additional nondegeneracy conditions, we shall show that such a
Riemann solution (2.6) lies in a join. Our arguments will have three steps:

Step 1. We verify that (2.6) is a codimension-one Riemann solution.

Step 2. We construct a Riemann solution equivalent to (2.6) and
verify that it too is a codimension-one Riemann solution.

Step 3. We show that the two types of codimension-one Riemann
solutions are defined on the same codimension-one surface S in U0UnF-
space; the two types of codimension-one Riemann solutions above a given
point in S are equivalent; and the Riemann solution join that we therefore
have is of a certain type (intermediate boundary or UL -boundary, regular
or folded join).

All three steps will make use of the local defining map (G, H) (see (3.1)).
However, in the remainder of the paper, we will not show the dependence
of (G, H) on F, and we will denote the fixed flux function under considera-
tion by F rather than F*.

We now discuss the three steps of our arguments in order. We begin with
step 1.

We consider a wave sequence (2.6) of type (T1 , ..., Tn) such that (MR)
holds. In each case the local defining map (G, H) is as follows:

(1) G is the map that would be used for structurally stable Riemann
solutions of type (T1 , ..., Tn).

(2) If the missing rarefaction is wj , then

H(U0 , s1 , ..., sn , Un)=sj&*1 (Uj&1). (4.1)

In order to show that (2.6) is a codimension-one Riemann solution, we
must verify (Q1)�(Q7). We will first show (Q71). Since we are ignoring the
dependence of (G, H) on the flux function F, we rewrite (Q71) as

(A) DG(U0*, s1* , ..., sn* , U n*), restricted to the (3n&2)-dimensional
space of vectors [(U4 0 , s* 1 , ..., s* n , U4 n) : U4 0=0=U4 n], is an isomorphism onto
R3n&2.

Thus, as in the structurally stable case, the equation G=0 may be solved
for (s1 , U1 , ..., Un&1 , sn) in terms of (U0 , Un) near (U0* , s1*, ..., sn*, U n*). Let

H� (U0 , Un)=H(U0 , s1 (U0 , Un), ..., sn (U0 , Un), Un). (4.2)
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Properties (Q1)�(Q3) and (Q5) follow from a geometric understanding of
the situation. We will discuss the geometry in each case in enough detail to
make them evident. In addition, we will show that one of the following
occurs:

(E1) Both DU0
H� (U 0* , Un*) and DUn

H� (U0*, Un*) are nonzero. Thus
(Q4) and (Q61) are satisfied, so (2.6) is a codimension-one Riemann solu-
tion that is an intermediate boundary.

(E2) H� is independent of Un , and DU0
H� (U 0*, Un*){0. Thus (Q4)

and (Q62) are satisfied, so (2.6) is a codimension-one Riemann solution
that is a UL-boundary.

Let us discuss the verificiation of (A) and (E1), which is necessary when
H� depends on both U0 and Un . (The case in which H� is independent of Un

is easier.) We first review some of the structure of structurally stable
Riemann solutions.

Let (2.6) be a structurally stable Riemann solution. Let m be an integer
such that a one-wave or transitional wave group ends with wm . Then a
transitional or two-wave group begins with wm+1 .

Let G1 (U0 , s1 , ..., sm , Um) and G2 (Um , sm+1 , ..., sn , Un) be the local
defining maps for wave sequences of types (T1 , ..., Tm) and (Tm+1 , ..., Tn)
respectively, so that G=(G1 , G2). Then

(R1) DG1 (U0* , s1*, ..., s*m , U*m), restricted to the space of vectors
(U4 0 , s* 1 , ..., s* m , U4 m) with U4 0=0, is surjective, with one-dimensional kernel
spanned by a vector (U4 0 , s* 1 , ..., s* m , U4 m) with U4 m {0.

(R2) DG2 (U*m , s*m+1 , ..., sn*, Un*), restricted to the space of vectors
(U4 m , s* m+1 , ..., s* n , U4 n) with U4 n=0, is surjective, with one-dimensional
kernel spanned by a vector (U4 m , s* m+1 , ..., s* n , U4 n) with U4 m {0.

Therefore

(S1) There exist smooth mappings si (U0 , _) and Ui (U0 , _),
1�i�m, defined on U0 _(_*&=, _*+=), such that

si (U0* , _*)=si* and U i (U0* , _*)=U i* ,

and for each (U0 , _),

U0 www�
s1 (U0 , _)

} } } www�
sm (U0 , _)

(U0 , _) (4.3)

is an admissible wave sequence of type (T1 , ..., Tm). Moreover,
(�Um ��_)(U0* , _*){0.
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(S2) There exist smooth mappings s~ i (Un , {), m+1�i�n, and
U� i (Un , {), m�i�n&1, defined on Un _({*&=, {*&=), such that

s~ i (Un* , {*)=si* and U� i (Un , {*)=U i* ,

and for each (Un , {),

U� m (Un , {) wwww�
s~ m+1 (Un , {)

} } } www�
s~ n (Un , {) Un

is an admissible wave sequence of type (Tm+1 , ..., Tn). Moreover,
(�U� m ��{)(Un*, {*){0.

Of course, (�Um�_)(U 0*, _*) is a multiple of the vector U4 m given by
(R1), and (�U� m ��{)(U n*, {*) is a multiple of the vector U4 m given by (R2).
For a structrually stable Riemann solution, the wave group interaction
condition implies that

(S3) (�Um ��_)(U0*, _*) and (�U� m ��{)(Un*, {*) are linearly independ-
ent.

Then we have

Proposition 4.1. For each (U0 , Un) near (U0*, U n*) there is a unique
Riemann problem solution of type (T1 , ..., Tn) near (2.6).

Proof. The equation

Um (U0 , _)&U� m (Un , {)=0 (4.4)

can be solved for (_, {) in terms of (U0 , Un) near (U0 , _, Un , {)=
(U0*, _*, U n*, {*) by (S3) and the implicit function theorem. K

Alternatively, we can observe directly from (R1), (R2), and (S3) that
DG(U0*, s1*, ..., sn*, U n*), restricted to the space of vectors (U4 0 , s* 1 , ..., s* n , U4 n)
with U4 0=0 and U4 n=0, is surjective. In other words, (A) follows from
(R1), (R2), and (S3).

Given a wave sequence that satisfies (MR), we shall verify (A) as follows.
Let wj be the rarefaction of zero strength, and let m� j be an integer such
that a one-wave or transitional wave group ends with wm . We shall check
that (R1) holds. Statement (S1) then holds, except that (4.3) may not be
admissible for every (U0 , _), because for some (U0 , _) we may have
sj&*1 (Uj&1)<0. Statements (R2), hence (S2), and (S3) follow from the
statement of condition (MR). As observed above, from (R1), (R2), and
(S3), it follows that (A) holds.

Recall that a map is regular at a point of its domain if its derivative there
is surjective.
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In the cases in which (E1) needs to be verified, _=sj , and Uj&1 is deter-
mined by U0 . Then from Eqs. (4.1) and (4.2) we have

H� (U0 , Un)=_(U0 , Un)&*1 (Uj&1 (U0)), (4.5)

where _(U0 , Un)=sj (U0 , Un).

Proposition 4.2. Let (2.6) satisfy (MR) and (A). Let H� be given by
(4.5). Then DUn

H� (U 0*, Un*) is nonzero if and only if U� m (Un , {) is regular at
(Un*, {*).

Proof. By (4.5), DUn
H� (U 0*, U n*)=DUn

_(U0*, Un*). To evaluate
DUn

_(U 0*, Un*), in (4.4) we substitute _=_(U0 , Un) and {={(U0 , Un),
differentiate with respect to Un , and set (U0 , Un , _, {)=(U 0*, Un*, _*, {*).
We obtain

D_Um (U 0*, _*) } DUn
_(U0*, Un*)

&DUn
U� m (U n*, {*)&D{U� m (Un*, {*) } DUn

{(U 0*, Un*)=0. (4.6)

Each summand is a 2_2 matrix. In the first summand, both columns are
multiples of the column vector D_Um (U0*, _*); in the last summand, both
columns are multiples of the column vector D{U� m (Un*, {*). Since the
column vectors D_Um (U0*, _*) and D{U� m (Un*, {*) are linearly inde-
pendent, DUn

_(U0*, Un*) is nonzero if and only if the middle summand has
a column independent of D{U� m (Un*, {*), i.e., if and only if U� m (Un , {) is
regular at (Un*, {*). K

Thus the verification of the second half of (E1), i.e., the verification that
DUn

H� (U 0*, Un*) is nonzero, depends on properties of the wave sequence
past the wave group of the missing rarefaction. For certain sequences of
wave types (Tm+1 , ..., Tn), regularity of U� m (Un , {) follows from the
hypotheses of the structural stability theorem; for others, it is an inde-
pendent assumption, or it cannot hold. See Section 14.

To verify the first half of (E1), i.e., to verify that DU0
H� (U 0*, Un*) is non-

zero, we shall use the following proposition.

Proposition 4.3. Let (2.6) satisfy (MR) and (A). Let H� be given by
(4.5) with _=sj . Then DU0

H� (U 0*, Un*) is nonzero if and only if the equation

DG1 (U 0*, s1*, ..., s*m , U*m)(U4 0 , s* 1 , ..., s* m , U4 m)=0 (4.7)

has a solution (U4 0 , s* 1 , ..., s* m , U4 m) such that

(1) U4 m is a multiple of (�U� m��{)(Un*, {*).

(2) s* j&D*1 (U*j&1) U4 j&1 {0.
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Proof. DU0
H� (U 0*, Un*)U4 0 is nonzero if and only if there is a vector

(U4 0 , s* 1 , ..., s* n , 0) such that

DG(U0*, s1*, ..., sn*, Un*)(U4 0 , s* 1 , ..., s* n , 0)=0 (4.8)

and (2) holds. Now Eq. (4.8) is equivalent to Eq. (4.7) and the equation

DG2 (U*m , s*m+1 , ..., sn*, Un*)(U4 m , s* m+1 , ..., s* n , 0)=0. (4.9)

The solution set of Eq. (4.9) is one-dimensional, and each solution of
Eq. (4.9) has U4 m a multiple of (�U� m ��{)(Un*, {*). Thus there is a vector
(U4 0 , s* 1 , ..., s* n , 0) that satisfies Eq. (4.8) if and only if Eq. (4.7) has a solu-
tion that satisfies (1). K

This completes our discussion of Step 1 in the verification that a
Riemann solution (2.6) satisfying (MR) is a codimension-one Riemann
solution. We now turn our attention to Step 2.

Given a wave sequence (2.6) that satisfies (MR), there is a subsequence
of one, two, or three waves consisting of the rarefaction of zero strength
and any adjacent waves of the same speed. More precisely, there are
integers k<l, with l&k=1, 2, or 3, such that the wave sequence
(wk+1 , ..., wl) includes the rarefaction of zero strength, the V } RS shock
that immediately precedes it (if there is one), and the RS } V shock that
immediately succeeds it (if there is one). In each case there is a naturally
defined generalized shock w~ l : Uk* w�

s
l
*

Ul* that can replace the subsequence
(wk+1 , ..., wl). The new wave sequence

(w1 , ..., wk , w~ l , wl+1 , ..., wn):

U0* w�
s*1 } } } w�

s*k Uk* w�
s

l
*

Ul* ww�
s*

l+1 } } } w�
s*n Un* (4.10)

is equivalent to (2.6). We remark:

(1) If l&k=1, then the only difference between (4.10) and (2.6) is
that a shock of zero strength has replaced a rarefaction of zero strength.

(2) If l&k=2, then w~ l is actually a shock (the one that preceded or
followed the rarefaction of zero strength in the original wave sequence).

(3) If l&k=3, then w~ l is a generalized shock but not a shock. It is
constructed by amalgamating the shocks that preceded and followed the
rarefaction of zero strength in the original wave sequence.

We will check that there is a shock type T� l such that (4.10) is a codimen-
sion-one Riemann solution in the boundary of the structurally stable
Riemann solutions of type (T1 , ..., Tk , T� l , Tl+1 , ..., Tm). In order to do
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this, we will construct another local defining map (G, H) for Riemann solu-
tions of type (T1 , ..., Tk , T� l , Tl+1 , ..., Tm) exhibiting a certain degeneracy
in the wave of type T� l . For this new map, we will verify (A), i.e., (Q71),
at the point (U0*, s1*, ..., sk*, U k*, sl*, Ul*, s*l+1 , ..., sn*, Un*), and, if we
verified (Ei) for the map (G, H) associated with (2.6), we will verify that
the corresponding condition (Ei) for the new map (G, H). Thus (Q4) and
(Q62) hold for the new map; as in step 1, (Q1)�(Q3) and (Q5) follow from
a geometric understanding of the situation.

This completes our discussion of Step 2. As to Step 3, in each case it
follows from our construction in Step 2 that the two types of codimension-
one Riemann solutions are defined on the same codimension-one surface S

in U0UnF-space, and that the two types of codimension-one Riemann solu-
tions above a given point in S are equivalent. In the different cases we
shall not discuss these facts; we shall, however, discuss the type of join that
occurs. Here we only discuss deciding whether the join is regular or folded
in case (E1) holds.

Let _̂(U0)=*1 (Uj&1 (U0)). Then for U0 near U0*, and _ near _̂(U0) with
_�_̂(U0), there are smooth mappings si (U0 , _) and Ui (U0 , _), 1�i�m,
such that si (U0*, _̂(U0*))=si*, U i (U 0*, _(U 0*)=U i*, and for _>_̂(U0),
(4.3) is an admissible wave sequence of type (T1 , ..., Tm). For _=_̂(U0),
one rarefaction has zero strength. (In fact, _=sj .)

Similarly, for U0 near U0*, and _ near _̂(U0) with _�_̂(U0), there are
smooth mappings ŝi (U0 , _) and U� i (U0 , _), 1�i�k and l�i�m, such
that for each (U0 , _) with _<_̂(U0),

U0 www�
ŝi (U0 , _)

} } } www�
ŝk (U0 , _)

U� (U0 , _) www�
ŝl (U0 , _)

U� l (U0 , _)

wwww�
ŝl+1(U0 , _)

} } } wwww�
ŝm (U0 , _)

U� m (U0 , _) (4.11)

is an admissible wave sequence of type (T1 , ..., Tk , T� l , Tl+1 , ..., Tm). For
_=_̂(U0), w~ l is a generalized shock.

We consider the forward wave curve Um (U0*, _), _�_*, and its con-
tinuation U� m (U 0*, _), _�_*; and the backwards wave curve U� m (Un*, {).
We assume

(I) (�Um ��_)(U 0*, _*) and (�U� m ��_)(U 0*, _*) are both linearly inde-
pendent of (�U� m ��{)(Un*, {*).

We distinguish two cases:

Case (Ia). (�Um ��_)(U0 , _(U0)) is a positive multiple of (�U� m��_)
(U0 , _(U0)) for all U0 .

Case (Ib). Case (Ia) need not hold.
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In Case (Ia) after reparametrization we can assume the multiple is identi-
cally one, so that Um and U� m fit together to form a C1 mapping, which we
again denote Um (U0 , _). Then the proof of Proposition 4.7 allows us to
solve for _ and { in terms of (U0 , Un) near (U0*, U n*), which yields a unique
Riemann solution near (2.6) for each (U0 , Un) near (U0*, U n*). If
_(U0 , Un)<0, we have a structurally stable Riemann solution of one type;
if _(U0 , Un)>0, we have a structurally stable Riemann solution of another
type.

Proposition 4.4. Let (2.6) satisfy (MR). Assume (A) and (E1), the
analogues of (A) and (E1) discussed in Step 2, and (Ia) all hold. Then there
is a codimension-one surface S in U0Un -space that separates regions in
which different types of structurally stable Riemann solutions are defined.
Thus the Riemann solution join is regular.

Proof. From the proof of Proposition 4.9 we see that (E1) implies that
DUn

_(U 0*, Un*){0. The result follows. K

In Case (Ib) we distinguish two subcases.

Case (Ib)(i). det((�Um��_)(U0*, _*), (�U� m��{)(Un*, {*)) and det((U� m��_)
(U0*, _*), (�U� m��{)(U n*, {*)) have the same sign. In this subcase the join is
regular (see Fig. 4.1a).

Case (Ib)(ii). The determinants have opposite sign. In this subcase the
join is folded (see Fig. 4.1b).

In Table III we indicate the nine missing rarefaction cases that are the
subject of this paper by listing the waves preceding and following the
rarefaction of zero strength with the same wave speed. Whether the missing

FIG. 4.1. Wave curves in cases in cases (Ib)(i) and (Ib)(ii). In each diagram, the curve
Um (U 0*, _) and its continuation U� m (U0*, _) are shown as solid curves; the curve U� m (U n*, {)
is dashed. The vectors ((�Um��_)(U 0*, _*), (U� m��_)(U0*, _*), and (�U� m��{)(U n*, {*) are
labeled V1 , V2 , and W, respectively, in the diagrams.
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TABLE III

The Nine Classical Missing Rarefaction Cases

Predecessor Successor Boundary type Join type for first possibility

None None Intermediate or UL Regular
None RS } S Intermediate or UL Regular
None RS } RS UL Regular
R } RS None Intermediate or UL Regular
R } RS RS } S Intermediate or UL Regular or folded
R } RS RS } RS UL Regular or folded

RS } RS None Intermediate, UL , UR , or F Regular
RS } RS RS } S Intermediate, UL , UR or F Regular or folded
RS } RS RS } RS UL or F Regular or folded

rarefaction gives rise to an F-, UL-, UR-, or intermediate boundary
depends on the location of the missing rarefaction in the wave sequence
(see the end of Section 3); the table gives the possibilities. In each case,
only the first boundary type listed is studied. Each case gives rise to a join,
which in four cases may be folded; this information is also given in the
table. In the remainder of the paper we state precisely the conditions under
which these results hold and give proofs. However, the first case, a missing
rarefaction with no preceding or following wave with the same wave speed,
is stated without proof because of its familiarity.

5. NO PREDECESSOR, NO SUCCESSOR

Theorem 5.1. Let (2.6) be a Riemann solution of type (T1 , ..., Tn), with
T1=R1 , T2 {RS } *. Assume:

(1) All hypotheses of Theorem 2.4 are satisfied, except that the rare-

faction U 0* w�
s*

1 U1* has zero strength.

(2) The backward wave curve mapping U� 1 (Un , {) is regular at
(Un*, {*).

Then (2.6) is a codimension-one Riemann solution. It has an equivalent
codimension-one Riemann solution that lies in the boundary of structurally
stable Riemann solutions of type (R } S, T2 , ..., Tn). Riemann solution (2.6)
(and its equivalent) lies in a regular join that is an intermediate boundary.

We shall not prove this result, since its essence, which is that the slow
rarefaction and slow (R } S) shock curves emanating from the left state fit
together to form a smooth curve, is so familiar; see Ref. [5]. The interested
reader may construct a proof modeled on those in the other sections.
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6. NO PREDECESSOR, SUCCESSOR RS } S

Theorem 6.1. Let (2.6) be a Riemann solution of type (T1 , ..., Tn), with
T1=R1 , T2=RS } S. Assume:

(1) All hypotheses of Theorem 2.4 are satisfied, except that the

rarefaction U0* w�
s*1 U1* has zero strength.

(2) The backward wave curve mapping U� 2 (Un , {) is regular at
(Un*, {*).

Then (2.6) is a codimension-one Riemann solution. It has an equivalent
codimension-one Riemann solution that lies in the boundary of structurally
stable Riemann solutions of type (R } S, T3 , ..., Tn). Riemann solution (2.6)
(and its equivalent) lies in a regular join that is an intermediate boundary.

Proof. Step 1. The one-wave group of (2.6) is

U0* w�
s*1 U1* w�

s*2 U 2*.

We have

s1*=s2*=*1 (U1*) and U0*=U1*. (6.1)

We note that (U0 , s1 , U1 , s2 , U2) near (U 0*, s1*, U1*, s2*, U2*) represents
an admissible wave sequence of type (R1 , RS } S) if and only if

U1&�(U0 , s1)=0, (6.2)

s1&*1 (U0)�0, (6.3)

F(U2)&F(U1)&s2 (U2&U1)=0, (6.4)

*1 (U1)&s2=0. (6.5)

Let G(U0 , s1 , ..., sn , Un) be the local defining map for wave sequences of
type (R1 , RS } S, T3 , ..., Tn) near (U0*, s1*, ..., sn*, Un*), G=(G1 , G2), where
G1 (U0 , s1 , U1 , s2 , U2) is given by the left hand sides of Eqs. (6.2) and
(6.4)�(6.5), and G2 (U2 , s3 , ..., sn , Un) is the local defining map for wave
sequences of type (T3 , ..., Tn). The linearization of Eqs. (6.2) and (6.4)�(6.5)
at (U0*, s1*, U1*, s2*, U 2*) is

U4 1&D�(U0*, s1*)(U4 0 , s* 1)=0, (6.6)

(DF(U2*)&s2*I )U4 2&(DF(U1*)&s1*I )U4 1&s* 2 (U2*&U1*)=0, (6.7)

D*1 (U 1*)U4 1&s* 2=0. (6.8)

272 STEPHEN SCHECTER



Solutions of Eqs. (6.6)�(6.8) with U4 0=0 form a one-dimensional space
spanned by

(U4 0 , s* 1 , U4 1 , s* 2 , U4 2)=(0, 1, r1 (U1*), 1, (DF(U2*)&s1*I )&1 (U2*&U1*)).

(6.9)

Thus (R1) holds. Since (R2) and (S3) follow from assumption (1), (A)
holds.

Solutions of (6.2)�(6.3) near (U0*, s1*, U 2*, s2*, U2*) are parameterized by
U0 and s1 as

U1=�(U0 , s1), s1�*1 (U0), (6.10)

s2=*1 (U1), (6.11)

U2=.(U1 , *1 (U1)). (6.12)

Here (6.12) is the solution of Eq. (6.4), given near (U1*, s2*, U2*) by the
implicit function theorem.

The left-hand side of (6.3) is the map H for this situation, so H� (U0 , Un)
=s1 (U0 , Un)&*1 (U0). The second part of (E1) holds by Proposition 4.2.

To verify the first part of (E1) we note that Eqs. (6.6)�(6.8) have the
solution (U4 0 , s* 1 , U4 1 , s* 2 , U4 2)=(r1 (U0*), 0, 0, 0, 0). Thus the hypotheses of
Proposition 4.3 are satisfied with j=1 and m=2, so the first part of (E1)
holds.

Step 2. The bifurcation diagram of U4 =F(U)&F(U0*)&s(U&U 0*)
features (1) a transcritical bifurcation at (U, s)=(U0*, *1 (U0*)), and (2) at
s=*1 (U0*), a nondegenerate repeller-saddle to saddle connection from U 0*
to U2*. These features persist for U0 near U0*; see Fig. 6.1. We conclude
from this figure that if (U0 , s, U) near (U0*, s2*, U2*) represents a shock of
type R } S or RS } S, then

F(U)&F(U0)&s(U&U0)=0, (6.13)

*1 (U0)&s�0. (6.14)

Solutions of Eq. (6.13) with *1 (U0)&s>0 represent R } S shocks; those
with *1 (U0)&s=0 represent RS } S shocks.

Let G(U0 , s, U, s3 , U3 , s4 , ..., sn , Un) be the local defining map for wave
sequences of type (R } S, T3 , ..., Tn) near (U0*, s2*, U 2*, s3*, U3*, s4*, ..., sn*,
Un*), G=(G1 , G2), where G1 (U0 , s, U) is given by the left-hand side of
Eq. (6.13), and G2 (U, s3 , U3 , s4 , ..., sn , Un) is as in Step 1. The linearization
of Eq. (6.13) at (U0*, s2*, U 2*) is

(DF(U2*)&s2*I)U4 &(DF(U0*)&s2*I )U4 0&s* (U2*&U0*)=0. (6.15)
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FIG. 6.1. Bifurcation diagram and phase portraits for U4 =F(U)&F(U0)&s(U&U0), U0

fixed near U0*.

Solutions of Eq. (6.15) with U4 0=0 form a one-dimensional space spanned
by

(U4 0 , s* , U4 )=(0, 1, (DF(U2*)&s2*I)&1 (U2*&U0*). (6.16)

Therefore (R1) holds. Statement (R2) holds as before. Since the last
component of (6.9) agrees with the last component of (6.16), (S3) holds.
Therefore (A) holds.

Solutions of (6.13)�(6.14) near (U0*, s2*, U 2*) are parameterized by U0

and s�*1 (U0),

U=U(U0 , s), s�*1 (U0), (6.17)

where U(U0 , s) is the solution of (6.13) given near (U 0*, s2*, U2*) by the
implicit function theorem.

The map H for this situation is *1 (U0)&s, so H� (U0 , Un)=
*1 (U0 ) & s(U0 , Un). The second part of (E1) holds by the proof of
Proposition 4.3.

To verify the first part of (E1), we note that one solution of (6.15) is
(U4 0 , s* , U4 )=(r1 (U0*), 0, 0) and use the proof of Proposition 4.3.

Step 3. We note that U2 (U0 , s1) is defined for s1�*1 (U0), U(U0 , s)
is defined for s�*1 (U0), and (�U2��s1 )(U0 , *1(U0))=(�U��s)(U0 , *1 (U0)).
(This equation holds at U 0* by (6.9) and (6.16), and it holds nearby by the
same argument.) Therefore (Ia) holds, so the join is regular. K
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Remark. The observation that (Ia) holds is equivalent to the observa-
tion that when repeller-to-saddle shocks become degenerate at the repeller
end, the one-wave curve continues smoothly as (R1 , RS } S) composites.
This observation can be verified under less restrictive assumptions by the
methods of Ref. [12].

7. NO PREDECESSOR, SUCCESSOR RS } RS

Theorem 7.1. Let (2.6) be a Riemann solution of type (T1 , ..., Tn), with
T1=R1 , T2=RS } RS, T3=R1 . Assume all hypotheses of Theorem 2.4 are

satisfied, except that the rarefaction U0* w�
s*

1 U1* has zero strength. Then
(2.6) is a codimension-one Riemann solution. It has an equivalent codimen-
sion-one Riemann solution that lies in the boundary of structurally stable
Riemann solutions of type (R } RS, R1 , T4 , ..., Tn). Riemann solution (2.6)
(and its equivalent) lies in a regular join that is a UL-boundary.

Proof. Step 1. The one-wave group of (2.6) begins

U0* w�
s*1 U1* w�

s*
2 U2* w�

s*
3 U3*

(and may be longer). We have

s1*=s2*=*1 (U1*)=*1 (U 2*) and U0*=U 1*.

We note that (U0 , s1 , U1 , s2 , U2) near (U 0*, s1*, U1*, s2*, U2*) represents
an admissible wave sequence of type (R1 , RS } RS) if and only if

U1&�(U0 , s1)=0, (7.1)

s1&*1 (U0)�0, (7.2)

F(U2)&F(U1)&s2 (U2&U1)=0, (7.3)

*1 (U1)&s2=0, (7.4)

*1 (U2)&s2=0. (7.5)

Let G(U0 , s1 , ..., sn , Un) be the local defining map for wave sequences of
type (R1 , RS } RS, R1 , T4 , ..., Tn) near (U0*, s1*, ..., sn*, U n*), G=(G1 , G2),
where G1 (U0 , s1 , U1 , s2 , U2) is given by the left hand sides of Eqs. (7.1)
and (7.3)�(7.5), and G2 (U2 , s3 , ..., sn , Un) is the local defining map for
wave sequences of type (R1 , T4 , ..., Tn). From the theory of [9],

DG1 (U0*, s1*, U1*, s2*, U2*), restricted to

[(U4 0 , s* 1 , U4 1 , s* 2 , U4 2) : U4 0=0], is an isomorphism, (7.6)
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and

DG2 (U2*, s3*,..., s*n , U*n), restricted to

[(U4 2 , s* 3 ,..., s* n , U4 n) : U4 2=U4 n=0], is an isomorphism. (7.7)

(For (7.7), note that the wave sequence (w3*, ..., wn*) satisfies the hypotheses
of Theorem 2.4.) Therefore (A) holds.

From (7.6), we can solve Eqs. (7.1) and (7.3)�(7.5) for (s1 , U1 , s2 , U2) in
terms of U0 near (U0*, s1*, U1*, s2*, U2*). A solution of G=0 represents a
Riemann solution of the desired type if and only if s1&*1 (U0)�0. By the
definition of �, s1=*1 (U1), and *1 (U1)=s2 by Eq. (7.4). Therefore we
study the function H� (U0) :=s2 (U0)&*1 (U0). Condition (E2) will be
verified if we show that DH� (U0*){0. We will calculate DH� (U 0*)U4 0 by
linearizing Eqs. (7.1) and (7.3)�(7.5) at (U0*, s1*, U 1*, s2*, U2*), solving for s* 2
in terms of U4 0 , and then subtracting D*1 (U0*)U4 0 .

Actually, we need only linearize Eqs. (7.1) and (7.3) at (U0*, s1*, U 1*, s2*,
U2*),

U4 1&D�(U0*, s1*)(U4 0 , s* 1)=0, (7.8)

(DF(U2*)&s2*I )U4 2&(DF(U1*)&s2*I )U4 1&s* 2 (U2*&U1*)=0. (7.9)

In Eqs. (7.8) and (7.9) we write

U4 0=ar1 (U0*)+br2 (U0*),

U4 1=cr1 (U1*)+dr2 (U1*).

We multiply Eq. (7.8) by l2 (U0*) and Eq. (7.9) by l1 (U 2*). We get (using
Lemma 2.2 on Eq. (7.8))

d&b=0,

&d(*2 (U 1*)&s2*) l1 (U2*) r2 (U1*)&s* 2l1 (U2*)(U2*&U 1*)=0.

Therefore

DH� (U0*)U4 0=s* 2 &D*1 (U0*)U4 0=s* 2 &(a+b D*1 (U0*) r2 (U0*))

=&a&b {D*1 (U0*) r2 (U0*)

+
(*2 (U1*)&*1 (U1*)) l1 (U2*) r2 (U1*)

l1 (U2*)(U2* &U1*) = . (7.10)

Clearly DH� (U 0*){0.
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Therefore

C=[U0 : H� (U0)=0]

is a smooth curve near U0*; it is transverse r1 (U 0*); and for (U0 , Un) near
(U0*, Un*), a solution of type (R1 , RS } RS, R1 , T4 , ..., Tn) exists provided
U0 is on the side of C opposite that to which r1 (U1*) points.

Step 2. We consider the point (U0*, s2*, U2*, s3*, U3*, s4*, ..., sn*, Un*) in
R3n&1. We shall investigate the existence of nearby points (U0 , s, U, s3 , U3 ,
s4 , ..., sn , Un) that represent Riemann solutions of type (R } RS, R1 ,
T4 , ..., Tn). To obtain a condition for the existence of such points, we con-
sider the bifurcation diagram of

U4 =F(U)&F(U0)&s(U&U0).

For U0=U0*, it is shown in Fig. 7.1a. (The parabolic curve through U 2*
may open to the left, but this changes nothing.) For U0 near U 0*, the bifur-
cation diagram of Fig. 7.1a can perturb to one of those shown in Fig. 7.1b
or 7.1c. There is an R } RS shock from U0 to U(U0) if and only if the bifur-
cation diagram is as in Fig. 6.1b. For the bifurcation diagram of Fig. 7.1a,
there is a generalized shock from U0 to U(U0).

To study this situation, we consider the system

F(U)&F(U0)&s(U&U0)=0, (7.11)

*1 (U)&s=0, (7.12)

near (U0 , s, U)=(U 0*, s2*, U2*). Let G(U0 , s, U, s3 , U3 , s4 , ..., sn , Un) be the
local defining map for wave sequences of type (R } RS, R1 , T4 , ..., Tn) near
(U0*, s2*, U2*, s3*, U3*, s4*, ..., sn*, Un*), G=(G1 , G2), where G1 (U0 , s, U) is
given by the left-hand sides of Eqs. (7.11)�(7.12), and G2 (U, s3 , U3 , s4 , ...,
sn , Un) is as in Step 1. From the proof of Lemma 5.3 in Ref. [9], DG1 (U 0*,
s2*, U 2*), restricted to [(U4 0 , s* , U4 ) : U4 0=0], is an isomorphism. Then from
(7.7), (A) holds. Moreover, Eqs. (7.11)�(7.12), can be solved for (s, U) in
terms of U0 near U 0*; the solution is (s(U0), U(U0)).

From Fig. 7.1, a solution of G=0 represents a wave sequence of the
desired type if and only if s(U0)<*1 (U0). We therefore study the function
H� (U0) :=*1 (U0)&s(U0).

To verify (E2), we calculate DH� (U0*)U4 0 .
Linearizing Eq. (7.11) at (U0*, s2*, U2*) yields

(DF(U2*)&s2*I)U4 &(DF(U0*)&s2*I )U4 0&s* (U2*&U0*)=0.
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FIG. 7.1. Bifurcation diagrams for U4 =F(U)&F(U0)&s(U&U0), U0 fixed near U0* . The
proof shows that bifurcation diagram (a) actually occurs for any U0 on the curve C defined
in the proof; the other two diagrams occur for U0 on opposite sides of C.

Multiplying by l1 (U 2*) yields

&b(*2 (U0*)&s2*) l1 (U 2*) r2 (U 0*)&s* l1 (U 2*)(U2*&U0*)=0.

Therefore

DH� (U0*)U4 0=D*1 (U0*)U4 0 &s* =&(right hand side of Eq. (7.10)).

Thus DH� (U0*){0, so (E1) holds.
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It is easy to see that [U0 : H� (U0)=0], where H� comes from Step 2, is
precisely the curve C defined in Step 1. We remark that for U0 on C, we
have the bifurcation diagram of Fig. 7.1a; for U0 on the side of C where
H� >0 (resp. H� <0), we have the bifurcation diagram of Fig. 7.1b (resp.
Fig. 7.1c).

Step 3. Our two functions H� defined in Steps 1 and 2 are positive on
opposite sides of C, so the Riemann solution join is regular. K

8. PREDECESSOR R } RS, NO SUCCESSOR

Theorem 8.1. Let (2.6) be a Riemann solution of type (T1 , ..., Tn) with
T1=R } RS, T2=R1 , T3 {RS } V . Assume

(1) All hypotheses of Theorem 2.4 are satisfied, except that the rare-

faction U 1* w�
s*2 U2* has zero strength.

(2) The backward wave curve mapping U� 2 (Un , {) is regular at
(Un*, {*).

Then (2.6) is a codimension-one Riemann solution. It has an equivalent
codimension-one Riemann solution that lies in the boundary of structurally
stable Riemann solutions of type (R } S, T3 , ..., Tn). Riemann solution (2.6)
(and its equivalent) lies in a regular join that is an intermediate boundary.

Proof. Step 1. The one-wave group of (2.6) is

U0* w�
s*

1 U1* w�
s*2 U 2*.

We have

s1*=s2*=*1 (U1*) and U1*=U2*.

We note that (U0 , s1 , U1 , s2 , U2) near (U 0*, s1*, U1*, s2*, U2*) represents
an admissible wave sequence of type (R } RS, R1) if and only if

F(U1)&F(U0)&s1 (U1&U0)=0, (8.1)

*1 (U1)&s1=0, (8.2)

U2&�(U1 , s2)=0, (8.3)

s2&*1 (U1)�0. (8.4)
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Let G(U0 , s1 , ..., sn , Un) be the local defining map for wave sequences of
type (R } RS, R1 , T3 , ..., Tn) near (U0*, s1*, ..., sn*, U n*), G=(G1 , G2), where
G1 (U0 , s1 , U1 , s2 , U2) is given by the left hand sides of Eqs. (8.1)�(8.3),
and G2 (U2 , s3 , ..., sn , Un) is the local defining map for wave sequences of
type (T3 , ..., Tn). The linearization of Eqs. (8.1)�(8.3) at (U0*, s1*, U1*, s2*, U2*)
is

(DF(U1*)&s1*I )U4 1&(DF(U0*)&s1*I )U4 0&s* 1 (U1*&U0*)=0, (8.5)

D*1 (U 1*)U4 1&s* 1=0, (8.6)

U4 2&D�(U1*, s2*)(U4 1 , s* 2)=0. (8.7)

Solutions of Eqs. (8.5)�(8.7) with U4 0=0 form a one-dimensional space
spanned by

(U4 0 , s* 1 , U4 1 , s* 2 , U4 2)=(0, 0, 0, 1, r1 (U2*)). (8.8)

Thus (R1) holds. Since (R2) and (S3) follow from the assumptions of the
theorem, (A) holds.

Solutions of (8.1)�(8.4) near (U0*, s1*, U1*, s2*, U 2*) are parametrized by
U0 and s2 as

s1=s1 (U0), (8.9)

U1=U1 (U0), (8.10)

U2=�(U1 , s2), s2�*1 (U1). (8.11)

Here (8.9)�(8.10) is the solution of (8.1)�(8.2), and s1 (U0)=*1 (U1 (U0)).
The solution (8.9)�(8.10) may be understand by considering the bifurca-

tion diagram of

U4 =F(U)&F(U0)&s(U&U0)

for fixed U0 near U0*; see Fig. 8.1. (The parabolic curve may open to the
left, but this changes nothing.) In this bifurcation diagram there is a saddle-
node bifurcation at s=s1 (U0), at the point U=U1 (U0).

The left-hand side of (8.4) is the map H for this situation, so H� (U0 , Un)
=s2 (U0 , Un)&*1 (U1 (U0)). The second part of (E1) holds by Proposi-
tion 4.2. To verify the first part of (E1), we note that Eqs. (8.5)�(8.7) have
the solution

(U4 0 , s* 1 , U4 1 , s* 2 , U4 2)=(&(DF(U 0*)&s1*I)&1 (U1*&U 0*), 1, r1 (U1*), 0, 0).

(8.12)
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FIG. 8.1. Bifurcation diagram and phase portraits for U4 =F(U)&F(U0)&s(U&U0), U0

fixed near U 0* .

Thus the hypotheses of Proposition 4.3 are satisfied with j=2 and m=2,
so the first part of (E1) holds.

Step 2. We note that if (U0 , s, U) near (U0*, s1*, U1*) represents a
shock of type R } S or R } RS, then

F(U)&F(U0)&s(U&U0)=0, (8.13)

*1 (U)&s�0. (8.14)

The inequality (8.14) simply says that an eigenvalue of U4 =
F(U)&F(U0)&s(U&U0) at U is non-positive. Solutions of (8.13) with
*1 (U)&s<0 represent R } S shocks; those with *1 (U)&s=0 represent
R } RS shocks.

Let G(U0 , s, U, s3 , U3 , s4 , ..., sn , Un) be the local defining map for wave
sequences of type (R } S, T3 , ..., Tn) near (U0*, s1*, U1*, s3*, U 3*, s4*, ..., sn*,
Un*), G=(G1 , G2), where G1 (U0 , s, U) is given by the left-hand side of
Eq. (8.13), and G2 (U, s3 , U3 , s4 , ..., sn , Un) is as in Step 1. The linearization
of Eq. (8.13) at (U0*, s1*, U 1*) is

(DF(U1*)&s1*I)U4 &(DF(U0*)&s1*I )U4 0&s* (U1*&U0*)=0. (8.15)

Solutions of (8.15) with U4 0=0 form a one-dimensional space spanned by

(U4 0 , s* , U4 )=(0, 0, r1 (U1*). (8.16)
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Therefore (R1) holds. Since the last component of (8.8) agrees with the last
component of (8.16), (A) holds.

Solutions of Eq. (8.13) near (U0*, s1*, U 1*) can by parameterized by U0

and a parameter t near 0 as

s=s(U0 , t), (8.17)

U=U(U0 , t). (8.18)

We can easily arrange that

s(U0 , 0)=s1 (U0), (8.19)

�s
�t

(U0 , 0)=0, (8.20)

U(U0 , 0)=U1 (U0), (8.21)

�U
�t

(U0 , 0)=r1 (U1 (U0)). (8.22)

The map H for this situation is H(U0 , s, U, s3 , ..., sn , Un)=s&*1 (U).
Therefore

H� (U0 , Un)=s(U0 , t(U0 , Un))&*1 (U(U0 , t(U0 , Un))). (8.23)

Differentiating with respect to Un yields

DUn
H� (U 0*, Un*, F*)=

�s
�t

(U0*, 0) DUn
t(U 0*, Un*)

&D*1 (U1*) Dt U(U0*, s1*) DUn
t(U0*, Un*). (8.24)

By (8.20), (8.22), and (2.3), (8.24) simplifies to

DUn
H� (U0*, U n*, F*)=&D*1 (U1*) r1 (U1*) DUn

t(U0*, Un*)

=&DUn
t(U0*, U n*).

The proof of Proposition 4.2 shows that this is not zero, so the second half
of (E1) is verified.

To verify the first half of (E1), we note that one solution of Eq. (8.15)
is (U4 0 , s* , U4 )=(&DF(U0*&s1*I )&1 (U1*&U 0*), 1, 0). But then

DU0
H� (U 0*, U n*)U4 0=s* &D*1 (U 1*)U4 =1&0=1.

Step 3. We note that in Step 1,

U2=�(U1 (U0), s2)

282 STEPHEN SCHECTER



is defined for s2�*1 (U1 (U0)), while in Step 2, U(U0 , t) satisfies the
inequality (8.14) for t�0. The latter fact follows from the calculation

D*1 (U(U0*, 0)) DtU(U 0*, 0)&Dts(U 0*, 0)=D*1 (U1*) r1 (U 1*)&0=1.

Then from (8.8) and (8.16), (Ia) holds, so the join is regular. K

Remark. The observation that (Ia) holds is equivalent to the observa-
tion that when repeller-to-saddle shocks become degenerate at the saddle
end, the one-wave curve continues smoothly as (R } RS, R1) composites.
This observation is verified under less restrictive assumptions in Ref. [12].

9. PREDECESSOR R } RS, SUCCESSOR RS } S

Theorem 9.1. Let (2.6) be a Riemann solution of type (T1 , ..., Tn) with
T1=R } RS, T2=R1 , T3=RS } S. Assume

(1) All hypotheses of Theorem 2.4 are satisfied, except that the

rarefection U1* w�
s*

2 U2* has zero strength.

(2) The backward wave curve mapping U� 3 (Un , {) is regular at
(Un*, {*).

(3) (DF(U3*)&s1*I )&1 (U 3*&U 0*) and (�U� 3 ��{)(U n*, {*) are linearly
independent.

Then (2.6) is a codimension-one Riemann solution. It has an equivalent
codimension-one Riemann solution that lies in the boundary of structurally
stable Riemann solutions of type (R } S, T4 , ..., Tn). Riemann solution (2.6)
(and its equivalent) lies in a join that is an intermediate boundary. The join
may be regular or folded.

Proof. Step 1. The one-wave group of (2.6) is

U0* w�
s*1 U1* w�

s*
2 U2* w�

s*
3 U3*.

We have

s1*=s2*=s3*=*1 (U1*) and U1*=U2*. (9.1)

We note that (U0 , s1 , ..., s3 , U3) near (U0*, s1*, ..., s3*, U3*) represents an
admissible wave sequence of type (R } RS, R1 , RS } S) if and only if
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F(U1)&F(U0)&s1 (U1&U0)=0, (9.2)

*(U1)&s1=0, (9.3)

U2&�(U1 , s2)=0, (9.4)

s2&*1 (U1)�0, (9.5)

F(U3)&F(U2)&s3 (U3&U2)=0, (9.6)

*1 (U2)&s3=0. (9.7)

Let G(U0 , s1 , ..., sn , Un) be the local defining map for wave sequences of
type (R } RS, R1 , RS } S, T4 , ..., Tn) near (U0*, s1*, ..., sn*, Un*), G=(G1 , G2),
where G1 (U0 , s1 , U1 , s2 , U2 , s3 , U3) is given by the left hand sides of
Eqs. (9.2)�(9.4) and (9.6)�(9.7), and G2 (U3 , s4 , ..., sn , Un) is the local defining
map for wave sequences of type (T4 , ..., Tn). The linearization of
Eqs. (9.2)�(9.4) and (9.6)�(9.7) at (U0*, s1*, U 1*, s2*, U2*, s3*, U3*) is

(DF(U1*)&s1*I )U4 1&(DF(U0*)&s1*I )U4 0&s* 1 (U1*&U0*)=0, (9.8)

D*1 (U 1*)U4 1&s* 1=0, (9.9)

U4 2&D�(U1*, s2*)(U4 1 , s* 2)=0, (9.10)

(DF(U3*)&s3*I )U4 3&(DF(U2*)&s3*I )U4 2&s* 3 (U3*&U2*)=0, (9.11)

D*1 (U 2*)U4 2&s* 3=0. (9.12)

Solutions of (9.8)�(9.12) with U4 0=0 form a one-dimensional space
spanned by

(U4 0 , s* 1 , U4 1 , s* 2 , U4 2 , s* 3 , U4 3)

=(0, 0, 0, 1, r1 (U2*), 1, (DF(U3*)&s3*I )&1 (U3*&U2*). (9.13)

Thus (R1) holds. Since (R2) and (S3) follow from assumtion (1), (A)
holds.

Solutions of (9.2)�(9.7) near (U0*, s1*, ..., s3*, U 3*) are parameterized by
U0 and s2 as

s1=s1 (U0), (9.14)

U1=U1 (U0), (9.15)

U2=�(U1 , s2), s2�s1 (U0), (9.16)

s3=s2 , (9.17)

U3=.(U2 , s3). (9.18)
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Here (s1 (U0), U1 (U0)) is the solution of (9.2)�(9.3) near (U0*, s1*, U 1*),
where s1 (U0)=*1 (U1 (U0)), and U3=.(U2 , s3) is the solution of (9.6)
near (U2*, s3*, U 3*).

The left-hand side of (9.5) is the map H for this situation, so H� (U0 , Un)
=s2 (U0 , Un)&*1 (U1 (U0)). The second part of (E1) holds by Proposi-
tion 4.2. To verify the first part of (E1), we note that Eqs. (9.8)�(9.12) have
the solution

(U4 0 , s* 1 , U4 1 , s* 2 , U4 2 , s* 3 , U4 3)

=(&(DF(U0*)&s1*I )&1 (U1*&U0*), 1, r1 (U1*), 0, 0, 0, 0). (9.19)

Thus the hypotheses of Proposition 4.3 are satisfied with j=2 and m=3,
so the first part of (E1) holds.

Step 2. We look for points (U0 , s, U) near (U0*, s1*, U3*) that repre-
sent R } S shocks. To see that such points exist, we consider the bifurcation
diagram of

U4 =F(U)&F(U0)&s(U&U0)

for U0 near U 0* . It is given by Fig. 9.1 in the case l1 (U 1*)(U 1*&U 0*)>0;
if l1 (U1*)(U1*&U0*)<0, the parabolic curve through U1 (U0) opens to the
left. (We have l1 (U 1*)(U1*&U 0*){0 by the nondegeneracy conditions for
waves of type R } RS.)

FIG. 9.1. Bifurcation diagram and phase portraits for U4 =F(U)&F(U0)&s(U&U0), U0

fixed near U 0* .

285CODIMENSION-ONE RIEMANN SOLUTIONS



In the case l1 (U 1*)(U1*&U0*)>0, if (U0 , s, U) near (U0*, s1*, U3*)
represents an R } S shock, then from Fig. 9.1,

F(U)&F(U0)&s(U&U0)=0, (9.20)

s1 (U0)&s�0. (9.21)

In fact, solutions of Eq. (9.20) with s1 (U0)&s>0 represent R } S shocks;
those with s1 (U0)&s=0 represent generalized shocks.

Let G(U0 , s, U, s4 , U4 , s5 , ..., sn , Un) be the local defining map for wave
sequences of type (R } S, T4 , ..., Tn) near (U0*, s1*, U3*, s4*, U4*, s5*, ..., sn*, Un*),
G=(G1 , G2), where G1 (U0 , s, U) is given by the left-hand side of
Eq. (9.20), and G2 (U, s4 , U4 , s5 , ..., sn , Un) is as in Step 1. The linearization
of Eq. (9.20) at (U0*, s1*, U 3*) is

(DF(U3*)&s1*I)U4 &(DF(U0*)&s1*I )U4 0&s* (U3*&U0*)=0. (9.22)

Solutions of Eq. (9.22) with U4 0=0 form a one-dimensional space spanned
by

(U4 0 , s* , U4 )=(0, 1, (DF(U3*)&s1*I )&1 (U3*&U0*)). (9.23)

Therefore (R1) holds. Condition (A) then follows from assumption (3) of
the theorem.

The solutions of (9.20)�(9.21) near (U0*, s1*, U 3*) are parameterized by
U0 and s as

U=U(U0 , s), s�s1 (U0), (9.24)

where U(U0 , s) is the solution of Eq. (9.20) near (U0*, s1*, U3*).
The map H for this situation is H(U0 , s, U, s4 , ..., sn , Un)=s1 (U0)&s.

Therefore

H� (U0 , Un)=s1 (U0)&s(U0 , Un).

Thus DUn
H� (U 0*, Un*)=DUn

s(U0*, Un*), which is nonzero by the proof of
Proposition 4.2. This verifies the second half of (E1).

We note that by the argument used to prove Proposition 4.3, the first
half of (E1) holds if and only if there is a solution (U4 0 , s* , U4 ) of Eq. (9.22)
such that

(a) U4 is a multiple of (�U� 3 ��{)(Un*, {*),

(b) s* 1&s* =Ds1 (U0*)U4 0&s* {0.
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The solutions of Eq. (9.22) are triples (U4 0 , s* , U4 ) with

U4 0=(DF(U 0*)&s1*I )&1 [(DF(U3*)&s1*I )U4 &s* (U 3*&U0*)]. (9.25)

To calculate s* 1=Ds1 (U0*)U4 0 , we multiply (9.8) by l1 (U 1*), which yields

s* 1=&
l1 (U1*)(DF(U0*)&s1*I )U4 0

l1 (U1*)(U1*&U0*)
. (9.26)

Then, given a solution (U4 0 , s* , U4 ) of (9.22), from (9.25) and (9.26) we
calculate that

s* 1&s* =&
l1 (U1*)(DF(U3*)&s1*I )U4

l1 (U1*)(U1*&U0*)
+{l1 (U1*)(U 3*&U 0*)

l1 (U 1*)(U1*&U0*)
&1= s* . (9.27)

Let U4 =a(�U� 3 ��{)(U n*, {*). If there exist (a, s* ) such that (9.27) is nonzero,
then (E1) holds. If there do not exist such (a, s* ), we derive a contradiction
as follows.

If (9.27), with U4 =a(�U� 3 ��{)(Un*, {*), is zero for all (a, s* ), then

l1 (U 1*)(DF(U3*)&s1*I )
�U� 3

�{
(Un*, {*)=0 (9.28)

and

l1 (U 1*)(U3*&U0*)=l1 (U 1*)(U 1*&U 0*). (9.29)

Now in verifying (A) in Step 1, we implicitly noted that (DF(U 3*)&s3*I )&1

(U3* & U2*) and (�U� 3 ��{) (Un*, {*) are linearly independent. Therefore
U3*&U2* and (DF(U 3*)&s3*I )(�U� 3 ��{)(Un*, {*) are linearly independent,
so Eq. (9.28) implies that l1 (U 1*)(U 3*&U 2*){0. However, by (9.1) and
(9.29),

l1 (U1*)(U3* &U2*)=l1 (U1*)(U3* &U1*)

=l1 (U1*)(U3* &U0* &U1*+U0*)

=l1 (U1*)(U3* &U0*)&l1 (U1*)(U1* &U0*)=0.

This is a contradiction.
The case of l1 (U1*)(U 1*&U0*)<0 is similar; in (9.21) and (9.24) the

inequalities are reversal.

Step 3. From Eq. (9.13) and Eq. (9.23) we see that (Ia) need not
hold, so the join may not be regular. K
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Remark. The observation that (Ia) need not hold is equivalent to the
observation that the one-wave curve need not continue smoothly through
the degeneracy. This is related to the fact that assumption (3) of the
theorem, which does not correspond to any assumption in earlier cases, is
needed in Step 2 of the proof. Assumption (3) is transversality of the R } S
shock curve U(U0*, s) defined by (9.24) to the backward wave curve
U� 3 (Un*, {).

Remark. If the Lax admissibility criterion, rather than the viscous
profile criterion, is used, then in Fig. 9.1 the shocks from U0 to the distant
saddle with s>s1 (U0) become admissible. Thus the one-wave curve
branches. This is usually considered a defect of the Lax criterion.

10. PREDECESSOR R } RS, SUCCESSOR RS } RS

Theorem 10.1. Let (2.6) be a Riemann problem solution of type
(T1 , ..., Tn) with T1=R } RS, T2=R1 , T3=RS } RS, T4=R1 . Assume:

(1) All hypotheses of Theorem 2.16 are satisfied, except that the

rarefaction U1* w�
s*

2 U2* has zero strength.

(2) l1 (U 3*)(U3*&U 0*){0.

Then (2.6) is a codimension-one Riemann solution. It has an equivalent
codimension-one Riemann solution that lies in the boundary of structurally
stable Riemann solutions of type (R } RS, R1 , T5 , ..., Tn). Riemann solution
(2.6) (and its equivalent) lies in a join that is a UL-boundary. The join is
regular (resp. folded ) if

l1 (U 1*)(U1*&U0*) } l1 (U 3*)(U 3*&U 1*) } l1 (U3*)(U3*&U0*)

is positive (resp. negative).

Proof. Step 1. The one-wave group of (2.6) begins

U0* w�
s*

1 U1* w�
s*

2 U 2* w�
s*

3 U3* w�
s*

4 U4*

(and may be longer). We have

s1*=s2*=s3*=*1 (U1*)=*1 (U3*) and U 1*=U2*.

We note that (U0 , s1 , ..., s3 , U3) near (U0*, s1*, ..., s3*, U3*) represents an
admissible wave sequence of type (R } RS, R1 , RS } RS) if and only if
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F(U1)&F(U0)&s1 (U1&U0)=0, (10.1)

*1 (U1)&s1=0, (10.2)

U2&�(U1 , s2)=0, (10.3)

s2&*1 (U1)�0, (10.4)

F(U3)&F(U2)&s3 (U3&U2)=0, (10.5)

*1 (U2)&s3=0, (10.6)

*1 (U3)&s3=0. (10.7)

Let G(U0 , s1 , ..., sn , Un) be the local defining map for wave sequences
of type (R } RS, R1 , RS } RS, R1 , T5 , ..., Tn) near (U0*, s1*, ..., sn*, U n*),
G=(G1 , G2), where G1 (U0 , s1 , ..., s3 , U3) is given by the left hand sides of
Eqs. (10.1)�(10.3) and (10.5)�(10.7), and G2 (U3 , s4 , ..., sn , Un) is the local
defining map for wave sequences of type (R1 , T5 , ..., Tn). From the theory
of [9],

DG1 (U0*, s1*, ..., s3*, U3*), restricted to

[(U4 0 , s* 1 , ..., s* 3 , U4 3) : U4 0=0], is an isomorphism, (10.8)

and

DG2 (U3*, s4*, ..., sn*, Un*), restricted to

[(U4 3 , s* 4 , ..., s* n , U4 n) : U4 3=U4 n=0], is an isomorphism. (10.9)

Therefore (A) holds.
From (10.8), we can solve Eqs. (10.1)�(10.3) and (10.5)�(10.7) for

(s1 , U1 , ..., s3 , U3) in terms of U0 near (U 0*, s1*, ..., s3*, U 3*). A solution of
G=0 represents a Riemann solution of the desired type if and only if
s2&*1 (U1)�0. By the definition of �, s2=*1 (U2), and *1 (U2)=s3 by
Eq. (10.7); moreover, *1 (U1)=s1 by Eq. (10.2). Thus we need s3&s1�0,
so we study H� (U0) :=s3 (U0)&s1 (U0). We verify (E2) by showing that
DH� (U0*){0. We calculate DH� (U0*)U4 0 by linearizing Eqs. (10.1)�(10.3)
and (10.5)�(10.7) at (U0*, s1*, ..., s3*, U 3*) and solving for s* 3&s* 1 in terms
of U4 0 .

Linearizing Eqs. (10.1)�(10.3) and (10.5)�(10.7) yields

(DF(U1*)&s1*I )U4 1&s* 1 (U 1*&U0*)=(DF(U0*)&s1*I )U4 0 , (10.10)

D*1 (U1*)U4 1&s* 1=0, (10.11)

U4 2&D�(U 1*, s1*)(U4 1 , s* 2)=0, (10.12)
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(DF(U3*)&s1*I )U4 3&(DF(U1*)&s1*I)U4 2&s* 3 (U3*&U1*)=0, (10.13)

D*1 (U 1*)U4 2&s* 3=0, (10.14)

D*1 (U 3*)U4 3&s* 3=0. (10.15)

We write

U4 1=ar1 (U1*)+br2 (U1*),

U4 2=cr1 (U1*)+dr2 (U1*).

We multiply Eq. (10.10) by l1 (U1*) and l2 (U 1*), Eq. (10.12) by l2 (U1*),
and Eq. (10.13) by l1 (U3*). We get

&s* 1l1 (U1*)(U1*&U0*)=l1 (U1*)(DF(U0*)&s1*I)U4 0 ,

(*2 (U1*)&*1 (U 1*))b&s* 1l2 (U 1*)(U1*&U0*)=l2 (U1*)(DF(U 0*)&s1*I)U4 0 ,

d=b,

&dl1 (U3*)(*2 (U 1*)&*1 (U1*)) r2 (U1*)&s* 3l1 (U1*)(U 3*&U 1*)=0.

From these equations we can solve for s* 3&s* 1 in terms of U4 0 :

s* 3&s* 1=mU4 0 (m a 1_2 vector),

m=[l1 (U1*)(U1* &U0*) } l1 (U3*)(U3* &U1*)]&1

_[[l1 (U3*) r2 (U1*) } l2 (U1*)(U1* &U0*)+l1 (U3*)(U3* &U1*)] l1 (U1*)

&l1 (U3*) r2 (U1*) } l1 (U1*)(U1* &U0*) } l2 (U1*)](DF(U0*)&s1*I ).

(10.16)

Note that the denominator is nonzero by the nondegeneracy conditions for
waves of types R } RS and RS } RS.

To verify (E2) we need to show that m{0. We note that it is enough to
show that if

l1 (U 3*) r2 (U 1*) } l1 (U1*)(U1*&U0*)=0, (10.17)

then

l1 (U 3*) r2 (U 1*) } l2 (U1*)(U1*&U0*)+l1 (U3*)(U3*&U1*){0. (10.18)
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But if Eq. (10.17) holds then l1 (U3*) r2 (U 1*)=0, so Eq. (10.18) holds by
the nondegeneracy conditions for waves of type RS } RS.

Since m{0, C=[U0 : H� (U0)=0] is a smooth curve near U0*, and for
(U0 , Un) near (U0*, U n*), a solution of type (R } RS, R1 , RS } RS, R1 , T5 , ...,
Tn) exists provided U0 is on the side of C to which m points.

Step 2. We consider the point (U0*, s1*, U3*, s4*, U 4*, s5*, ..., sn*, Un*) in
R3n&4. We shall investigate the existence of nearly points (U0 , s, U, s4 , U4 ,
s5 , ..., sn , Un) that represent Riemann solutions of type (R } RS, R1 ,
T5 , ..., Tn). To obtain a condition for the existence of such points, we con-
sider the bifurcation diagram of

U4 =F(U)&F(U0)&s(U&U0).

One possibility for this diagram for U0=U 0*, is shown in Fig. 10.1a. Note
that assumption (2) of the theorem guarantees that there is a saddle-node
bifurcation at U3*. There are three other possibilities for the diagram, with
the parabolic curves opening to various sides.

For U0 near U0*, the bifurcation diagram of Fig. 10.1a can perturb to
one of those shown in Figs. 10.1b and 10.1c. Only if the bifurcation
diagram is as in Fig. 10.1b is there an R } RS shock from U0 to U(U0). For
the bifurcation diagram of Fig. 10.1a there is a generalized shock from U0

to U(U0).
To study this situation we consider the systems

F(U1)&F(U0)&s1 (U1&U0)=0, (10.19)

*1 (U1)&s1=0, (10.20)

and

F(U)&F(U0)&s(U&U0)=0, (10.21)

*1 (U)&s=0, (10.22)

near (U0 , s1 , U1)=(U 0*, s1*, U1*) and (U0 , s, U)=(U0*, s1*, U 3*) respectively.
They have solutions (s1 (U0), U1 (U0)) and (s(U0), U(U0)) respectively. Let
G(U0 , s, U, s4 , U4 , s5 , ..., sn , Un) be the local defining map for wave sequences
of type (R } RS, R1 , T5 , ..., Tn) near (U0*, s1*, U3*, s4*, U4*, s5*, ..., sn*, U n*),
G=(G1 , G2), where G1 (U0 , s, U) is given by the left-hand side of
Eq. (10.21), and G2 (U, s4 , U4 , s5 , ..., sn , Un) is as in Step 1. From the proof
of Lemma 5.3 in Ref. [9], DG1 (U 0*, s1*, U3*), restricted to [(U4 0 , s* , U4 ) :
U4 0=0], is an isomorphism. Then from (10.9), (A) holds.
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FIG. 10.1. Bifurcation diagrams for U4 =F(U)&F(U0)&s(U&U0), U0 fixed near U0* .
The proof shows that bifurcation diagram (a) actually occurs for any U0 on the curve C

defined in the proof; the other two diagrams occur for U0 on opposite sides of C.

If the lower parabola opens to the right as shown (i.e., if
l1 (U 1*)(U1*&U0*)>0), a solution of G=0 actually represents a wave
sequence of the desired type if and only if s(U0)<s1 (U0). If
l1 (U 1*)(U1*&U0*)<0, we need s(U0)>s1 (U0). We therefore study the
function H� (U0 , Un) :=s1 (U0)&s(U0).

We calculate DU0
H� (U 0*, Un*)U4 0 by linearizing Eqs. (10.19)�(10.22) at

(U0 , s1 , U1 , s, U)=(U 0*, s1*, U1*, s1*, U3*) and solving for s* 1&s* in terms of
U4 0 . The result is
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s* 1&s* =nU4 0 (n a 1_2 vector),

n=[l1 (U1*)(U1* &U0*) } l1 (U3*)(U3* &U0*)]&1

_[[l1 (U1*)(U1* &U0*) } l1 (U3*) r1 (U1*)&l1 (U3*)(U3* &U0*)] l1 (U1*)

+l1 (U3*) r2 (U1*) } l1 (U1*)(U1* &U0*) } l2 (U1*)](DF(U0*)&s1*I ).

(10.23)

The denominator is nonzero by the nondegeneracy conditions for waves of
type R } RS and asumption (2) of the theorem.

We now claim

m=
l1 (U 3*)(U3*&U0*)
l1 (U3*)(U 3*&U1*)

n. (10.24)

The denominator of the fraction in Eq. (10.24) is nonzero by the fact that
the third wave w3* satisfies the wave nondegeneracy conditions for waves of
type RS } RS. Thus, since m is a nonzero vector, so is n, so (E2) holds.

To prove (10.24) we must show that

l1 (U3*) r2 (U1*) } l2 (U1*)(U1* &U0*)+l1 (U3*)(U3* &U1*)

=&l1 (U1*)(U1* &U0*) } l1 (U3*) r1 (U1*)+l1 (U3*)(U3* &U0*),

or

l1 (U 3*)[l2 (U1*)(U1*&U0*) } r2 (U1*)+l1 (U1*)(U1*&U0*) } r1 (U 1*)]

=l1 (U3*)(U1*&U0*),

which is clear.

Step 3. It is easy to see that [U0 : H� (U0)=0], where H� comes from
Step 2, is precisely the curve C defined in Step 1. For (U0 , Un) near
(U0*, Un*) we have the following conclusions:

(1) l1 (U 1*)(U1*&U 0*)>0. Solutions of type (R } RS, R1 , T5 , ..., Tn)
exist on the side of C to which n points. Thus the join is regular (resp.
folded) if l1 (U 3*)(U 3*&U 0*)�l1 (U 3*)(U 3*&U 1*) is positive (resp. negative).

(2) l1 (U 1*)(U1*&U 0*)<0. Solutions of type (R } RS, R1 , T5 , ..., Tn)
exist on the side of C opposite that to which n points. Thus the join is
regular (resp. folded) if l1 (U3*)(U3*&U0*)�l1 (U 3*)(U3*&U 1*) is negative
(resp. positive). K
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Remark. In contrast to Theorem 7.1, an extra assumption, assumption
(2), is needed in Step 2 of the proof. This asumption is required so that the
generalized shock from U0* to U 3* (``generalized'' because there is a chain
of two connections joining the equilibria rather than a single connection)
will nevertheless satisfy nondegeneracy condition (B1) for R } RS shocks.

Remark. If the Lax admissibility criterion is used, then in Fig. 10.1b the
shocks from U0 to U(U0) are also admissible.

11. PREDECESSOR RS } RS, NO SUCCESSOR

Theorem 11.1. Let (2.6) be a Riemann solution of type (T1 , ..., Tn).
Assume there is an integer k such that Tk=R1 , Tk+1=RS } RS, Tk+2=R1 ,
Tk+3 {RS } *. Assume:

(1) All hypotheses of Theorem 2.4 are satisfied, except that the

rarefaction U*k+1 ww�
s*k+2 U*k+2 has zero strength.

(2) The backward wave curve mapping U� k+2 (Un , {) is regular at
(Un*, {*).

(3) The forward wave curve mapping Uk+1 (U0 , sk+1) is regular at
(U0*, s*k+1).

(4) In the case k=1, the numerator of expression (11.17) below is non-
zero. (If k>1, the numerator of an analagous expression must be nonzero.)

Then (2.6) is a codimension-one Riemann solution. It has an equivalent
codimension-one Riemann solution that lies in the boundary of structurally
stable Riemann solutions of type (T1 , ..., Tk&1 , R1 , RS } S, Tk+3 , ..., Tn).
Riemann solution (2.6) (and its equivalent) lies in a regular join that is an
intermediate boundary.

Proof. Step 1. From the general theory of [9], if k>1, the system of
equations for wave sequences of type (T1 , ..., Tk&1) can be solved for
(s1 , U1 , ..., sk&1 , Uk&1) in terms of U0 near (U0*, s1*, ..., s*k&1 , U*k&1).

However, we shall assume for simplicity that k=1. Thus the one-wave
group of (2.6) is

U0* w�
s*1 U1* w�

s*
2 U2* w�

s*
3 U3*,

with T1=R1 , T2=RS } RS, T3=R1 , T4 {RS } S. We have

s2*=s3*=*1 (U1*)=*1 (U 2*) and U2*=U 3*.
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We note that (U0 , s1 , ..., s3 , U3) near (U0*, s1*, ..., s3*, U3*) represents an
admissible wave sequence of type (R1 , RS } RS, R1) if and only if

U1&�(U0 , s1)=0, (11.1)

F(U2)&F(U1)&s2 (U2&U1)=0, (11.2)

*1 (U1)&s2=0, (11.3)

*1 (U2)&s2=0, (11.4)

U3&�(U2 , s3)=0, (11.5)

s3&*1 (U2)�0. (11.6)

Let G(U0 , s1 , ..., sn , Un) be the local defining map for wave sequences of
type (R1 , RS } RS, R1 , T4 , ..., Tn) near (U0*, s1*, ..., sn*, U n*), G=(G1 , G2),
where G1 (U0 , s1 , ..., s3 , U3) is given by the left hand sides of Eqs.
(11.1)�(11.5), and G2 (U3 , s4 , ..., sn , Un) is the local defining map for wave
sequences of type (T4 , ..., Tn). The linearization of Eqs. (11.1)�(11.5) at
(U0*, s1*, ..., s3*, U 3*) is

U4 1&D�(U0*, s1*)(U4 0 , s* 1)=0, (11.7)

(DF(U2*)&s2*I )U4 2&(DF(U1*)&s2*I)U4 1&s* 2 (U2*&U1*)=0, (11.8)

D*1 (U 1*)U4 1&s* 2=0, (11.9)

D*1 (U 2*)U4 2&s* 2=0, (11.10)

U4 3&D�(U2*, s3*)(U4 2 , s* 3)=0. (11.11)

Solutions of Eqs. (11.7)�(11.11) with U4 0=0 form a one-dimensional space
spanned by

(U4 0 , s* 1 , U4 1 , s* 2 , U4 2 , s* 3 , U4 3)=(0, 0, 0, 0, 0, 1, r1 (U2*)). (11.12)

Thus (R1) holds. Since (R2) and (S3) follow from assumption (1), (A)
holds.

Solutions of (11.1)�(11.6) near (U0*, s1*, ..., sn*, Un*) are parameterized by
U0 and s3 as

s1 =s1 (U0),

U1=U1 (U0),

s2 =s2 (U0),

U2=U2 (U0),

U3=�(U2 , s3), s3�*1 (U2).
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Here (s1 , U1 , s2 , U2)=(s1 (U0), U1 (U0), s2 (U0), U2 (U0)) is the solution of
Eqs. (11.1)�(11.4), and s1 (U0)=s2 (U0)=*1 (U1 (U0))=*1 (U2 (U0)). We
have

�U3

�s3

(U0 , s1 (U0))=r1 (U2 (U0)). (11.14)

The left-hand side of (11.6) is the map H for this situation, so H� (U0 , Un)
=s3 (U0 , Un)&*1 (U2 (U0)). The second part of (E1) holds by Proposi-
tion 4.2.

To verify the first part of (E1) using Proposition 4.3, let

�U� 3

�{
(Un*, {*)=:r1 (U 2*)+;r2 (U2*). (11.14)

We set

U4 1=ar1 (U1*)+br2 (U1*),

U4 2=cr1 (U2*)+dr2 (U2*),

and, motivated by Proposition 4.3, we set

U4 3=:r1 (U2*)+;r2 (U2*).

We multiply Eq. (11.8) and Eq. (11.11) by l1 (U2*) and l2 (U 2*). Then
Eqs. (11.8)�(11.11) become the system

&l1 (U2*)(*2 (U1*)&s2*) br2 (U1*)&s* 2l1 (U 2*)(U2*&U1*)=0,

(*2 (U2*)&s2*)d&l2 (U2*)(*2 (U1*)&s2*) br2 (U1*)&s* 2l2 (U2*)(U2*&U1*)=0,

D*1 (U1*)(ar1 (U1*)+br2 (U1*))&s* 2=0,

D*1 (U2*)(cr1 (U2*)+dr2 (U2*))&s* 2=0,

s* 3&dD*1 (U2*) r2(U2*)=:, (11.15)

d=;. (11.16)

We have use Lemma 2.2 in Eqs. (11.15)�(11.16).
Simplifying the notation, this system becomes

&Ab&Bs* 2=0,

&Cb+Ed&Gs* 2=0,

a+Hb&s* 2=0,
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c+Id&s* 2=0,

s* 3&Id=:,

d=;.

Here A, B, C, E, G, H, and I have the obvious meanings. Since
l1 (U 2*)(U2*&U1*){0 by the nondegeneracy conditions for waves of type
RS } RS, U2*&U 1* and r2 (U2*) are linearly independent; this implies that
BC&GA{0. Therefore this system can be solved uniquely for
(a, b, s* 2 , c, d, s* 3). Then we have

s* 3 &D*1 (U2*)U4 2=s* 3&s* 2=(:+I;)+
EA;

BC&GA

=
(BC&GA):+(BCI&GAI+EA);

BC&GA
, (11.17)

which is nonzero by assumption (4) of the theorem. Thus the hypotheses
of Proposition 4.3 are satisfied provided we can choose (U4 0 , s* 1) to satisfy
Eq. (11.7) with U4 1=ar1 (U1*)+br2 (U1*); since Lemma 2.2 says that
D�(U0*, s1*) is surjective, we can do this. Without the simplifying assump-
tion k=1, assumption (3) of the theorem would be required.

Step 2. We note that if (U0 , s1 , U1 , s, U) represents an admissible
wave sequence of type (R1 , RS } S) or (R1 , RS } RS), then we must have

U1&�(U0 , s1)=0, (11.18)

F(U)&F(U1)&s(U&U1)=0, (11.19)

*1 (U1)&s=0, (11.20)

*1 (U)&s�0. (11.21)

In fact, any solution of Eqs. (11.18)�(11.20) near (U0*, s1*, U1*, s2*, U 2*) with
*1 (U)&s<0 represents a wave sequence of type (R1 , RS } S), while any
solution with *1 (U)&s=0 represents a wave sequence of type
(R1 , RS } RS). The admissibility of the waves can be seen from the bifurca-
tion diagram of

U4 =(F(U)&F(U1)&s(U&U1)

for U1 near U1*. See Fig. 11.1.
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FIG. 11.1. Bifurcation diagrams for U4 =F(U)&F(U1)&s(U&U1), U1 fixed near U1* .
Only in case (b) (resp. case (a)) is there a repeller-saddle to saddle (resp. repeller-saddle to
repeller-saddle) connection.

Let G(U0 , s1 , U1 , s, U, s4 , U4 , s5 , ..., sn , Un) be the local defining map for
wave sequences of type (R1 , RS } S, T4 , ..., Tn) near (U 0*, s1*, U1*, s2*, U 2*,
s4*, U4*, s5*, ..., sn*, U n*), G=(G1 , G2), where G1 (U0 , s1 , U1 , s, U) is given
by the left-hand sides of Eqs. (11.18)�(11.20), and G2 (U, s4 , U4 , s5 , ..., sn ,
Un) is as in Step 1. The linearization of Eqs. (11.18)�(11.20) at
(U0*, s1*, U1*, s2*, U2*) is
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U4 1&D�(U0*, s1*)(U4 0 , s* 1)=0, (11.22)

(DF(U2*)&s2*I )U4 &(DF(U 1*)&s2*I)U4 1&s* (U2*&U1*)=0, (11.23)

D*1 (U 1*)U4 1&s* =0. (11.24)

Solutions of Eqs. (11.22)�(11.24) with U4 0=0 form a one-dimensional space
spanned by

(U4 0 , s* 1 , U4 1 , s* , U4 )=(0, 0, 0, 0, r1 (U2*). (11.25)

Therefore (R1) holds. Since the last component of (11.12) agrees with the
last component of (11.25), (A) holds.

Solutions of Eqs. (11.18)�(11.20) near (U0*, s1*, U 1*, s2*, U2*) can be
parameterized by U0 and a variable t near 0 as

s1=s1 (U0 , t),

U1=U1 (U0 , t),

s=s1 (U0 , t),

U=U(U0 , t),

where U1 (U0 (t))=�(U0 , s1 (U0 , t)), s1 (U0 , t)=*1 (U1 (U0 , t)), and we can
easily arrange that

s1 (U0 , 0)=s1 (U0),
�s1

�t
(U0 , 0)=0,

U1 (U0 , 0)=U1 (U0),
�U1

�t
(U0 , 0)=0,

U(U0 , 0)=U2 (U0),
�U
�t

(U0 , 0)=r1 (U2 (U0)).

From (11.21), the map H for this situation is s&*1 (U). Therefore

H� (U0 , Un)=s(U0 , t(U0 , Un))&*1 (U(U0 , t(U0 , Un))).

The second half of (E1) is verified as in Sec. 7.
We verify the first half of (E1) using the idea of Proposition 4.3. In

Eqs. (11.22)�(11.24), we set U4 1=ar1 (U1*)+br2 (U1*) and, motivated by
Proposition 4.3, we set U4 =:r1 (U2*)+;r2 (U2*), with : and ; given by
Eq. (11.14).
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We multiply Eq. (11.23) by l1 (U 2*) and l2 (U 2*). Then Eqs. (11.23)�
(11.24) become the system

&Ab&Bs* =0,

&Cb+E;&Gs* =0,

a+Hb&s* =0.

Here the capital letters have the same meaning as in Step 1 of the proof.
This system can be solved uniquely for (a, b, s* ). We find

s* &D*1 (U 2*)U4 =
EA;

GA&BC
&(:+I;)

=
(BC&GA):+(BCI&GAI+EA);

GA&BC
,

which is nonzero by assumption (4).

Step 3. In Step 1,

U3=�(U2 (U0), s3)

is defined for s3�*1 (U2 (U0)), while in Step 2, U(U0 , t) is defined for t�0
as in Section 7. Then from (11.12) and (11.25), (Ia) holds, so the join is
regular. K

Remark. The triples (U1 , s2 , U2) such that there is a shock of type
RS } RS from U1 to U2 with speed s2 form a curve D through (U1*, s2*, U2*):
the solutions of Eqs. (11.2)�(11.4). This curve projects to curves D1 and D2

through U1* and U 2* respectively: for U1 # D1 , there is a speed s2 and a
point U2 # D2 such that there is an RS } RS shock from U1 to U2 with speed
s2 . Assumption (4) says that D2 is transverse to the backward wave curve
U� 3 (Un*, {) at U 2*=U3*. This is a natural geometric requirement for the
existence of a codimension-one Riemann solution of the desired type.
Nevertheless, it is used only to verify the first part of (E1), which does not
seem to be very important to students of Riemann problems. It is inter-
esting to note that the same assumption verifies the first part of (E1) in
both steps of the proof.

12. PREDECESSOR RS } RS, SUCCESSOR RS } S

Theorem 12.1. Let (2.6) be a Riemann solution of type (T1 , ..., Tn).
Assume there is an integer k such that Tk=R1 , Tk+1=RS } RS, Tk+2=R1 ,
Tk+3=RS } S. Assume
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(1) All hypotheses of Theorem 2.4 are satisfied, except that the

rarefaction U*k+1 ww�
s*k+2 U*k+2 has zero strength.

(2) The backward wave curve mapping U� k+3 (Un , {) is regular at
(Un*, {*).

(3) The forward wave curve mapping Uk+1 (U0 , sk+1) is regular at
(U0*, s*k+1).

(4) (DF(U*k+3)&s*k+1I)&1 (U*k+3&U k*) and (�U� k+3 ��{)(Un*, {*)
are linearly independent.

(5) In the case k=1, the numerator of expression (12.20) below is
nonzero. (If k>1, the numerator of an analagous expression must be non-
zero.)

(6) l1 (U*k+2)(U*k+3&U*k+2) is nonzero.

(7) l1 (U k*)(U*k+3&Uk*) is nonzero.

Then (2.6) is a codimension-one Riemann solution. It has an equivalent
codimension-one Riemann solution that lies in the boundary of structurally
stable Riemann solutions of type (T1 , ..., Tk&1 , R1 , RS } S, Tk+4 , ..., Tn).
Riemann solution (2.6) (and its equivalent) lies in a join that is an inter-
mediate boundary. The join may be regular or folded.

Proof. Step 1. As in Section 11, we shall assume for simplicity that
k=1. Then the 1-wave group of (2.6) is

U0* w�
s*

1 U1* w�
s*

2 U 2* w�
s*

3 U3* w�
s*

4 U4*

with T1=R1 , T2=RS } RS, T3=R1 , T4=RS } S. We have

s2*=s3*=s4*=*1 (U1*)=*1 (U2*) and U 2*=U3*.

We note that (U0 , s1 , ..., s4 , U4) near (U0*, s1*, ..., s4*, U4*) represents an
admissible wave sequence of type (R1 , RS } RS, R1 , RS } S) if and only if

U1&�(U0 , s1)=0, (12.1)

F(U2)&F(U1)&s2 (U2&U1)=0, (12.2)

*1 (U1)&s2=0, (12.3)

*1 (U2)&s2=0, (12.4)

U3&�(U2 , s3)=0, (12.5)

s3&*1 (U2)�0, (12.6)

F(U4)&F(U3)&s4 (U4&U3)=0, (12.7)

*1 (U3)&s4=0. (12.8)
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Let G(U0 , s1 , ..., sn , Un) be the local defining map for wave sequences
of type (R1 , RS } RS, R1 , RS } S, T5 , ..., Tn) near (U0*, s1*, ..., sn*, U n*),
G=(G1 , G2), where G1 (U0 , s1 , ..., s4 , U4) is given by the left hand sides of
Eqs. (12.1)�(12.5) and (12.7)�(12.8), and G2 (U4 , s5 , ..., sn , Un) is the local
defining map for wave sequences of type (T5 , ..., Tn). The linearization of
Eqs. (12.1)�(12.5) and (12.7)�(12.8) at (U0*, s1*, ..., s4*, U 4*) is

U4 1&D�(U0*, s1*)(U4 0 , s* 1)=0, (12.9)

(DF(U2*)&s2*I )U4 2&(DF(U1*)&s2*I)U4 1&s* 2 (U2*&U1*)=0, (12.10)

D*1 (U 1*)U4 1&s* 2=0, (12.11)

D*1 (U 2*)U4 2&s* 2=0, (12.12)

U4 3&D�(U2*, s3*)(U4 2 , s* 3)=0, (12.13)

(DF(U4*)&s4*I )U4 4&(DF(U3*)&s4*I)U4 3&s* 4 (U4*&U3*)=0, (12.14)

D*1 (U3*)U4 3&s* 4=0. (12.15)

Solutions of Eqs. (12.9)�(12.15) with U4 0=0 form a one-dimensional space
spanned by

(U4 0 , s* 1 , U4 1 , s* 2 , U4 2 , s* 3 , U4 3 , s* 4 , U4 4)

=(0, 0, 0, 0, 0, 1, r1 (U2*), 1, (DF(U 4*)&s4*I )&1 (U4*&U 3*)). (12.16)

Thus (R1) holds. Since (R2) and (S3) follow from assumption (1), (A)
holds.

Solutions of (12.1)�(12.6) near (U0*, s1*, ..., s4*, U4*) are parameterized by
U0 and s3 as

s1=s1 (U0),

U1=U1 (U0),

s2=s2 (U0),

U2=U2 (U0),

U3=�(U2 (U0), s3), s3�*1 (U2 (U0)),

s4=s3 ,

U4=.(U3 , s4).
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Here (s1 (U0), U1 (U0), s2 (U0), U2 (U0)) is the solution of Eqs. (12.1)�(12.4)
near (U0*, s1*, U 1*, s2*, U2*), and U4=.(U3 , s4) is the solution of Eq. (12.7)
near (U3*, s4*, U 4*).

The left-hand side of (12.6) is the map H for this situation, so H� (U0 , Un)
=s3 (U0 , Un)&*1 (U2 (U0)). The second part of (E1) holds by assumption
(2) and Proposition 4.2.

To verify the first part of (E1) using Proposition 4.3, let

�U� 4

�{
(Un*, {*)=:r1 (U 4*)+;r2 (U4*).

We set

U4 1=ar1 (U1*)+br2 (U1*),

U4 2=cr1 (U2*)+dr2 (U2*),

U4 3=er1 (U3*)+fr2 (U3*),

and, motivated by Proposition 4.3, we set

U4 4=:r1 (U4*)+;r2 (U4*).

We multiply Eq. (12.10) and Eqs. (12.13)�(12.14) by l1 (U2*) and l2 (U 2*).
Then Eqs. (12.10)�(12.15) become the system

&l1 (U2*)(*2 (U1*)&s2*) br2 (U1*)&s* 2l1 (U 2*)(U2*&U1*)=0,

(*2 (U2*)&s2*)d&l2 (U2*)(*2 (U1*)&s2*) br2 (U1*)&s* 2l2 (U2*)(U2*&U1*)=0,

D*1 (U1*)(ar1 (U1*)+br2 (U1*))&s* 2=0,

D*1 (U2*)(cr1 (U2*)+dr2 (U2*))&s* 2=0,

s* 3&dD*1 (U2*) r2 (U2*)&e=0, (12.17)

d& f=0, (12.18)

l1 (U3*)(*1 (U4*)&s4*) :r1 (U4*)

+l1 (U3*)(*2(U4*)&s4*) ;r2 (U4*)&s* 4l1 (U3*)(U4*&U3*)=0,

l2 (U3*)(*1 (U4*)&s4*) :r1 (U4*)

+l2 (U3*)(*2(U4*)&s4*) ;r2 (U4*)&(*2 (U3*)&s4*) f

&s* 4l2 (U3*)(U4*&U3*)=0,

e+ f D*1 (U3*) r2 (U3*)&s* 4=0.

We have use Lemma 2.2 in Eqs. (12.17)�(12.18).
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Simplifying the notation, this system becomes

&Ab&Bs* 2=0, (12.19)

&Cb+Ed&Gs* 2=0,

a+Hb&s* 2=0,

c+Id&s* 2=0,

s* 3&Id&e=0,

d& f =0,

&Ls* 4=&J:&K;,

&Ef &Qs* 4=&M:&N;,

e+If &s* 4=0.

Here the capital letters have the obvious meanings. As in Section 11,
BC&GA{0, and by assumption (6) of the theorem L{0. Therefore this
system can be solved uniquely for (a, b, s* 2 , c, d, s* 3 , e, f, s* 4). Then we have

s* 3&D*1 (U2*)U4 2=s* 3&s* 2

=
_(BCJ&AGJ&AQJ+ALM):

+(BCK&AGK&AKQ+ALN); &
L(CB&GA)

. (12.20)

This is nonzero by assumption (5). Thus, as in Section 11, the hypotheses
of Proposition 4.3 are satisfied.

Step 2. We look for points (U0 , s1 , U1 , s, U) near (U0*, s1*, U1*, s2*,
U4*) that represent admissible wave sequences of type (R1 , RS } S). We first
note that Eqs. (12.2) and (12.4) can be solved for (s2 , U2) in terms of U1

near (U1*, s2*, U 2*) by the implicit function theorem:

s2=ŝ2 (U1)=*1 (U2 (U1)),

U2=U� 2 (U1).

Next we note that for fixed U1 near U1*, the one-parameter family of
differential equations

U4 =F(U)&F(U1)&s(U&U1) (12.21)
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has a transcritical bifurcation at s=*1 (U1) and a saddle-node bifurcation
at s=ŝ2 (U1).

The possible bifurcation diagrams for (12.21) with the parabolic curve
through U2 (U1) opening to the right are shown in Fig. 12.1; the upper
curve represents equilibria near U4*. The parabolic curve opens to the right
(resp. left) if l1 (U2*)(U2*&U1*) is positive (resp. negative).

In the case l1 (U 1*)(U1*&U 0*)>0, if (U0 , s1 , U1 , s, U) represents an
admissible wave sequence of type (R1 , RS } S), then

U1&�(U0 , s1)=0, (12.22)

F(U)&F(U1)&s(U&U1)=0, (12.23)

*1 (U1)&s=0. (12.24)

In addition, from Fig. 12.1, we must have

ŝ2 (U1)&*1 (U1)�0. (12.25)

In fact, solutions of Eqs. (12.22)�(12.24) near (U0*, s1*, U1*, s2*, U 4*) with
ŝ2 (U1)&*1 (U1)>0 represent wave sequences in which the second wave is
an RS } S shock; if ŝ2 (U1)&*1 (U1)=0, the second wave is a generalized
shock.

Let G(U0 , s1 , U1 , s, U, s5 , U5 , s6 , ..., sn , Un) be the local defining map for
wave sequences of type (R1 , RS } S, T5 , ..., Tn) near (U 0*, s1*, U1*, s2*, U 4*,
s5*, U5*, s6*, ..., sn*, U n*), G=(G1 , G2), where G1 (U0 , s1 , U1 , s, U) is given
by the left-hand sides of Eqs. (12.22)�(12.24), and G2 (U, s5 , U5 , s6 , ..., sn ,
Un) is as in Step 1. The linearization of Eqs. (12.22)�(12.24) at (U 0*, s1*,
U1*, s2*, U 4*) is

U4 1&D�(U0*, s1*)(U4 0 , s* 1)=0, (12.26)

(DF(U4*)&s2*I )U4 &(DF(U 1*)&s2*I)U4 1&s* (U4*&U1*)=0, (12.27)

D*1 (U 1*)U4 1&s* =0. (12.28)

Solutions of Eqs. (12.26)�(12.28) with U4 0=0 form a one-dimensional space
spanned by

(U4 0 , s* 1 , U4 1 , s* , U4 )=(0, 1, r1 (U1*), 1, (DF(U4*)&s2*I )&1 (U 4*&U 1*)).

(12.29)

Therefore (R1) holds. By assumption (4) of the theorem, (A) holds.
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FIG. 12.1. Bifurcation diagrams for U4 =F(U)&F(U1)&s(U&U1), U1 fixed near U1* .
Only in case (c) is there a repeller-saddle to saddle connection from U 1 to an equilibrium near
U4*.

In the case l1 (U2*)(U2*&U1*)>0 solutions of Eqs. (12.22)�(12.24) near
U0*, s1*, U 1*, s2*, U4*), are parameterized by U0 and s1 as

U1=�(U0 , s1),

s=s1 ,

U='(U1 , s),

where '(U1 , s) is the solution of Eq. (12.23) near (U1*, s2*, U4*).
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The map H for this situation is the left-hand side of (12.25), so

H� (U0 , Un)= ŝ2 (U1)&*1 (U1), where U1=�(U0 , s1 (U0 , Un)).

(12.30)

To verify the second half of (E1), we note that

DUn
H� (U 0*, Un*)U4 n=Dŝ2 (U1*)U4 1&D*1 (U1*)U4 1 ,

U4 1=
��
�s1

(U0*, s1*) DUn
s1 (U0*, Un*)U4 n .

By the proof of Proposition 4.2 we can choose U4 n so that
DUn

s1 (U 0*, Un*)U4 n=1; then U4 1=(�U��s1 )(U 0*, s1*)=r1 (U1*). To calculate
Dŝ2 (U1*) r1 (U 1*), we linearize Eqs. (12.2) and (12.4) at (U1*, s2*, U 2*)

(DF(U2*)&s2*I )U4 2&(DF(U1*)&s2*I )U4 1&s* 2 (U2*&U1*)=0, (12.31)

D*1 (U 2*)U4 2&s* 2=0.

If we set U4 1=r1 (U 1*) and multiply Eq. (12.31) by l1 (U2*), we obtain
&s* 2l1 (U2*)(U 2*&U 1*)=0, so s* 2=0. Therefore

Dŝ2 (U1*) r1 (U1*)=0.

We conclude that for U4 n chosen as above,

DUn
H� (U 0*, U n*)U4 n=&D*1 (U 1*) r1 (U1*)=&1.

Therefore the second half of (E1) holds.
To verify the first half of (E1), we note that by the argument used to

prove Proposition 4.3, the first half of (E1) holds if and only if there is a
solution (U4 0 , s* 1 , U4 1 , s* , U4 ) of Eqs. (12.26)�(12.28) such that

(a) U4 is a multiple of (�U� 4 ��{)(Un*, {*),

(b) s* 2&D*1 (U1*)U4 1=Dŝ2 (U1*)U4 1&D*1 (U1*)U4 1 {0.

In the system Eqs. (12.27)�(12.28), we set U4 1=ar1 (U1*)+br2 (U 1*) and,
motivated by Proposition 4.3, we set U4 =:r1 (U4*)+;r2 (U4*).

To find the solutions (U4 0 , s* 1 , U4 1 , s* , U4 ) of Eqs. (12.26)�(12.28) that
satisfy (a), we multiply Eq. (12.27) by l1 (U2*) and l2 (U2*). Then Eqs.
(12.27)�(12.28) become the system
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&l1 (U2*)(*1 (U4*)&s2*) :r1 (U4*)+l1 AAAFU2*)(*2 (U4*)&s2*) ;r2 (U4*)

&l1 (U2*)(*2(U1*)&s2*) br2 (U1*)&s* l1 (U2*)(U4* &U1*)=0, (12.32)

&l2 (U2*)(*1 (U4*)&s2*) :r1 (U4*)+l2 (U2*)(*2 (U4*)&s2*) ;r2 (U4*)

&l2 (U2*)(*2(U1*)&s2*) br2 (U1*)&s* l2 (U2*)(U4* &U1*)=0, (12.33)

D*1 (U 1*)(ar1 (U 1*)+br2 (U1*))&s* =0. (12.34)

Since

l1 (U 2*)(U4*&U1*)=l1 (U2*)(U 4*&U 3*)+l1 (U2*)(U 3*&U1*)=L+B

and

l2 (U 2*)(U4*&U1*)=l2 (U 2*)(U 4*&U 3*)+l2 (U2*)(U 3*&U1*)=Q+G,

Eqs. (12.32)�(12.34) become the system

J:+K;&Ab&(L+B)s* =0,

N:+N;&Cb&(Q+G)s* =0,

a+Hb&s* =0.

Assumption (7) of the theorem implies that r2 (U1*) and U4*&U1* are
linearly independent, which implies that A(Q+G)&C(L+B) is nonzero.
Therefore this system can be solved uniquely for (a, b, s* ), and then (U4 0 , s* 1)
can be easily found.

In terms of this solution, we calculate from Eq. (12.19)

Dŝ2 (U1*)U4 1=&
A
B

b. (12.35)

Then we verify (b) as

Dŝ2 (U1*)U4 1&D*1 (U1*)U4 1

=&
A
B

b&(a+Hb)

=
_(BCJ&AGJ&AQJ+ALM):

+(BCK&AGK&AKQ+ALN); &
B(A(Q+G)&C(L+B))

. (12.36)

This expression is nonzero by assumption (5).
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Step 3. From (12.16) and (12.29) we see that (Ia) need not hold, so
the join may not be regular.

The case l1 (U1*)(U 1*&U0*)<0 is similar. K

Remark. As in Section 9, the observation that (Ia) need not hold is
equivalent to the observation that the one-wave curve need not continue
smoothly through the degeneracy, which is related to the need for assump-
tion (4) of the theorem in Step 2 of the proof. This assumption is transver-
sality of the RS } S shock curve U='(U1*, s), defined in Step 2, to the
backward wave curve U� 4 (U n*, {).

Remark. Assumption (5) has the following geometric interpretation.
The quadruples (U1 , s2 , U2 , U4) such that there is a shock of type RS } RS
from U1 to U2 with speed s2 , and a shock of type RS } S from U2 to U4

with the same speed, form a curve D through (U 1*, s2*, U 2*, U 4*). This curve
may be found by solving Eqs. (12.2)�(12.4) and Eq. (12.7) with U3=U2

and s4=s2 . This curve projects to curves D1 , D2 , and D4 through U 1*, U 2*,
and U4* respectively: for each U1 # D1 there is a speed s2 and points U2 # D2

and U4 # D4 such that there is an RS } RS shock from U1 to U2 with speed
s2 and an RS } S shock from U2 to U4 with the same speed. Assumption (5)
says that D4 is transverse to the backward wave curve U� 4 (Un*, {) at U4*. As
in the previous section, this is a natural geometric requirement for the
existence of a codimension-one Riemann solution of the desired type, but
it is only used to verify the first part of (E1) in both steps of the proof.
Assumptions (6) and (7) are used in the verification of (E1) in Steps 1 and
2, respectively, and are analogues. However, we do not have a natural
geometric interpretation for these assumptions.

Remark. If the Lax admissibility criterion is used, then in Fig. 12.1b the
RS } S shocks from U1 to the distant saddle become admissible.

13. PREDECESSOR RS } RS, SUCCESSOR RS } RS

Theorem 13.1. Let (2.6) be a Riemann solution of type (T1 , ..., Tn).
Assume there is an integer k such that Tk=R1 , Tk+1=RS } RS, Tk+2=R1 ,
Tk+3=RS } RS, Tk+4=R1 . Assume:

(1) All hypotheses of Theorem 2.4 are satisfied, except that the

rarefaction U*k+1 ww�
s*k+2 U*k+2 has zero stength.

(2) l1 (U*k+3)(U*k+3&Uk*){0.
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(3) &l1 (U*k+3) r2 (Uk*) } l1 (U*k+1)(U*k+1&Uk*)+l1 (U*k+1) r2 (Uk*) }
l1 (U*k+3)(U*k+3&Uk*){0.

(4) The forward wave curve mapping Uk+1 (U0 , sk+1) is regular at
(U0*, s*k+1).

Then (2.6) is a codimension-one Riemann solution. It has an equivalent
codimension-one Riemann solution that lies in the boundary of structurally
stable Riemann solutions of type (T1 , ..., Tk&1 , R1 , RS } RS, R1 , Tk+5 , ...,
Tn). Riemann solution (2.6) (and its equivalent) lies in a join that is a
UL -boundary. The join is regular (resp. folded ) if

l1 (U*k+1)(U*k+1&Uk*) } l1 (U*k+3)(U*k+3&U*k+2) } l1 (U*k+3)(U*k+3&U k*)

is positive (resp. negative).

Proof. Step 1. As in Sections 11�12, we shall assume for simplicity
that k=1. Then the 1-wave group of (2.6) begins

U0* w�
s*

1 U1* w�
s*2 U 2* w�

s*
3 U3* w�

s*
4 U4* w�

s*
5 U5*

with T1=R1 , T2=RS } RS, T3=R1 , T4=RS } RS, T5=R1 ; it may be
longer. We have

s2*=s3*=s4*=*1 (U 1*)=*1 (U2*)=*1 (U4*) and U 2*=U3*. (13.3)

We note that (U0 , s1 , ..., s4 , U4) near (U0*, s1*, ..., s4*, U4*) represents an
admissible wave sequence of type (R1 , RS } RS, R1 , RS } RS) if and only if

U1&�(U0 , s1)=0, (13.1)

F(U2)&F(U1)&s2 (U2&U1)=0, (13.2)

*1 (U1)&s2=0, (13.3)

*1 (U2)&s2=0, (13.4)

U3&�(U2 , s3)=0, (13.5)

s3&*1 (U2)�0 (13.6)

F(U4)&F(U3)&s4 (U4&U3)=0, (13.7)

*1 (U3)&s4=0, (13.8)

*1 (U4)&s4=0. (13.9)
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Let G(U0 , s1 , ..., sn , Un) be the local defining map for wave sequences of
type (R1 , RS } RS, R1 , RS } RS, R1 , T6 , ..., Tn) near (U0*, s1*, ..., sn*, Un*),
G=(G1 , G2), where G1 (U0 , s1 , ..., s4 , U4) is given by the left hand sides of
Eqs. (13.1)�(13.5) and (13.7)�(13.9), and G2 (U4 , s5 , ..., sn , Un) is the local
defining map for wave sequences of type (R1 , T6 , ..., Tn). From the theory
of [9],

DG1 (U0*, s1*,..., s4*, U4*), restricted to

[(U4 0 , s* 1 ,... , s* 4 , U4 4) : U4 0=0], is an isomorphism, (13.10)

and

DG2 (U4*, s5*,... , s*n , U*n), restricted to

[(U4 4 , s* 5 ,... , s* n , U4 n) : U4 4=U4 n=0], is an isomorphism. (13.11)

Therefore (A) holds.
From (13.10), we can solve Eqs. (13.1)�(13.5) and (13.7)�(13.9) for

(s1 , U1 , ... , s4 , U4) in terms of U0 near (U 0*, s1*, ... , s4*, U4*). Since a solu-
tion of G=0 represents a Riemann solution of the desired type if and only
if s3&*1 (U2)=s4&s2�0, we now study H� (U0) :=s4 (U0)&s2 (U0). To
verify (E2), we calculate DU0

H� (U0*, U n*)U4 0 by linearizing Eqs.
(13.1)�(13.5) and (13.7)�(13.9) at (U0*, s1*, ... , s4*, U4*) and solving for
s* 4&s* 2 in terms of U4 0 .

Linearizing Eqs. (13.1)�(13.5) and (13.7)�(13.9) yields:

U4 1&D�(U0*, s1*)(U4 0 , s* 1)=0, (13.12)

(DF(U2*)&s2*I )U4 2&(DF(U1*)&s1*I)U4 1&s* 2 (U2*&U1*)=0, (13.13)

D*1 (U 1*)U4 1&s* 2=0,

D*1 (U 2*)U4 2&s* 2=0, (13.14)

U4 3&D�(U2*, s3*)(U4 2 , s* 3)=0, (13.15)

(DF(U4*)&s4*I )U4 4&(DF(U3*)&s4*I)U4 3&s* 4 (U4*&U3*)=0, (13.16)

D*1 (U 3*)U4 3&s* 4=0,

D*1 (U4*)U4 4&s* 4=0.

We write

U4 1=ar1 (U1*)+br2 (U1*), (13.17)

U4 2=cr1 (U2*)+dr2 (U2*), (13.18)

U4 3=er1 (U3*)+ fr2 (U3*). (13.19)
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We multiply Eq. (13.13) by l1 (U2*) and l2 (U2*), Eq. (13.15) by l2 (U3*),
and Eq. (13.16) by l1 (U4*). We get

&(*2 (U1*)&*1 (U1*)) l1 (U 2*) r2 (U1*)b&s* 2l1 (U 2*)(U2*&U1*)=0, (13.20)

(*2 (U2*)&*1 (U 2*))d&(*2 (U 1*)&*1 (U1*)) l2 (U2*) r2 (U1*)b

&s* 2l2 (U 2*)(U 2*&U 1*)=0, (13.21)

f =d, (13.22)

&l1 (U4*)(*2 (U 3*)&*1 (U3*)) r2 (U3*) f &s* 4 l1 (U4*)(U4*&U3*)=0.

(13.23)

We have used Lemma 2.2 in Eq. (13.22). Equations (13.20)�(13.23) can be
solved for (s* 2 , d, f, s* 4) in terms of b. Using this solution, we obtain
s* 4&s* 2=mb, where

m=
*2 (U1*)&*1 (U1*)

l1 (U2*)(U2* &U1*) l1 (U4*)(U4* &U3*)

_[&l1 (U4*) r2 (U3*) } l2 (U2*) r2 (U1*) } l1 (U2*)(U2* &U1*)

+l1 (U4*) r2 (U3*) } l1 (U3*) r2 (U1*) } l2 (U2*)(U2* &U1*)

+l1 (U2*) r2 (U1*) } l1 (U4*)(U4* &U3*)]. (13.24)

We shall shortly verify that m{0. (The denominator of m is nonzero by
the wave nondegeneracy conditions, and the bracketed expression can be
rewritten to equal the expression in assumption (3) of the theorem.) Then
DH� (U0*)=ml2 (U1*) D1�(U 0*, s1*), a nonzero vector, so that (E2) holds.
(Without the simplifying assumption k=1, assumption (4) of the theorem
would be needed.) Therefore C=[U0 : H� (U0)=0] is a smooth curve near
U0*, and for (U0 , Un) near (U0*, Un*), a solution of type (R1 , RS } RS, R1 ,
RS } RS, R1 , T6 , ... , Tn) exists provided U0 is on the side of C to which this
vector points.

Step 2. Next we consider the point (U0*, s1*, U 1*, s4*, U4*, s5*, U 5*,
s6*... , sn*, Un*) in R3n&8. We shall investigate the existence of nearby points
(U0 , s1 , U1 , s, U, s5 , U5 , s6 , ... , sn , Un) that represent Riemann solutions of
type (R1 , RS } RS, R1 , T6 , ... , Tn). To obtain a condition for the existence
of such points, we first solve the system (13.1),

F(U)&F(U1)&s(U&U1)=0, (13.25)

*1 (U1)&s=0, (13.26)

*1 (U)&s=0, (13.27)
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for (s1 , U1 , s, U) in terms of U0 near (U0*, s1*, U 1*, s4*, U4*), and denote the
solution ( ŝ1 (U0), U� 1 (U0), ŝ(U0), U� (U0)). This can be done because of
assumption (2) of the theorem. Then, using U1=U� 1 (U0), we solve Eqs.
(13.2) and (13.4) for (s2 , U2) in terms of U1 . We obtain s2 and U2 as func-
tions of U0 , which we denote ŝ2 (U0) and U� 2 (U0). Then for U0 fixed, the
1-parameter family

U4 =F(U)&F(U� 1 (U0))&s(U&U� 1 (U0)) (13.28)

has transcritical and saddle-node bifurcations at s=ŝ1 (U0), and a second
saddle-node bifurcation at s=ŝ2 (U0). If the parabolic curves through the
saddle-node bifurcation points open to the right, the possible bifurcation
diagrams of (13.28) are shown in Fig. 13.1.

Only for U0 yielding the bifurcation diagram of Fig. 13.1c do we have an
RS } RS shock from U� 1 (U0) to U� (U0). For U0 yielding the bifurcation diagram
of Fig. 13.1a we have a generalized RS } RS shock from U� 1 (U0) to U� (U0).

Once U=U� (U0) is found, the remainder of the Riemann solution is
obtained by solving for (s5 , U5 , ..., Un&1 , sn) in terms of (U, Un). If the
lower parabola in the diagrams of Fig. 13.1 opens to the right as shown,
i.e., if l1 (U2*)(U2*&U1*)>0, the solution actually represents a wave
sequence of the desired type if and only if ŝ1 (U0)< ŝ2 (U0). (If
l1 (U 2*)(U2*&U1*)<0, we need ŝ1 (U0)> ŝ2 (U0).) We therefore study the
function H� (U0 , Un) := ŝ2 (U0)& ŝ1 (U0)=ŝ2 (U0)& ŝ(U0).

We calculate DU0
H� (U0*, Un*)U4 0 by linearizing Eqs. (13.1), (13.2), (13.4),

(13.25), (13.26), (13.27) at (U0*, s1*, U 1*, s2*, U2*, s*, U*) and calculating
s* 2&s* in terms of U4 0 .

The linearized system is (13.12), (13.13), (13.14),

(DF(U4*)&s4*I )U4 &(DF(U 1*)&s4*I )U4 1&s* (U4*&U1*)=0,

D*1 (U 1*)U4 1&s* =0, (13.29)

D*1 (U4*)U4 &s* =0.

We make the substitution (13.17) and multiply Eq. (13.13) by l1 (U2*) to
obtain Eq. (13.20). Then we multiply Eq. (13.29) by l1 (U4*) to obtain

&l1 (U4*)(*2 (U 1*)&*1 (U 1*)) r2 (U 1*)b&s* l1 (U4*)(U4*&U 1*)=0.

From these two equations, we obtain that s* 2&s* =nb, where

n=&
*2 (U1*)&*1 (U1*)

l1 (U4*)(U4* &U1*) l1 (U2*)(U2* &U1*)

_[&l1 (U4*) r2 (U1*) } l1 (U2*)(U2* &U1*)

+l1 (U2*) r2 (U1*) } l1 (U4*)(U4* &U1*)]. (13.30)
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FIG. 13.1. Bifurcation diagrams for U4 =F(U)&F(U� 1 (U0))&s(U&U� 1 (U0)) for U0 near
U0* . Only in case (c) is there a repeller-saddle to repeller-saddle connection from U 1 (U0) to
U� (U0).

Assumption (3) of the theorem implies that n{0. Then DH� (U0*)=
n l2 (U1*)D1�(U 0*, s1*), a nonzero vector. (Without the simplifying assump-
tion k=1, assumption (4) of the theorem would be needed.)

We claim that

m=&
l1 (U4*)(U4*&U1*)
l1 (U4*)(U4*&U3*)

n. (13.31)

Then by assumption (2), m{0, which completes Step 1.
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To prove (13.31), we must show that the bracketed expressions in
(13.24) and (13.30) are equal. After some rearrangement, we must show
that

&l1 (U4*) r2 (U3*) } l2 (U2*) r2 (U1*) } l1 (U2*)(U2* &U1*)

+l1 (U4*) r2 (U3*) } l1 (U2*) r2 (U1*) } l2 (U2*)(U2* &U1*)

+ l1 (U4*) r2 (U1*) } l1 (U2*)(U2* &U1*)

=&l1 (U2*) r2 (U1*) } l1 (U4*)(U4* &U3*)

+l1 (U2*) r2 (U1*) } l1 (U4*)(U4* &U1*). (13.32)

The right hand side is

l1 (U2*) r2 (U 1*) } l1 (U4*)(U3*&U1*). (13.33)

On the left hand side of Eq. (13.32), we subtract and add

l1 (U 4*) r1 (U 3*) } l1 (U2*) r2 (U1*) } l1 (U 2*)(U2*&U 1*), (13.8)

then combine terms to obtain

&l1 (U4*)[l2 (U2*) r2 (U1*) } r2 (U3*)

+l1 (U2*) r2 (U1*) } r1 (U3*)] } l1 (U2*)(U2* &U1*)

+l1 (U2*) r2 (U1*) } l1 (U4*)[l1 (U2*)(U2* &U1*) } r1 (U3*)

+l2 (U2*)(U2* &U1*) } r2 (U3*)]

+l1 (U4*) r2 (U1*) } l1 (U2*)(U2* &U1*)

=&l1 (U4*) r2 (U1*) } l1 (U2*)(U2* &U1*)

+l1 (U2*) r2 (U1*) } l1 (U4*)(U2* &U1*)

+l1 (U4*) r2 (U1*) } l1 (U2*)(U2* &U1*),

which equals (13.33).

Step 3. It is easy to see that [U0 : H� (U0)=0], where H� comes from
Step 2, is precisely the curve C defined in Step 1. For (U0 , Un) near
(U0*, Un*) we have the following conclusions:

(1) l1 (U 2*)(U2*&U 1*)>0. Solutions of type (R1 , RS } RS, R1 , T6 , ...,
Tn) exist on the side of C to which n points. By Eq. (13.31) the join is
regular (resp. folded) if l1 (U4*)(U4*&U1*) l1 (U4*)(U 4*&U3*) is positive
(resp. negative).
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(2) l1 (U 2*)(U2*&U 1*)<0. Solutions of type (R1 , RS } RS, R1 , T6 , ...,
Tn) exist on the side of C opposite that to which n points. Thus the join
is regular (resp. folded) if l1 (U4*)(U4*&U1*) l1 (U 4*)(U 4*&U 3*) is negative
(resp. positive). K

Remark. Assumption (3) is analagous to assumption (2) of
Theorem 10.1. It is required so that the generalized shock from Uk* to
U*k+3 (``generalized'' because the two points are connected by a chain of
two connections, rather than a single connection) will nevertheless satisfy
nondegeneracy condition (B2) for RS } RS shocks.

Remark. Assumption (3) has the following geometric interpretation.
The triplets (U1 , s2 , U2) such that there is a shock of type RS } RS from U1

to U2 with speed s2 form a curve D through (U1*, s2*, U 2*): the solutions of
Eqs. (13.2)�(13.4) . Similarly, the triplets (U3 , s4 , U4) such that there is a
shock of type RS } RS from U3 to U4 with speed s4 form a curve D� through
(U3*, s4*, U4*): the solutions of Eqs. (13.8)�(13.12). The curve D projects to
curves D1 and D2 through U 1* and U 2* respectively; the curve D� projects to
curves D3 and D4 through U 3* and U 4* respectively. Assumption (3), which,
as the proof shows, is equivalent to requiring that the bracketed expression
in Eq. (13.24) be nonzero, says that D2 and D3 meet transversally at
U2*=U3*. As in the previous sections, this is a natural geometric require-
ment for codimension-one Riemann solutions of the desired type. It is used
in both steps 1 and 2 of the proof.

14. FINAL REMARKS

In this section we make some remarks that relate the dependence of the
boundary type of a codimension-one Riemann solution on its position in
the wave sequence, as discussed at the end of Section 3; Table III, which
gives the possible boundary types of the classical missing rarefaction solu-
tions; and the wave curve mapping regularity assumptions that appear in
the statements of Theorems 6.1, 8.1�9.1, and 11.1�13.1.

The reader will note that in all six classical missing 1-rarefaction cases
that can be intermediate boundaries��i.e., all classical missing 1-rarefaction
cases except those in which the missing 1-rarefaction is immediately
followed by an RS } RS shock wave��a regularity hypothesis on a back-
ward wave curve mapping U� m (Un , {) is needed. When the missing
1-rarefaction is followed at some point in the wave sequence by a
1-rarefaction, this hypothesis cannot be satisfied: the backward wave curve
mapping whose regularity is needed is actually independent of Un (up to
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reparameterization in {). In this situation, we expect a UL-boundary rather
than an intermediate boundary.

In two of these six cases, the missing 1-rarefaction is the first wave in the
Riemann solution, and in two it is the second. However, in two of the
cases��those in which the missing 1-rarefaction is immediately preceded by
an RS } RS shock wave��the number of waves that precede the missing
1-rarefaction is arbitrarily large. In these two cases regularity of the
forward wave curve mapping Uk+1 (U0 , sk+1) at (U0*, s*k+1) must be
assumed. However, if a 2-rarefaction precedes the missing 1-rarefaction
somewhere in the wave sequence, this hypothesis cannot be satisfied: the
forward wave curve mapping whose regularity is needed is independent of
U0 . In this situation, we expect the dual of a UL -boundary rather than an
intermediate boundary. If the missing 1-rarefaction is both preceded by a
2-rarefaction and followed by a 1-rarefaction, then neither regularity
hypothesis can be satisfied, and we expect to have an F-boundary.

The final missing 1-rarefaction case treated in this paper��the missing
1-rarefaction is both preceded and followed by RS } RS shock waves��is a
little different. Since the second RS } RS shock wave must be followed by a
1-rarefaction, we cannot have an intermediate boundary. The reader will
note that to show that we have a UL -boundary, regularity of the forward
wave curve mapping Uk+1 (U0 , sk+1) at (U0*, s*k+1) must be assumed. If a
2-rarefaction precedes the missing 1-rarefaction somewhere in the wave
sequence, this hypothesis cannot be satisfied, and we expect to have an
F-boundary.
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